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Abstract. The relationship between the processes of formation of classes of
primes in the generalized Artin’s hypothesis and the theory of information, and as a
consequence, information technology, is investigated.

It is proved that probabilistic methods of the theory of information and
information technologies are the basis for constructing computer models of classes of
primes in accordance with the generalized Artin’s hypothesis. Methods for calculating
the Artin’s constants are developed and the convergence of the estimates of the
constants in probability to limit values is established. The foundations of a number-
theoretic analysis of Artin's constants and related classes are created.
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INTRODUCTION

The solution of many problems in such applied areas as electronics,
electrical engineering, modeling of complex, both deterministic and stochastic,
nonlinear dynamic systems, information technology and many other applied
areas of human activity, depends on solving a significant number of
mathematical problems that have not yet been solved. Artin's hypothesis of
primitive roots is one of these fundamental mathematical problems. For almost
a century, it remains unresolved. The solution to Artin’s problem is important
for research in such applied areas as the creation of effective methods of
protecting information using cryptographic methods, the development of
pseudo-random number generators, the modeling of dynamic processes in
stock markets, and the construction of advanced algorithms for testing
software products of high complexity. One of the options for cryptographic
information protection is the discrete logarithm method. The development of
the Monte Carlo method and its application in the theory of modeling complex
systems depends on the creation of effective generators of pseudo random
numbers given by the laws of probability distribution. The construction of
such generators is especially important in the methods of testing software
applications. Modeling processes in modern stock markets is not possible
without high-quality random number generators with a given distribution law
[1-3]. Another urgent applied problem is the modeling of self-organizing
nonlinear dynamic systems, which are commonly called synergetics, taking
into account the deep modeling of the phenomenon of self-organization in
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complex systems consisting of transition sequences from one phase state to
another using random number generators with a given probability distribution
law [3] . The numerical sequences of iterative models of cyclic fixed points of
dynamical systems are determined by the properties of the primes with which
they are represented. In this case, the question always arises: what distribution
laws obey prime numbers. Riemann in 1869 proposed the function:

1 1 1
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where s is a complex variable, P is the set of all primes [3,4]. The function
is called the Riemann’s zeta function. Concerning this Riemann’s function, a

hypothesis was formed according to which all non-trivial zeros of this function
are on line 1/2 41y, where i =+/—1 and y € R. It follows that all primes
lie on this line since ) — takes values from a set that includes all primes P .

Moreover, for any prime number p f(l/ 2+ip)= 0. In essence, this was
the first attempt to find the law of the distribution of primes. So far, the
hypothesis has not been proved. Note that any function f (S) that is defined
in the complex space C, and therefore s € C, is usually called analytic.

The study of the Riemann’s analytic zeta function has been done by
many  mathematicians. In  particular, it was proved that

f(—2)=1+22 +3%+...+k> +...=0 is the value of s is a trivial zero. This

paradoxical fact for applicants does not contradict the theory of analytic
functions, but from the point of view of the distribution of primes it does not
give an adequate description of the distribution of primes on the number line
R or Q or Z. Starting with the works of Fermat, Euler, Dirichlet, Gauss,
Chebyshev [3,4], systematic attempts were made to establish their distribution
law in two-dimensional real space [4]. In 1896, independently, Adamard and
Valle Poussin proved that equality is true:

ﬂ(x)=.;f%+0(x-e_c '“x) (1)

where ﬂ(x) is the number of primes p < x, and the first term in the form of

a logarithmic smooth function determines the logarithmic law of the
distribution of primes in approximate form, and the second term is the

remainder term that describe the inconsistency of the step function 7 (x)

when it is approximated by a logarithmic function. In many studies, an
analysis of the residual term is given, it is proved that if it is considered as a
function of X, it has a fractal nature [3,8].
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It is known that the distance between primes increases, and the relation:
In(7)-In (%) In In In ()
(in i In ()
where n is the prime number in the ordered whole set of primes [5,6], a
constant that is generally difficult to calculate. The proof of this relation does
not mean at all that absolutely complete information on the distribution of

primes in the system of the logarithmic distribution law has been obtained.

It should be noted that the Riemann’s hypothesis, numerous studies of
its trivial and non-trivial zeros, the proof of the logarithmic law of the
distribution of primes were a source of new information that is fundamental to
the modern world, on the one hand, and on the other, these results led to the
creation of new information technologies. One of the areas of deepening
information technology was the formulation in 1927 by the French
mathematician Artin’s of a hypothesis about the primitive roots of primes

Ppa =Py > ¢ )

p € P, and accordingly the primitive roots of residue groups (Z /pZ )*
modulo prime p . Consider the definition of the primitive root of a prime

number p . The numbers a #1, a # k? is the primitive (antiderivative) root

of the number p , if the following relations are true:

a”” =1(mod p)
pl ©)
a" #1(mod p), n>1

k
The n is the divisor of p—1= le.a‘ .
i=1
Given the definition of a primitive root, Artin’s hypothesis is:
z(x,a)=cla)- z(x) )
where 77 (x,a) is the number of primes p less than or equal to X, for which
a# %l and a # k are according to (1) their primitive roots, c(a) is the

Artin’s constant. More precisely, this hypothesis should be presented as
follows:

n(x,a)= cla,x)- 7(x),
)lciillc(a,x) =c(a) ©)
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7(x)

But then c(a,x) = ( ) and in probability converges to c(a),
w\x,a,x

and therefore has a probability theory interpretation: c(a ) is the probability
of choosing from the set P a prime number p such that a is its primitive
root. Note that the first relation in (1) is always satisfied if @ and p are
coprime numbers according to Fermat's theory [3].

