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COMPUTER MODELING OF THE PROCESSES OF DEVELOPMENT 
OF INFORMATION TECHNOLOGY IN DYNAMIC PROCESSES OF 
THE FORMATION OF CLASSES OF THE GENERALIZED ARTIN’S 
HYPOTHESIS  
 
 

Vostrov G., Opiata R. 
 

Abstract. The relationship between the processes of formation of classes of 
primes in the generalized Artin’s hypothesis and the theory of information, and as a 
consequence, information technology, is investigated.  

It is proved that probabilistic methods of the theory of information and 
information technologies are the basis for constructing computer models of classes of 
primes in accordance with the generalized Artin’s hypothesis. Methods for calculating 
the Artin’s constants are developed and the convergence of the estimates of the 
constants in probability to limit values is established. The foundations of a number-
theoretic analysis of Artin's constants and related classes are created. 

Keywords. Generalized Artin’s classes, Artin’s constants, сlass probabilities, 
stability of estimates of the Artin’s constants? convergence in probability. 

 
 

INTRODUCTION 
The solution of many problems in such applied areas as electronics, 

electrical engineering, modeling of complex, both deterministic and stochastic, 
nonlinear dynamic systems, information technology and many other applied 
areas of human activity, depends on solving a significant number of 
mathematical problems that have not yet been solved. Artin's hypothesis of 
primitive roots is one of these fundamental mathematical problems. For almost 
a century, it remains unresolved. The solution to Artin’s problem is important 
for research in such applied areas as the creation of effective methods of 
protecting information using cryptographic methods, the development of 
pseudo-random number generators, the modeling of dynamic processes in 
stock markets, and the construction of advanced algorithms for testing 
software products of high complexity. One of the options for cryptographic 
information protection is the discrete logarithm method. The development of 
the Monte Carlo method and its application in the theory of modeling complex 
systems depends on the creation of effective generators of pseudo random 
numbers given by the laws of probability distribution. The construction of 
such generators is especially important in the methods of testing software 
applications. Modeling processes in modern stock markets is not possible 
without high-quality random number generators with a given distribution law 
[1-3]. Another urgent applied problem is the modeling of self-organizing 
nonlinear dynamic systems, which are commonly called synergetics, taking 
into account the deep modeling of the phenomenon of self-organization in 
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complex systems consisting of transition sequences from one phase state to 
another using random number generators with a given probability distribution 
law [3] . The numerical sequences of iterative models of cyclic fixed points of 
dynamical systems are determined by the properties of the primes with which 
they are represented. In this case, the question always arises: what distribution 
laws obey prime numbers. Riemann in 1869 proposed the function: 
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where s  is a complex variable, P  is the set of all primes [3,4]. The function 
is called the Riemann’s zeta function. Concerning this Riemann’s function, a 
hypothesis was formed according to which all non-trivial zeros of this function 
are on line iy21 , where 1i  and Ry . It follows that all primes 
lie on this line since y  – takes values from a set that includes all primes P . 

Moreover, for any prime number p    021  ip . In essence, this was 
the first attempt to find the law of the distribution of primes. So far, the 
hypothesis has not been proved. Note that any function  sf  that is defined 
in the complex space C , and therefore Cs , is usually called analytic. 

The study of the Riemann’s analytic zeta function has been done by 
many mathematicians. In particular, it was proved that 
  0......3212 222  k  is the value of s  is a trivial zero. This 

paradoxical fact for applicants does not contradict the theory of analytic 
functions, but from the point of view of the distribution of primes it does not 
give an adequate description of the distribution of primes on the number line 
R  or Q  or Z . Starting with the works of Fermat, Euler, Dirichlet, Gauss, 
Chebyshev [3,4], systematic attempts were made to establish their distribution 
law in two-dimensional real space [4]. In 1896, independently, Adamard and 
Valle Poussin proved that equality is true: 
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where  x  is the number of primes xp  , and the first term in the form of 
a logarithmic smooth function determines the logarithmic law of the 
distribution of primes in approximate form, and the second term is the 
remainder term that describe the inconsistency of the step function  x  
when it is approximated by a logarithmic function. In many studies, an 
analysis of the residual term is given, it is proved that if it is considered as a 
function of x , it has a fractal nature [3,8]. 
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           It is known that the distance between primes increases, and the relation: 
     
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where n  is the prime number in the ordered whole set of primes [5,6], a 
constant that is generally difficult to calculate. The proof of this relation does 
not mean at all that absolutely complete information on the distribution of 
primes in the system of the logarithmic distribution law has been obtained. 