It should be noted that Artin’s proposed his ratings for c(a) ata=2.

But as proved by Hooley [5], these estimates are not true. He also proved the
validity of the relation:

w(x,2)= C(hzl)' AN O(me ©)

x (In )

1
at the same time 0(2) = I | (1 — (—I)J and an assessment of the value
P\p—

peP

of 0(2)2 0,373955813... As will be shown later, this estimate is true only
with the accuracy of the first two decimal places. This can be easily explained
by a very simple consideration. The expression for C(Z) proposed in (4)
depends on all primes, but this is not true because @ =2 is not a primitive
root for all primes p € P. The values of the constants C(a) for @ > 2 and
a # k* were not presented in more than one scientific article.

It should be noted that any number @ >1 and coprime to p is the

basis for considering the recursive function f(x)=a-x(mod p), which
leads to a recursive iterative sequence.

f(xo = 1) = 1’ f(xnﬂ ) = 'xn+1 = axn (mOd p) (7)
According to Fermat’s theorem [4], if a is not a primitive root for p,
then the process of recursive computations will continue for such m that
equality f(xn = m) =X, -a(mod p) =1 is achieved i.e.
a" =t(mod p) u m< p—1 (8)
From Fermat's theorem and the properties of the group (Z/ pZ )*
residues modulo p, it follows that in this case a is the primitive
(antiderivative) root of some subgroup of the group (Z / pZ )* Moreover,
m is the order of this subgroup, which is usually denoted by Carda ( p), the
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number of adjacency classes for this subgroup is denoted by ind, ( p) .
According to the cyclic group theorem (Z /| pZ )* , the equality:
p—1=card (p)-ind,(p) )

The validity of equality (6) follows also from Fermat's theorem. In conclusion,
it should be noted that from the relations (5) and (6) the validity of the
equation follows:

c=a"(mod p) (10)

No more complicated analysis of this equation leads to the
consideration of four options for its solution: Given a,Xx, p - calculate c;

Given c,a, p - calculate X ; Given ¢,X, p - calculate a; Given ¢,a,Xx -
calculate p;

The first equation is solved using recursion (7), (8). The second
equation is the formulation of the discrete logarithm problem. The variable p

can also be a pseudo prime number equal to pk or equal to 27, as noted in

[3], this problem in the general case may be algorithmically unsolvable.
In the third and fourth cases, the solution of such equations is a
problem of extreme complexity. There are no publications on this subject.
From the above analysis it follows that equation (5) allows us to study
the Artin’s hypothesis from a more general point of view, when any natural

number @ >1 and it can be used as a classifier of the set of all primes in the
magnitude of ind (p), which is the object of further research. As will be

established, Artin's hypothesis of primitive roots will be a frequent case of its
more general formulation.

MODELING THE PROCESSES OF GENERATING DYNAMIC
INFORMATION ABOUT THE STRUCTURE OF CLASSES OF
PRIMES ON A GIVEN BASIS

Now we return to the logarithmic law of the distribution of primes
[1-4] in order to pay attention to the fact that the above equality does not
provide comprehensive information about the structure of spaces between
primes. Obviously, with increasing prime numbers, the gaps between them
increase quite significantly. From relation (2) it is completely impossible to
conclude by what laws the distance between the gaps changes, how often the
dips appear statistically and most importantly how the structure of the
decomposition of p-1 numbers into simple factors changes. It is especially
important to have information about the distribution of smooth primes [3].
This information is especially important when solving the discrete logarithm
problem and applying algorithms for solving it in the modern coding theory
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and in modern cryptographic methods of information protection. As shown in
[7], it is practically impossible to find smooth large prime numbers. It follows
that it is of considerable interest to establish the laws of distribution of primes
not only with respect to their primitive roots, but to the roots of subgroups of
the residue group modulo a prime number. Artin’s hypothesis does not imply
such detailed studies. Moreover, it is necessary to find the laws of the
relationship between the laws of the distribution of primes in sets
corresponding to various primitive roots and roots of subgroups. Such tasks
were not considered at all.

The second circumstance is that simultaneously with this fact, the

~< JInx

dynamics of change in O] x-e 2 [8] is investigated. In [3, 4], the

entropy estimate of this estimate was obtained and it was proved that it has a
fractal character. These facts are the basis for the formation of proposals on
the need to study other models of the distribution of prime numbers. Another
problem related to the distribution of primes appeared in 1927, when the
famous mathematician Artin’s formed a hypothesis about the distribution of
primes for which the natural number @ > 1 is given is its primitive root [1,5].

In addition, it is generally accepted, even at the present time, that it
makes sense to study it more fundamentally. The first attempt was made by D.
Zagier [8], but not completed. The results obtained by the author confirm the
very complex fractal behavior of this component. It follows that it is necessary
to significantly improve the study of the depth of classification of primes,
taking into account all models for the formation of classes of primes for any
given basis @ > 1. Further more detailed studies of this component confirm
that although the logarithmic distribution law is fulfilled, nevertheless,
complete information on the dynamic properties of primes and their
relationships with their primitive roots remains poorly studied. In the future
we will consider any values of the base and large units.

According to Artin’s hypothesis [5], the set of such primes has the

distribution law 7T(x, a) as an expression:

7(x,a)=cla) z(x)

where Jr(x) is the distribution of prime numbers, and c(a) is a constant
dependent on a . Until now, despite numerous studies, this hypothesis has not
been resolved. However, it is not known if this is true for any @ values. If the
hypothesis is correct, then the question remains how to estimate the constant
c(a) for each concrete @ and which properties of the number a influence its

value. Answers to these questions are still missing. In works [3, 5] a detailed
analysis of all the results of research in the field of solving the Artin’s
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hypothesis is given. It should be noted that the proof of Artin’s hypothesis is
important both from a theoretical point of view in number theory, and from an
applied rhenium point, because it’s positive solution is important in
cryptography, coding theory, and the theory of dynamical systems. In [6], a

generalized Artin’s hypothesis was formed for any @ > 1, i.e. and at the same
time a may not be a primitive root. According to Artin’s generalized theory,
the following equality is true:

ﬂ(x,a,i):c(a,i)-ﬁ(x) (11)
where @ >1, i — is the index of the subgroup of the group (Z /pZ )* of
primes in the classification of prime numbers generated by the numbers @,
C(a, i) is a constant. According to the classification built in [6]:

Pla.i)={p e P|(p~1)/card,(p)=i} (12)
where  card, (p) is the length of the dynamic recursion
X, =ax, (mod p) at X, =1, P is the set of all primes.

It is not difficult to show that for any @ > 1 the equality:
Zc(a,i)zl (13)
i=1

This means that primes are evenly distributed in classes P(a, i) for

any a. By uniformity is meant that within each class of primes P(a,i) a
logarithmic law of the distribution of primes is preserved. The constant

c(a, i) determines the measure of puncturing prime numbers, based on the

value a.If i =1 then a is the primitive root of all primes P(a,l). For an
arbitrary natural number X, the equality

7z'(x, a, i) = c(a, I, x)- 7z'(x)
Moreover, if x —> oo, then c(a,i, x) tends to the limit value c(a, I )
If we put £ =1 then c(a,l) will be Artin’s constant for primitive roots. In

this case @ #*l, and a # k* for none k € N . This is true according to
Fermat's theorem [3, 4]. Wherein, a is the primitive root of the group of

residues (Z/pZ)* for any p € Psuch that P(a,l)z {p €P| (p —1)/carda (p)z 1}.

It is important to investigate the classes of primes P(a,i) for i >1 since in
this case the positive integer a will be the primitive root for the subgroups of

the group (Z /pZ )* with the index defined by the relations:
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Pla,i)={p|(p~1)/card,(p)=ind,(p)}
where ind, ( p) =1 is the index of the subgroup of (Z /pZ )* . The classes of
primes P(a,i) have not yet been studied and the distribution of primes in
these classes is not known. In [1], an assumption was made that P(a,i) at

i >1 is proportional to P(a,l) with a factor of 1/i*. Since i>1 is
considered, in this case it is important to know the distribution of prime

numbers for the value @ = k. This is an important generalization of Artin’s
hypothesis. At the same time, the probability of:

P(p e Pa,i)& p € P)=|Pa,i)/|P|=c(ai)

Membership agrees exactly with the provisions of the theory of
probability, and therefore, estimating c(a,i) on the basis of successive
statistical tests and the law of large numbers is parity.

The determination of C(a, I ) for any a,i using analytical methods is

unlikely in the near term. However, the formation and development of
experimental mathematics [1, 2] opens up another way to solve this problem
by using computer simulation of nonlinear dynamic processes for the
formation of classes of prime numbers.

The process of modeling the distribution of primes in classes

P(a,l), P(I,Z),...,P(a,k),... was reduced to choosing a set of consecutive

primes from a set of a sufficiently large sample of these classes. The number
of primes analyzed at each interval of natural numbers was chosen to be
500,000. This choice was largely due to the fact that it was previously
established that reducing this value leads to more significant fluctuations in
estimates, although convergence to the limit over the entire set of any
intervals, even if they are not placed consistently, has the same character.

The process of statistical testing of p € P primes for checking their
belonging to class P(a, i ) was reduced to calculating for the selected number
P the recursive procedure x, =1, x,,, =ax, (mod p) until the pairs
ax, = l(mod p) were reached at some step I. Then card, (p)=i and
according to Fermat’s theory and the cyclic group theorem the number p—1
is divisible by i and then ind, (p)z (p—l)/carda (p)zi , and therefore
pE P(a,i) and if i =1, then a is the primitive root of the cyclic group

(Z /pZ )* , and otherwise it is the primitive root of some subgroup. At i > 1,
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we obtain the primitive roots of the subgroups of the (Z / pZ )* residue group
with the index i > 1. The study of the distribution law of prime numbers p
on their belonging to P(a, i) had the character of consistent statistical tests
on the set of natural numbers containing the first 500,000 primes. At the first
stage, primes P were chosen from the set {pl, DPoses psooooo}- With this
X = Psooo0o- FOr each n e {2,...,)(?}, we had to solve two problems: check 7

for simplicity, and if = p € P, then p —1 was decomposed into simple

factors, i.e. systematically solved two non-simple problems of checking
numbers for simplicity and decomposition into simple factors. An effective
algorithm for solving them was created based on probabilistic methods in the

theory of elliptic curves. As a result of analyzing a 6{2,...,/(},
P(a,l),...,P(a,l ) sets were obtained for some / < x and absolutely exact