It should be noted that the Riemann’s hypothesis, numerous studies of 
its trivial and non-trivial zeros, the proof of the logarithmic law of the 
distribution of primes were a source of new information that is fundamental to 
the modern world, on the one hand, and on the other, these results led to the 
creation of new information technologies. One of the areas of deepening 
information technology was the formulation in 1927 by the French 
mathematician Artin’s of a hypothesis about the primitive roots of primes 

Pp , and accordingly the primitive roots of residue groups  *pZZ  
modulo prime p . Consider the definition of the primitive root of a prime 

number p . The numbers 1a , 2ka   is the primitive (antiderivative) root 
of the number p , if the following relations are true: 
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Given the definition of a primitive root, Artin’s hypothesis is: 
     xacax  ,  (4) 

where  ax,  is the number of primes p  less than or equal to x , for which 

1a  and ka   are according to (1) their primitive roots,  ac  is the 
Artin’s constant. More precisely, this hypothesis should be presented as 
follows: 
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But then    
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  and in probability converges to  ac , 

and therefore has a probability theory interpretation:  ac  is the probability 
of choosing from the set P  a prime number p  such that a  is its primitive 
root. Note that the first relation in (1) is always satisfied if a  and p  are 
coprime numbers according to Fermat's theory [3]. 

It should be noted that Artin’s proposed his ratings for  ac  at 2a . 
But as proved by Hooley [5], these estimates are not true. He also proved the 
validity of the relation: 
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at the same time    
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of   ..373955813,02 c . As will be shown later, this estimate is true only 
with the accuracy of the first two decimal places. This can be easily explained 
by a very simple consideration. The expression for  2c  proposed in (4) 
depends on all primes, but this is not true because 2a  is not a primitive 
root for all primes Pp . The values of the constants  ac  for 2a  and 

2ka   were not presented in more than one scientific article. 
It should be noted that any number 1a  and coprime to p  is the 

basis for considering the recursive function    pxaxf mod , which 
leads to a recursive iterative sequence. 

  110 xf ,    paxxxf nnn mod11    (7) 
According to Fermat’s theorem [4], if a is not a primitive root for p , 

then the process of recursive computations will continue for such m  that 
equality     1mod1   paxmxf mn  is achieved i.e. 

 ptam mod  и 1 pm  (8) 

From Fermat's theorem and the properties of the group  *pZZ  
residues modulo p , it follows that in this case a  is the primitive 

(antiderivative) root of some subgroup of the group  *pZZ . Moreover, 

m  is the order of this subgroup, which is usually denoted by  pcarda , the 
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number of adjacency classes for this subgroup is denoted by  pinda . 

According to the cyclic group theorem  *pZZ , the equality: 

   pindpcardp aa 1  (9) 
The validity of equality (6) follows also from Fermat's theorem. In conclusion, 
it should be noted that from the relations (5) and (6) the validity of the 
equation follows: 

 pac x mod  (10) 
No more complicated analysis of this equation leads to the 

consideration of four options for its solution: Given pxa ,,  - calculate c ; 
Given pac ,,  - calculate x ; Given pxc ,,  - calculate a ; Given xac ,,  - 
calculate p ; 

The first equation is solved using recursion (7), (8). The second 
equation is the formulation of the discrete logarithm problem. The variable p  

can also be a pseudo prime number equal to kp  or equal to p2 , as noted in 
[3], this problem in the general case may be algorithmically unsolvable. 

In the third and fourth cases, the solution of such equations is a 
problem of extreme complexity. There are no publications on this subject. 

From the above analysis it follows that equation (5) allows us to study 
the Artin’s hypothesis from a more general point of view, when any natural 
number 1a  and it can be used as a classifier of the set of all primes in the 
magnitude of  pinda , which is the object of further research. As will be 
established, Artin's hypothesis of primitive roots will be a frequent case of its 
more general formulation. 