P(a,l] , and then

values of their powers were calculated, i.e. |P(a,1X,...,

estimates of:

clal,x)= |P(a,1,x] / a(x)....c(a,l,x)= |P(a, [, x} / (x)

while c(a,l,x)—)c(a,l),...,c(a,l,x)—)c(a,l) with X — 00 were obtained.
At the next stage, work was also carried out for prime numbers from
the {psoooop...,pmooooo} interval and the values of the C(a,l),...,c(a,l)

constants were calculated using the same scheme. At the same time [/

increases. The {pl 9"'7p5000000} and {pSOOOOD”"plOOOOOO} sequences were
combined, and the estimates of the generalized Artin’s constants were again
calculated and the process of their refinement was studied on the basis of the
theory of large numbers in probability theory. This procedure continued until

x=p=179424673 and this is a ten million prime numbers. It was found

that c(a,l),...,c(a,k) in probability converges to some values, the exact
values of which are irrational and possibly transcendental numbers. In the
process of estimating the C(a,i) constants, two important theorems were
proved:

Theorem 1. For any ae{2,3,...,k,...} that is not a square, i.e.

a+ k2_ The number of non-empty classes of primes tends to infinity at
X —> 0,
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Theorem 2. For any a € {2,3,..k,...} that is not a square, i.e. a # k”

The number of prime numbers in P(a, I ) tends to infinity at X —> 0.
These theorems are the basis of the convergence of a sequence of
statistical tests to marginal values. Since for any X € N it is obvious that:

ZZ:]P(a,i,x] = ﬂ(x)

P(a,i,x)mP(a,j,x) =¢
at i # j, it follows from this that:

k

Zc(a, i ) =1

i=1

This is true for all values of x —> o0. The review [5] provides an

estimate of 0(2,1), which is identified by c(2,1) in our sense, but 0(2,1)
differs from the estimate of 0(2,1) starting from the fifth decimal place and
this is a theoretical error of the survey works. For different
ae {2,3,5,6,7,8,1 0,1 l,...}, the behavior of the c(a, i ) constants is complex

group-theoretic and number-theoretic. The study of their dynamic properties is
beyond the scope of this work. It should be noted that the results of computer
simulation of the processes of distribution of primes are calculated with an
accuracy of the eleventh decimal place for estimates of

0(2,1),0(3,1),0(5,1),0(6,1),... values. This cannot be asserted for classes by
the 7 > 2 index. To achieve the same accuracy with 7 > 2, it is necessary to
significantly increase the number of prime numbers. With an increase in the I
class index P(a, i) more than three requirements and the volume of the

analyzed primes increases in accordance with the unexplored laws.
Probability-theoretic interpretation of the constant:

x,a

T
c(a) = at x — oo
7(x)
Consider the probability space (Q, F, P) based on:
Q= {a)1 yees @, ,...}: {P1 yees D)y ,...}: P

Obviously at x — oo the numbers are ﬂ(x) —> 0, ﬂ(x,a) —> 00,

but:
)=l Plad). )= |Po). cladon) =708
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and at x —> oo it is obvious that:
|P(a,1, x) / |P(x] — c(a,l)
is where x € P, P — o0,
Pla,i,x)={p| p<x&(p-1)/card,(p)=i}
isat x — oo P(a,i,x)—)P(a,i). Thus:
cla)= lim x(x,a)/7(x)
It follows from Artin’s hypothesis that with c(a,l) there is precisely
the probability of a random event P(a,l) consisting of a choice of
Q= {pl,..., D, ,..} of a prime number p for which a is an original root of

the cyclic group (Z / pZ )* To estimate this probability, the law of large

numbers and the method of successive statistical tests were used. The essence
of the method is that the first test group was reduced and calculated for

{pl,p2 r--apsooooo} for each a e {2,3,...,] 6} evaluation of the values of
C(a,i, x) at X = Psyo00 for all possible values of i = {1,2,...,/(,..}, that is,
El(a,l,x),...,a (a,k,x),... was calculated on the next iteration, the same
tests were performed for the second iteration on the set {psoooov-"» p1000000}~
El(a,l,x),..., ¢, (a,l,x),... Estimates were obtained at the same time
El (a,l,x),..., Ek (a,k ,x),... , provided that the first and second samples were
combined and computed values and were determined by
|5(a,i,x)—c(a,i,x) < ¢ forall x. The main focus was on c(a,l, x). As a
result of some iterations, it was found that for all o the estimates obtained:
P(x)={p| p<x}
Pla,i,x)={p| p<x&(p~1)/card,(p)=i

The order of the cyclic group of the subgroup (Z /pZ )* Afl=p-1,

then q is an original root, and if / < p—1 is the original form of the c(a)

Artin’s measure, c(a, i) is a measure of classes by P(a,i) in P. At that

c(a,i) = |P(a,i)/|P|| and at the same time:

ic(a,i)= lforall a >1

i=1
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This applies only to classes with indexes i =1. For i>2 it is
necessary to increase the number of statistical tests. This is naturally due to the

fact that the classes P(a,i, x) for i > 2 from numerical theorems contain
less than prime numbers. In [1] it is stated that this decrease should be of the
order of l/ i, but this is an erroneous assertion. The degree of decline
essentially depends on the properties of ¢ and requires a separate study. Case
ae {4,9,1 6} requires separate investigations, because these numbers cannot
be primitive roots of that number p, in accordance with the Fermat theorem

[3] cannot be generating elements of groups (Z / pZ )* However, they are

generating elements of the subgroups of the group (Z /pZ )* with even
indices. All classes with odd indices are empty sets. Table 1 shows the
constants for c(a,l) for all a except {4,9,1 6}. Analysis of the table. The

table contains over a thousand columns. The analysis of these data is
numerically theoretical and group-specific and goes beyond the scope.

The simulation process of the dynamics of the formation of prime
numbers was constructed on the following assumptions. Suppose that an
ordered set of prime numbers PZ{pl,pz,...,pk,...} is given, whose

elements are ordered in ascending order. All this set was split into a subset of
500,000 primes. The number of 500,000 is due to the limitations of MS Excel,
as a statistical analysis tool, on a number of characteristics of the process of
generating prime numbers. Only one restriction is important. We always select

500,000 consecutive primes of the set P . In the current version of Excel, this
number can be increased to one million. If you use a powerful computer, you
can choose a larger number instead of a million.

The implemented version of the study of dynamic processes for the
formation of primes includes the following indicators: the number of a simple

number in the P in the ordered set of P, the value of a simple number of
P, the value of the recursion length of the numbers card B ( p) at the same

value of @ for all prime numbers P, the index ind, (p) of the index of the

class:

ind, (p)=(p-1)/card,(p)

The value of the residues modulo any natural module 7 >1, for all
classes and any other analytic properties of primes or factors of the

decomposition of the number of p —1 into simple factors. For each simple
multiplier p; in the:
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p—1=11[p,~“”
i=1

Decomposition, one parameter of the dynamic process of generating
primes is presented, with separate indicators that can be analyzed for any other
indicators, the values for them are deducted by the modulus of the natural

number 7 > 1. The only exception is inda (p) The number of controlled

indicators analyzed in the Excel environment can be expanded.

DYNAMICAL PROPERTIES OF THE PROCESSES OF THE
FORMATION OF CLASSES PRIMES IN THE GENERALIZED
ARTIN’S HYPOTHESIS

According to the idea of experimental mathematics on the first
iteration, we proceed from hypothetically known data. But it is also the basis
for obtaining experimental information on the basis of which the analytical
methods of the theory of numbers yield an expanded representation of the

hypothesis in the form H ;- It is possible that at the same time the hypothesis
can be corrected or even rejected as not true. From the point of view of
information technology in mathematics, the hypothesis ; 1s used to develop
from the point of view of deepening the experimental mathematics of the
model of in-depth studies at the level /.

The iterations process is continued until an analytically based solution
of the generated hypothesis is obtained. Since the Artin’s generalized
hypothesis is considered in the paper, we present the results of the estimation

of the constant C(a,i) for the case @ =4 and [ =2 . The number a =4 is

a perfect square, and therefore it cannot be a primitive root. In terms of Artin’s
generalized hypothesis, this is as interesting and important as in the case when
a 1s an original root.

Based on the data presented in [6], we obtained estimates for c(a, i)
for a=2,3,...9,10 and i=1,2,....9,... It is shown that their values are

stable for class P(4,2) i.e. class with ind, ( p) =2 to within a fourth decimal

place. They are presented in the table 1.
An analysis of the data in the tables shows that for these numbers

. o . 9
Artin’s hypothesis is true on the set of primes |P| =10".

The estimates for the c(a,i) constants given in table 2 have the
unique i =1 property, which is that for @ € {2,3,5,6,7,10,11,12,13,14,15}
they coincide with the accuracy of the third decimal place. An analysis of
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these classes will make it possible to establish that these classes have the same
number of common primes. For any pair of P(ai,l) N P(aj,l) at i # j, the
values of:
|P(a,.1,x) " Pla, 1,x) /|P(x) = 0.1473
at x =179424673 take the same value, with the exception of the pair:
1P(3,1,x) " P(12,1,x)/|P(x) =2-0.1473

This means that all these sets have the same number of common
identical primes. An analysis of this fact shows that the formation of classes
for:

ae <{2,3,5,6,7,1 0,11,12,13,14,15,16,1 7,29,53}

In the generalized Artin’s hypothesis is subject to the same
mathematical laws. Cases a € {4,9} do not relate to this fact because,
according to Fermat's theorem, these values are not primitive roots. Special
attention should be paid to the case of a pair (3,1 2) for which classes:

P(3,1,x)nP(121,x)

with probability 0.8 regarding these classes, consist of the same prime
numbers. The study of these facts will require the creation of new methods of
mathematical analysis of the formation of classes in the classical and,
therefore, generalized Artin’s hypotheses. The solution to this problem is
beyond the scope of this work.

The data in table 2 and table 3 allow us to make an important
conclusion that there are many primitive roots for which the generalized

Artin’s constant c(a,l) is equal to the same value 0.3739.... In addition,

from the same table it follows that all pairs of (P(a,i),P(a, ])) sets have

sets of common primes of the same power. Deepening research in this
direction will parallelly create the theoretical basis for solving the classical
Artin’s hypothesis. The generalized Artin’s hypothesis for all classes
P(a,l),...,P(a,i),... will require additional studies based on probabilistic
computer simulation on the set of prime numbers of data beyond the limits of
the first hundred million.