 
MODELING THE PROCESSES OF GENERATING DYNAMIC 
INFORMATION ABOUT THE STRUCTURE OF CLASSES OF 
PRIMES ON A GIVEN BASIS 

Now we return to the logarithmic law of the distribution of primes      
[1-4] in order to pay attention to the fact that the above equality does not 
provide comprehensive information about the structure of spaces between 
primes. Obviously, with increasing prime numbers, the gaps between them 
increase quite significantly. From relation (2) it is completely impossible to 
conclude by what laws the distance between the gaps changes, how often the 
dips appear statistically and most importantly how the structure of the 
decomposition of p-1 numbers into simple factors changes. It is especially 
important to have information about the distribution of smooth primes [3]. 
This information is especially important when solving the discrete logarithm 
problem and applying algorithms for solving it in the modern coding theory 
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and in modern cryptographic methods of information protection. As shown in 
[7], it is practically impossible to find smooth large prime numbers. It follows 
that it is of considerable interest to establish the laws of distribution of primes 
not only with respect to their primitive roots, but to the roots of subgroups of 
the residue group modulo a prime number. Artin’s hypothesis does not imply 
such detailed studies. Moreover, it is necessary to find the laws of the 
relationship between the laws of the distribution of primes in sets 
corresponding to various primitive roots and roots of subgroups. Such tasks 
were not considered at all. 

The second circumstance is that simultaneously with this fact, the 

dynamics of change in 
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2  [8] is investigated. In [3, 4], the 

entropy estimate of this estimate was obtained and it was proved that it has a 
fractal character. These facts are the basis for the formation of proposals on 
the need to study other models of the distribution of prime numbers. Another 
problem related to the distribution of primes appeared in 1927, when the 
famous mathematician Artin’s formed a hypothesis about the distribution of 
primes for which the natural number 1a  is given is its primitive root [1,5]. 

In addition, it is generally accepted, even at the present time, that it 
makes sense to study it more fundamentally. The first attempt was made by D. 
Zagier [8], but not completed. The results obtained by the author confirm the 
very complex fractal behavior of this component. It follows that it is necessary 
to significantly improve the study of the depth of classification of primes, 
taking into account all models for the formation of classes of primes for any 
given basis 1a . Further more detailed studies of this component confirm 
that although the logarithmic distribution law is fulfilled, nevertheless, 
complete information on the dynamic properties of primes and their 
relationships with their primitive roots remains poorly studied. In the future 
we will consider any values of the base and large units. 

According to Artin’s hypothesis [5], the set of such primes has the 
distribution law  ax,  as an expression: 

     xacax  ,   

where  x  is the distribution of prime numbers, and  ac  is a constant 
dependent on a . Until now, despite numerous studies, this hypothesis has not 
been resolved. However, it is not known if this is true for any a  values. If the 
hypothesis is correct, then the question remains how to estimate the constant 
 ac  for each concrete a  and which properties of the number a  influence its 

value. Answers to these questions are still missing. In works [3, 5] a detailed 
analysis of all the results of research in the field of solving the Artin’s 
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hypothesis is given. It should be noted that the proof of Artin’s hypothesis is 
important both from a theoretical point of view in number theory, and from an 
applied rhenium point, because it’s positive solution is important in 
cryptography, coding theory, and the theory of dynamical systems. In [6], a 
generalized Artin’s hypothesis was formed for any 1a , i.e. and at the same 
time a  may not be a primitive root. According to Artin’s generalized theory, 
the following equality is true: 

     xiaciax   ,,,  (11) 

where 1a , i  – is the index of the subgroup of the group  *pZZ  of 
primes in the classification of prime numbers generated by the numbers a , 
 iac ,  is a constant. According to the classification built in [6]: 

      ipcardpPpiaP a  1|,  (12) 

where  pcarda  is the length of the dynamic recursion 

 paxx nn mod1   at 10 x , P  is the set of all primes. 

It is not difficult to show that for any 1a  the equality: 
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This means that primes are evenly distributed in classes  iaP ,  for 

any a . By uniformity is meant that within each class of primes  iaP ,  a 
logarithmic law of the distribution of primes is preserved. The constant 
 iac ,  determines the measure of puncturing prime numbers, based on the 

value a . If 1i  then a  is the primitive root of all primes  1,aP . For an 
arbitrary natural number x , the equality 

     xxiaciax   ,,,,   

Moreover, if x , then  xiac ,,  tends to the limit value  iac , . 

If we put 1i  then  1,ac  will be Artin’s constant for primitive roots. In 

this case 1a , and 2ka   for none Nk . This is true according to 
Fermat's theorem [3,  4]. Wherein, a  is the primitive root of the group of 

residues  *pZZ for any Pp such that       11|1,  pcardpPpaP a . 

It is important to investigate the classes of primes  iaP ,  for 1i  since in 
this case the positive integer a will be the primitive root for the subgroups of 
the group  *pZZ  with the index defined by the relations: 
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              pindpcardppiaP aa  1|,   

where   ipinda   is the index of the subgroup of  *pZZ . The classes of 

primes  iaP ,  have not yet been studied and the distribution of primes in 

these classes is not known. In [1], an assumption was made that  iaP ,  at 

1i  is proportional to  1,aP  with a factor of 21 i . Since 1i  is 
considered, in this case it is important to know the distribution of prime 
numbers for the value 2ka  . This is an important generalization of Artin’s 
hypothesis. At the same time, the probability of: 

             iacPiaPPpiaPp ,,&,    
Membership agrees exactly with the provisions of the theory of 

probability, and therefore, estimating  iac ,  on the basis of successive 
statistical tests and the law of large numbers is parity. 

The determination of  iac ,  for any ia,  using analytical methods is 
unlikely in the near term. However, the formation and development of 
experimental mathematics [1, 2] opens up another way to solve this problem 
by using computer simulation of nonlinear dynamic processes for the 
formation of classes of prime numbers. 

The process of modeling the distribution of primes in classes 
     ,...,,...,2,1,1, kaPPaP  was reduced to choosing a set of consecutive 

primes from a set of a sufficiently large sample of these classes. The number 
of primes analyzed at each interval of natural numbers was chosen to be 
500,000. This choice was largely due to the fact that it was previously 
established that reducing this value leads to more significant fluctuations in 
estimates, although convergence to the limit over the entire set of any 
intervals, even if they are not placed consistently, has the same character. 

The process of statistical testing of Pp  primes for checking their 

belonging to class  iaP ,  was reduced to calculating for the selected number 
p  the recursive procedure 10 x ,  paxx nn mod1   until the pairs 

 paxl mod1  were reached at some step i . Then   ipcarda   and 

according to Fermat’s theory and the cyclic group theorem the number 1p  
is divisible by i and then       ipcardppind aa  1 , and therefore 

 iaPp ,  and if 1i , then a  is the primitive root of the cyclic group 

 *pZZ , and otherwise it is the primitive root of some subgroup. At 1i , 
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we obtain the primitive roots of the subgroups of the  *pZZ  residue group 
with the index 1i . The study of the distribution law of prime numbers p  

on their belonging to  iaP ,  had the character of consistent statistical tests 
on the set of natural numbers containing the first 500,000 primes. At the first 
stage, primes p  were chosen from the set  50000021 ,...,, ppp . With this 

500000px  . For each  xn ,...,2 , we had to solve two problems: check n  

for simplicity, and if Ppn  , then 1p  was decomposed into simple 
factors, i.e. systematically solved two non-simple problems of checking 
numbers for simplicity and decomposition into simple factors. An effective 
algorithm for solving them was created based on probabilistic methods in the 
theory of elliptic curves. As a result of analyzing  ka ,...,2 , 

   laPaP ,,...,1,  sets were obtained for some xl   and absolutely exact 

values of their powers were calculated, i.e.    laPaP ,,...,1, , and then 
estimates of: 

             xxlaPxlacxxaPxac  ,,,,,...,,1,,1,    

while        lacxlaclacxac ,,,,...,,,1,   with x  were obtained. 
At the next stage, work was also carried out for prime numbers from 

the  1000000500001,..., pp  interval and the values of the    lacac ,,...,1,  
constants were calculated using the same scheme. At the same time l  
increases. The  50000001,..., pp  and  1000000500001,..., pp  sequences were 
combined, and the estimates of the generalized Artin’s constants were again 
calculated and the process of their refinement was studied on the basis of the 
theory of large numbers in probability theory. This procedure continued until 

179424673 px  and this is a ten million prime numbers. It was found 

that    kacac ,,...,1,  in probability converges to some values, the exact 
values of which are irrational and possibly transcendental numbers. In the 
process of estimating the  iac ,  constants, two important theorems were 
proved: 