The results of experimental mathematics in table 1 of the first iteration
confirm that Artin’s hypothesis is correct. The estimates of the constants are
obtained with the accuracy of the third decimal place. For

a€{2,3,5,6,7,8,10} the:

130



S e(a.i)
i=1
and for a € {4 9} all C(a 2i +1) 0 and:

o0
ZC a, 21
i=1

This is due to the fact that for all @ = k” this is true because they are

primitive roots of (Z / pZ )* groups, but primitive roots of their subgroups
with even indices [3]. The results obtained are the basis for constructing an
analytical proof of Artin’s hypothesis and its generalization. The c(a,l)

ratings given in the table for the set of primitive roots {2,3,...,16} are
obtained for the first time based on the results of computer simulation. The
literature is known estimation 0(2,1), which, starting from the fourth decimal
place, is estimated analytically incorrect, due to the fact that the formula:

ST

peP p . p
It is not true, because it includes all primes and among them those
primes for which @ = 2 is not a primitive root [5]. An important result is the
creation of a computer model of the process of forming classes

P(a,l),...,P(a,i),.... For any values of @ > 1, the interactions between the
classes Table 2 and Table 3 are investigated (as a continuation). The first
estimates were c(a,i) for i > 2, and it was established that the statement

that C(a,i) is proportional to l/ i’ is absolutely false [1]. Obtaining the

results is the basis for further deepening research on the Artin’s hypothesis
using analytical methods. In accordance with the developed mathematical

model for the formation of primes on the base a >1 and the calculated
values of the generalized constants C(a, i ) for i 21, as a result of computer

simulation it was established that the generalized hypothesis is true. Tables 1,
2, 3 show the values of the Artin’s constants, the relationships between
classes, the dynamics of the formation of classes and its properties on the set

of all primes P . The first column of Table 2 contains the values of the Artin’s
constants for the antiderivatives of the set {2,3,5,6,7,8,9,10,1 L1 2}. Actually,

the modeling of P(a, i) classes was carried out for many:
ae{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,29,53}
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Numbers a € {4,9,16} as squares of other numbers according to

Fermat's theorem [2] cannot be primitive (primitive) roots of p € P, and,

accordingly, of residue groups (Z / pZ )* modulo p . Particular attention was

paid to the numbers {5,1 3,1 7,29,53} due to the fact that they belong to the
class of numbers of the Chebyshev’s type [3] that is, they have representations
p=4k+1, while pe P, and the number 7 is a natural number.

According to Chebyshev’s assumption, the behavior of these numbers in
residue classes modulo a prime number should differ from other primes.
To solve the problem of modeling classes of primes for a given base

and evaluating the generalized constants of Artin’s C(a,i), an Excel-based
software package was created that allows you to extend the modeling process

to any natural numbers @ > 1 and any set of consecutive primes whose power
is a multiple of 500,000. This is the number of primes was chosen for the
reason that it is statistically represented and provides an accurate

representation of the dynamic processes of the formation of classes P(a, i).
Table 1 shows a fragment of the modeling process for a € {2,3,5,8,12}

values. @ =2 is included in this set for the reason that it can be verified that
the estimate [5,6] is different from the exact value. The difference begins with
the third decimal place. This fact is important due to the fact that expression
(4), although from an asymptotic point of view is close to the exact value of

0(2), nevertheless, it does not take into account all the features of the
formation of classes P(a,l) for @ =2 . The number @ =5 is included in the
analysis of the dynamics, because a=5=4-1+1 is the smallest
Chebyshev’s number, which is as sensitive as possible to the established fact
that all P(5,10k+5) classes for k>0 are empty. This is true for all
Chebyshev’s numbers. The proof of this fact is of a number-theoretic nature,

and therefore, is excluded from consideration. The number a = 8 is included
in the representation of dynamics for the reason that the dynamic properties of

the classes P(&i) are radically different from the other classes studied. In
particular, it was established that if @ =8 is the primitive root of p € P,
then a =2 is also the primitive root of the same prime number. Conversely, if
a =2 is the primitive root of p € P, then a =8 will be either the same

primitive root of p or p € P(8,3). This is completely new information

about the generalized Artin’s constants; the developed information
technologies have become the basis of fundamentally new results from
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modern number theory, and as a consequence of modern cryptography. The
numbers @ =3 and @ =12 are included in table 1 for the reason that

P(3,l) and P(l2,1) contain 0.8 common primes, while for any other pairs
of sets P(a,,l) and P(as ,1), the total fraction of common primes is 0.4 for

[ # s from the considered set of values. These two facts are obtained on the

basis of the analysis of the information presented in table 3. This result was

also based on the methods of modern number theory and probability theory.
Table 1. The quantity of prime numbers into intervals for a=2,3,5,8,12

Interval / a 2 3 5 8 12

0-0.5 187111 187011 196980 112331 187013
0.5-1.0 186912 186948 196836 112075 187057
1.0-15 186953 186960 197030 112175 187040
1.5-2.0 186846 186856 196894 112201 186958
2.0-2.5 187410 186896 196720 112345 186792
2.5-3.0 186711 186777 196957 112042 186767
3.0-3.5 187096 186926 197025 112335 187157
3.5-4.0 186975 187176 196942 112283 186984
4.0-4.5 187197 187148 196543 112296 187317
45-5.0 186713 186796 196689 121919 186721
50-5.5 186828 187013 197050 112093 187005
5.5-6.0 187197 186771 196790 112362 186936
6.0—6.5 186881 187116 196851 112226 187056
6.5-7.0 187065 187214 196478 112093 187122
7.0-17.5 187039 186718 196957 112236 187050
7.5-8.0 187045 186756 196764 112128 187161
8.0-8.5 187299 186805 196840 112187 186594
8.5-9.0 186663 187050 196583 111967 187144
9.0-9.5 186874 187156 196795 112133 186976
9.5-10.0 187034 187072 197083 111993 186947