Theorem 1. For any  ,...,...,3,2 ka  that is not a square, i.e. 
2ka  . The number of non-empty classes of primes tends to infinity at 

x . 
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Theorem 2. For any  ,...,...3,2 ka  that is not a square, i.e. 2ka   

The number of prime numbers in  iaP ,  tends to infinity at x . 
These theorems are the basis of the convergence of a sequence of 

statistical tests to marginal values. Since for any Nx  it is obvious that:  

      
   xxiaP

k

i


1
,,   

            xjaPxiaP ,,,,
 

 
at ji  , it follows from this that:  

  1,
1




k

i
iac   

This is true for all values of x . The review [5] provides an 
estimate of  1,2c , which is identified by  1,2c  in our sense, but  1,2c  
differs from the estimate of  1,2c  starting from the fifth decimal place and 
this is a theoretical error of the survey works. For different 

 ,...11,10,8,7,6,5,3,2a , the behavior of the  iac ,  constants is complex 
group-theoretic and number-theoretic. The study of their dynamic properties is 
beyond the scope of this work. It should be noted that the results of computer 
simulation of the processes of distribution of primes are calculated with an 
accuracy of the eleventh decimal place for estimates of 
       ,...1,6,1,5,1,3,1,2 cccc  values. This cannot be asserted for classes by 

the 2i  index. To achieve the same accuracy with 2i , it is necessary to 
significantly increase the number of prime numbers. With an increase in the i  
class index  iaP ,  more than three requirements and the volume of the 
analyzed primes increases in accordance with the unexplored laws. 

Probability-theoretic interpretation of the constant: 

      
   

 x
axac


 ,

  at x   

Consider the probability space  PF,,  based on:  

           Ppp nn  ,...,...,,...,..., 11    

Obviously at x  the numbers are   x ,   ax, , 
but:  

   xaPax ,1,,  ,    xPx  ,    
 xP
xaP

xac
,1,

,1,    
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and at x  it is obvious that:  

             1,,1, acxPxaP    

is where Px , P , 

          ipcardpxppxiaP a  1&|,,   

                         is at x     iaPxiaP ,,,  . Thus: 

           
     xaxac

x
 ,lim


   

It follows from Artin’s hypothesis that with  1,ac  there is precisely 

the probability of a random event  1,aP  consisting of a choice of 
 ,..,...,1 npp  of a prime number p  for which a  is an original root of 

the cyclic group  *pZZ . To estimate this probability, the law of large 
numbers and the method of successive statistical tests were used. The essence 
of the method is that the first test group was reduced and calculated for 
 50000021 ,...,, ppp  for each  16,...,3,2a  evaluation of the values of 

 xiac ,,  at 500000px   for all possible values of  ,..,...,2,1 ki  , that is, 

   ,...,,~,...,,1,~
11 xkacxac  was calculated on the next iteration, the same 

tests were performed for the second iteration on the set  1000000500001,..., pp . 

   ,...,1,~,...,,1,~
1 xacxac k  Estimates were obtained at the same time 

   ,...,,~,...,,1,~
1 xkacxac k , provided that the first and second samples were 

combined and computed values and were determined by 
     xiacxiac ,,,,~  for all x . The main focus was on  xac ,1, . As a 

result of some iterations, it was found that for all a  the estimates obtained: 

        xppxP  |   

             ipcardpxppxiaP a  1&|,,   

The order of the cyclic group of the subgroup  *pZZ . If 1 pl , 
then a  is an original root, and if 1 pl  is the original form of the  ac  

Artin’s measure,  iac ,  is a measure of classes by  iaP ,  in P . At that 

    PiaPiac ,,   and at the same time: 

       
 






1

1,
i

iac for all 1a   
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 






1

1,
i

iac for all 1a   
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This applies only to classes with indexes 1i . For 2i  it is 
necessary to increase the number of statistical tests. This is naturally due to the 
fact that the classes  xiaP ,,  for 2i  from numerical theorems contain 
less than prime numbers. In [1] it is stated that this decrease should be of the 
order of 21 i , but this is an erroneous assertion. The degree of decline 
essentially depends on the properties of a  and requires a separate study. Case 

 16,9,4a  requires separate investigations, because these numbers cannot 
be primitive roots of that number p , in accordance with the Fermat theorem 

[3] cannot be generating elements of groups  *pZZ . However, they are 

generating elements of the subgroups of the group  *pZZ  with even 
indices. All classes with odd indices are empty sets. Table 1 shows the 
constants for  1,ac  for all a  except  16,9,4 . Analysis of the table. The 
table contains over a thousand columns. The analysis of these data is 
numerically theoretical and group-specific and goes beyond the scope. 

The simulation process of the dynamics of the formation of prime 
numbers was constructed on the following assumptions. Suppose that an 
ordered set of prime numbers  ,...,...,, 21 kpppP   is given, whose 
elements are ordered in ascending order. All this set was split into a subset of 
500,000 primes. The number of 500,000 is due to the limitations of MS Excel, 
as a statistical analysis tool, on a number of characteristics of the process of 
generating prime numbers. Only one restriction is important. We always select 
500,000 consecutive primes of the set P . In the current version of Excel, this 
number can be increased to one million. If you use a powerful computer, you 
can choose a larger number instead of a million. 

The implemented version of the study of dynamic processes for the 
formation of primes includes the following indicators: the number of a simple 
number in the p  in the ordered set of P , the value of a simple number of 

p , the value of the recursion length of the numbers  pcarda  at the same 

value of a  for all prime numbers P , the index  pinda  of the index of the 
class: 

           pcardppind aa 1   

The value of the residues modulo any natural module 1n , for all 
classes and any other analytic properties of primes or factors of the 
decomposition of the number of 1p  into simple factors. For each simple 

multiplier ip  in the:  
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Decomposition, one parameter of the dynamic process of generating 
primes is presented, with separate indicators that can be analyzed for any other 
indicators, the values for them are deducted by the modulus of the natural 
number 1n . The only exception is  pinda . The number of controlled 
indicators analyzed in the Excel environment can be expanded. 

 
DYNAMICAL PROPERTIES OF THE PROCESSES OF THE 
FORMATION OF CLASSES PRIMES IN THE GENERALIZED 
ARTIN’S HYPOTHESIS 

According to the idea of experimental mathematics on the first 
iteration, we proceed from hypothetically known data. But it is also the basis 
for obtaining experimental information on the basis of which the analytical 
methods of the theory of numbers yield an expanded representation of the 
hypothesis in the form iH . It is possible that at the same time the hypothesis 
can be corrected or even rejected as not true. From the point of view of 
information technology in mathematics, the hypothesis iH  is used to develop 
from the point of view of deepening the experimental mathematics of the 
model of in-depth studies at the level 1I . 

The iterations process is continued until an analytically based solution 
of the generated hypothesis is obtained. Since the Artin’s generalized 
hypothesis is considered in the paper, we present the results of the estimation 
of the constant  iac ,  for the case 4a  and 2i . The number 4a  is 
a perfect square, and therefore it cannot be a primitive root. In terms of Artin’s 
generalized hypothesis, this is as interesting and important as in the case when 
a  is an original root. 

Based on the data presented in [6], we obtained estimates for  iac ,  
for 10,9,....3,2a  and ,..9,...,2,1i . It is shown that their values are 

stable for class  2,4P  i.e. class with   24 pind  to within a fourth decimal 
place. They are presented in the table 1. 

An analysis of the data in the tables shows that for these numbers 

Artin’s hypothesis is true on the set of primes 910P . 

The estimates for the  iac ,  constants given in table 2 have the 

unique 1i  property, which is that for  15,14,13,12,11,10,7,6,5,3,2a  
they coincide with the accuracy of the third decimal place. An analysis of 
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these classes will make it possible to establish that these classes have the same 
number of common primes. For any pair of    1,1, ji aPaP   at ji  , the 
values of: 

       
      1473.0,1,,1,  xPxaPxaP ji   

at 179424673x  take the same value, with the exception of the pair: 

      1473.02,1,12,1,3  xPxPxP   
This means that all these sets have the same number of common 

identical primes. An analysis of this fact shows that the formation of classes 
for: 

      53,29,17,16,15,14,13,12,11,10,7,6,5,3,2a   
In the generalized Artin’s hypothesis is subject to the same 

mathematical laws. Cases  9,4a  do not relate to this fact because, 
according to Fermat's theorem, these values are not primitive roots. Special 
attention should be paid to the case of a pair  12,3  for which classes:  

         xPxP ,1,12,1,3    
with probability 8.0  regarding these classes, consist of the same prime 
numbers. The study of these facts will require the creation of new methods of 
mathematical analysis of the formation of classes in the classical and, 
therefore, generalized Artin’s hypotheses. The solution to this problem is 
beyond the scope of this work. 