In conclusion, by returning attention to table lc of another theory of
vision. The essence of a fundamentally new fact is that wherever 500,000

primes p € P are selected for any a >, the number of primes in classes

ranges from no more than 500, which is no more than a thousandth of them.
This means that on any set of consecutive primes we obtain an estimate of the
Artin’s constants up to the fifth decimal place. Statistical summation of values
over the entire set of the first ten million primes made it possible to obtain

estimates of the constants c(a ,1) to the eighth decimal place.

It follows that the methods of computer simulation of the processes of
forming classes of primes P(a,l),P(a,Z),...,P(a,i),... and estimation of
constants C(a,l),C(a,Z),...,C(a,i),... are the basis for the development of
information technologies in modern both pure and applied mathematicians.
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Table 2 shows the values of the estimates of the generalized Artin’s
constants for the marked set of values of a, which were studied as classifiers of
the set of all primes. Table 2 shows a fragment of the entire huge number of
obtained estimates of the Artin’s constants. The first column contains
estimates of Artin’s constants in its original form. They belong to primitive
roots. The numbers 4, 9, 16 are not primitive roots, since according to
Fermat’s theorem they, like the squares of other numbers, cannot be primitive
roots. However, they can be classifiers of primes as roots of subgroups of
residues modulo primes. An interesting fact is that they can be used to build
pseudo-random number generators. In addition, the diskette logarithm
problem can be considered on their basis.

Table 2. The distribution of prime numbers in 1 to 10 classes in the
generalized Artin’s conjecture

a |P(al)| P(a2)|P(a3) |Pa4) |P(5) |P(6) |Pa7) |P8) |P9 | Plall)
2 10,374 | 0,280 | 0,066 | 0,046 | 0,018 | 0,049 | 0,008 | 0,035 | 0,007 | 0,014
3 10,373 | 0,299 | 0,066 | 0,056 | 0,019 | 0,033 | 0,008 | 0,014 | 0,007 | 0,015
4 0 0,560 0 0,093 0 0,099 0 0,070 0 0,028
5 10,393 | 0,265 | 0,070 | 0,066 0 0,047 | 0,009 | 0,016 | 0,007 | 0,028
6 10,374 | 0,280 | 0,066 | 0,074 | 0,018 | 0,049 | 0,008 | 0,014 | 0,007 | 0,014
7 10,374 | 0,282 | 0,066 | 0,068 | 0,018 | 0,050 | 0,008 | 0,017 | 0,007 | 0,014
8 10,224 | 0,168 | 0,199 | 0,028 | 0,011 | 0,149 | 0,005 | 0,021 | 0,022 | 0,008
9 0 0,598 0 0,112 0 0,066 0 0,028 0 0,030

10 | 0,374 | 0,280 | 0,066 | 0,071 | 0,018 | 0,049 | 0,008 | 0,016 | 0,007 | 0,014
11 {0,374 ] 0,281 | 0,066 | 0,069 | 0,018 | 0,050 | 0,008 | 0,017 | 0,007 | 0,014
12 10,374 | 0,299 | 0,066 | 0,056 | 0,018 | 0,033 | 0,009 | 0,014 | 0,007 | 0,015
13 | 0,376 | 0,278 | 0,067 | 0,069 | 0,019 | 0,049 | 0,009 | 0,017 | 0,007 | 0,014
14 10,373 | 0,280 | 0,066 | 0,070 | 0,018 | 0,049 | 0,008 | 0,017 | 0,007 | 0,014
15 10,373 | 0,279 | 0,066 | 0,070 | 0,018 | 0,050 | 0,008 | 0,017 | 0,007 | 0,015
16 0 0,374 0 0,186 0 0,066 0 0,140 0 0,018
17 10,375 | 0,279 | 0,066 | 0,069 | 0,019 | 0,049 | 0,009 | 0,017 | 0,007 | 0,014
29 10,374 | 0,280 | 0,066 | 0,070 | 0,018 | 0,049 | 0,008 | 0,017 | 0,007 | 0,014
53 10,374 | 0,280 | 0,066 | 0,070 | 0,019 | 0,049 | 0,009 | 0,017 | 0,007 | 0,014

An interesting result is the equality of the constants
c(2,1)=c(3,1)=c(6,])=c(7.1)=c(10,1)=...= c(15,]) = c(17,1)... up to
one thousandth, although 0(8,1) and 0(5,1) are radically different. On the

basis of modern number theory and the theory of random processes, the
validity of such results is proved. Evidence of these allegations of remoteness
is built only on the basis of data obtained by computer simulation. When
analyzing the data, an assumption arose that the constructed classes for
primitive roots have common primes. Table 3 shows the results of the analysis

of sets of classes P(a,l) for all pairs of primitive roots that were obtained

using the constructed filter system. It turned out that all pairs of primitive
roots have the same number of common primes with great accuracy. However,