The data in table 2 and table 3 allow us to make an important 
conclusion that there are many primitive roots for which the generalized 
Artin’s constant  1,ac  is equal to the same value ...3739.0 . In addition, 

from the same table it follows that all pairs of     jaPiaP ,,,  sets have 
sets of common primes of the same power. Deepening research in this 
direction will parallelly create the theoretical basis for solving the classical 
Artin’s hypothesis. The generalized Artin’s hypothesis for all classes 
   ,...,,...,1, iaPaP  will require additional studies based on probabilistic 

computer simulation on the set of prime numbers of data beyond the limits of 
the first hundred million. 

The results of experimental mathematics in table 1 of the first iteration 
confirm that Artin’s hypothesis is correct. The estimates of the constants are 
obtained with the accuracy of the third decimal place. For 

 10,8,7,6,5,3,2a  the: 
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and for  9,4a  all   012, iac  and:  
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This is due to the fact that for all 2ka   this is true because they are 
primitive roots of  *pZZ  groups, but primitive roots of their subgroups 
with even indices [3]. The results obtained are the basis for constructing an 
analytical proof of Artin’s hypothesis and its generalization. The  1,ac  

ratings given in the table for the set of primitive roots  16,...,3,2  are 
obtained for the first time based on the results of computer simulation. The 
literature is known estimation  1,2c , which, starting from the fourth decimal 
place, is estimated analytically incorrect, due to the fact that the formula:  

           













Pp pp

c
1

111,2   

It is not true, because it includes all primes and among them those 
primes for which 2a  is not a primitive root [5]. An important result is the 
creation of a computer model of the process of forming classes 
   ,...,,...,1, iaPaP . For any values of 1a , the interactions between the 

classes Table 2 and Table 3 are investigated (as a continuation). The first 
estimates were  iac ,  for 2i , and it was established that the statement 

that  iac ,  is proportional to 21 i  is absolutely false [1]. Obtaining the 
results is the basis for further deepening research on the Artin’s hypothesis 
using analytical methods. In accordance with the developed mathematical 
model for the formation of primes on the base 1a  and the calculated 
values of the generalized constants  iac ,  for 1i , as a result of computer 
simulation it was established that the generalized hypothesis is true. Tables 1, 
2, 3 show the values of the Artin’s constants, the relationships between 
classes, the dynamics of the formation of classes and its properties on the set 
of all primes P . The first column of Table 2 contains the values of the Artin’s 
constants for the antiderivatives of the set  12,11,10,9,8,7,6,5,3,2 . Actually, 

the modeling of  iaP ,  classes was carried out for many: 

      53,29,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2a   
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Numbers  16,9,4a  as squares of other numbers according to 
Fermat's theorem [2] cannot be primitive (primitive) roots of Pp , and, 

accordingly, of residue groups  *pZZ  modulo p . Particular attention was 

paid to the numbers  53,29,17,13,5  due to the fact that they belong to the 
class of numbers of the Chebyshev’s type [3] that is, they have representations 

14  kp , while Pp , and the number n  is a natural number. 
According to Chebyshev’s assumption, the behavior of these numbers in 
residue classes modulo a prime number should differ from other primes. 

To solve the problem of modeling classes of primes for a given base 
and evaluating the generalized constants of Artin’s  iac , , an Excel-based 
software package was created that allows you to extend the modeling process 
to any natural numbers 1a  and any set of consecutive primes whose power 
is a multiple of 500,000. This is the number of primes was chosen for the 
reason that it is statistically represented and provides an accurate 
representation of the dynamic processes of the formation of classes  iaP , . 