the classes P(3,l) and P(l 2,1) have exactly twice as many primes. This fact
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is strictly mathematically justified. Note that other sets of primes of the form
P(a, k ) with values greater than unity were not the object of even a brief
analysis, since in order to obtain their exact values it is necessary to increase
the number of primes analyzed, at least by an order of magnitude. This is due

to the fact that they are found much less frequently in the set of primes.
Table 3. The intersection of prime numbers with a=2..16 and a=2...10

a\base 2 3 4 5 6 7 8 9 10
2 0,3740 | 0,1473 0 0,1619 | 0,1474 | 0,1473 | 0,2243 0 0,1328
3 0,1473 | 0,3739 0 0,1619 | 0,1474 | 0,1500 | 0,1020 0 0,1474
4 0 0 0 0 0 0 0 0 0
5 0,1619 | 0,1619 0 0,3937 | 0,1620 | 0,1620 | 0,1120 0 0,1620
6 0,1474 | 0,1474 0 0,1620 | 0,3741 | 0,1474 | 0,1020 0 0,1474
7 0,1473 | 0,1500 0 0,1620 | 0,1474 | 0,3741 | 0,1019 0 0,1474
8 0,2243 | 0,1020 0 0,1120 | 0,1020 | 0,1019 | 0,2243 0 0,0919
9 0 0 0 0 0 0 0 0 0
10 0,1328 | 0,1474 0 0,1620 | 0,1474 | 0,1474 | 0,0919 0 0,3741
11 0,1474 | 0,1483 0 0,1620 | 0,1474 | 0,1476 | 0,1020 0 0,1473
12 0,1473 | 0,2947 0 0,1619 | 0,1474 | 0,1500 | 0,1020 0 0,1474
13 0,1492 | 0,1493 0 0,1639 | 0,1492 | 0,1493 | 0,1033 0 0,1493
14 0,1474 | 0,1474 0 0,1619 | 0,1499 | 0,1474 | 0,1020 0 0,1473
15 0,1473 | 0,1327 0 0,1619 | 0,1474 | 0,1471 | 0,1020 0 0,1474
16 0 0 0 0 0 0 0 0 0

When analyzing the data, an assumption arose that the constructed
classes for primitive roots have common primes. Table 3 shows the results of

the analysis of sets of classes P(a,l) for all pairs of primitive roots that were

obtained using the constructed filter system. It turned out that all pairs of
primitive roots have the same number of common primes with great accuracy.

However, the classes P(3,1) and P(IZ,I) have exactly twice as many
primes. This fact is strictly mathematically justified. Note that other sets of
primes of the form P(a, k ) with values greater than unity were not the object

of even a brief analysis, since in order to obtain their exact values it is
necessary to increase the number of primes analyzed, at least by an order of
magnitude. This is due to the fact that they are found much less frequently in
the set of primes.

CONCLUSION

Based on the analysis of the processes of formation of classes of primes
for any bases, fundamentally new information technologies for solving
complex mathematical problems by the methods of modern experimental
mathematics were created. The correctness of the developed approach and
computational efficiency are proved. A generalized theory of Artin’s
hypothesis has been developed which its classical version is a very special
case. Estimates of the Artin’s constants for bases greater than two are
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obtained, and the statistical validity of the estimates obtained is proved. A
detailed analysis of the classes of primes is carried out and the foundations of
effective methods for the structural analysis of classes are created. It is proved
that a new method for modeling the dynamics of the formation of classes of
primes and a description of their properties creates the basis for constructing
more advanced models of pseudo-prime generators, the development of new
methods of information protection in modern cryptography, opens up new
possibilities for constructing models of nonlinear dynamic systems.
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KOMIIBIOTEPHOE MOJAEJIMPOBAHUE ITPOLIECCOB PA3ZBUTHUSA
HUHP®OPMALIMOHHbBIX TEXHOJIOI WA B TMHAMUAYECKHX
MPOHECCAX ®OPMHUPOBAHMUS KIIACCOB OBOBIIEHHOI'O
I'NIIOTE3A APTUHA

Bocrpos I'., Onnara P.

Hccnedosana  63aumocesizb  npoyeccos Gopmuposanusi Kiaccos
npocmoulx yucen 8 0600wennol eunomese Apmuna u meopuu uxgopmayuu, u, Kax
cnedcmesue, UHGOPMAYUOHHBIX MmexHoao2ull. [[OKa3aH0, Ymo 8epoSMHOCHHbIE MEemOoObl
meopuu uHgopmayuu U UHQOPMAYUOHHBIX MEXHOLO2UU ABIAIOMCA OCHOB0U 0714
NOCMpOeHUss KOMNbIOMEPHBIX MoOeell KIACCO8 NPOCMbIX YUCEeN 8 COOMBEMCMBUU C
0000wennoll  eunomeszol Apmuna. Paspabomansl memoovl pacuema apmuHCKUX
KOHCMAHM U YCMAHOBNIeHd CXOOUMOCMb OYEHOK KOHCMAHM N0 6epoAmHOcmu O
oepanuyenus 3nadenuti. Co30anvl OCHOBbI MEOPEMUKO-YUCTIO8020 AHANU3A KOHCMAHM
Apmuna u poocmeennvix K1accos.

Knrouesvie cnosa. 0606W€HHbl€ Knaccwl Apmul-m, NOCMOAHHbLE Apmuna, Knaccoevle
6epoAmHocmu, ycmoﬁqueocmb OYEHOK NOCMOSIHHbLX ApmuHa, CX00UMOCHIb NO
6EPOAMHOCMU
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