Table 1 shows a fragment of the modeling process for  12,8,5,3,2a  
values. 2a  is included in this set for the reason that it can be verified that 
the estimate [5,6] is different from the exact value. The difference begins with 
the third decimal place. This fact is important due to the fact that expression 
(4), although from an asymptotic point of view is close to the exact value of 
 2c , nevertheless, it does not take into account all the features of the 

formation of classes  1,aP  for 2a . The number 5a  is included in the 
analysis of the dynamics, because 1145 a  is the smallest 
Chebyshev’s number, which is as sensitive as possible to the established fact 
that all  510,5 kP  classes for 0k  are empty. This is true for all 
Chebyshev’s numbers. The proof of this fact is of a number-theoretic nature, 
and therefore, is excluded from consideration. The number 8a  is included 
in the representation of dynamics for the reason that the dynamic properties of 
the classes  iP ,8  are radically different from the other classes studied. In 
particular, it was established that if 8a  is the primitive root of Pp , 
then 2a  is also the primitive root of the same prime number. Conversely, if 

2a  is the primitive root of Pp , then 8a  will be either the same 

primitive root of p  or  3,8Pp . This is completely new information 
about the generalized Artin’s constants; the developed information 
technologies have become the basis of fundamentally new results from 
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modern number theory, and as a consequence of modern cryptography. The 
numbers 3a  and 12a  are included in table 1 for the reason that 
 1,3P  and  1,12P  contain 8.0  common primes, while for any other pairs 

of sets  1,laP  and  1,saP , the total fraction of common primes is 4.0  for 

sl   from the considered set of values. These two facts are obtained on the 
basis of the analysis of the information presented in table 3. This result was 
also based on the methods of modern number theory and probability theory. 

Table 1. The quantity of prime numbers into intervals for a=2,3,5,8,12 
Interval / a 2 3 5 8 12 

0 – 0.5 187111 187011 196980 112331 187013 
0.5 – 1.0 186912 186948 196836 112075 187057 
1.0 – 1.5 186953 186960 197030 112175 187040 
1.5 – 2.0 186846 186856 196894 112201 186958 
2.0 – 2.5 187410 186896 196720 112345 186792 
2.5 – 3.0 186711 186777 196957 112042 186767 
3.0 – 3.5 187096 186926 197025 112335 187157 
3.5 – 4.0 186975 187176 196942 112283 186984 
4.0 – 4.5 187197 187148 196543 112296 187317 
4.5 – 5.0 186713 186796 196689 121919 186721 
5.0 – 5.5 186828 187013 197050 112093 187005 
5.5 – 6.0 187197 186771 196790 112362 186936 
6.0 – 6.5 186881 187116 196851 112226 187056 
6.5 – 7.0 187065 187214 196478 112093 187122 
7.0 – 7.5 187039 186718 196957 112236 187050 
7.5 – 8.0 187045 186756 196764 112128 187161 
8.0 – 8.5 187299 186805 196840 112187 186594 
8.5 – 9.0 186663 187050 196583 111967 187144 
9.0 – 9.5 186874 187156 196795 112133 186976 

9.5 – 10.0 187034 187072 197083 111993 186947 
 
In conclusion, by returning attention to table 1c of another theory of 

vision. The essence of a fundamentally new fact is that wherever 500,000 
primes Pp  are selected for any a , the number of primes in classes 
ranges from no more than 500, which is no more than a thousandth of them. 
This means that on any set of consecutive primes we obtain an estimate of the 
Artin’s constants up to the fifth decimal place. Statistical summation of values 
over the entire set of the first ten million primes made it possible to obtain 
estimates of the constants  1,ac  to the eighth decimal place. 

It follows that the methods of computer simulation of the processes of 
forming classes of primes      ,...,,...,2,,1, iaPaPaP  and estimation of 

constants      ,...,,...,2,,1, iacacac  are the basis for the development of 
information technologies in modern both pure and applied mathematicians. 
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Table 2 shows the values of the estimates of the generalized Artin’s 
constants for the marked set of values of a, which were studied as classifiers of 
the set of all primes. Table 2 shows a fragment of the entire huge number of 
obtained estimates of the Artin’s constants. The first column contains 
estimates of Artin’s constants in its original form. They belong to primitive 
roots. The numbers 4, 9, 16 are not primitive roots, since according to 
Fermat’s theorem they, like the squares of other numbers, cannot be primitive 
roots. However, they can be classifiers of primes as roots of subgroups of 
residues modulo primes. An interesting fact is that they can be used to build 
pseudo-random number generators. In addition, the diskette logarithm 
problem can be considered on their basis. 

Table 2. The distribution of prime numbers in 1 to 10 classes in the 
generalized Artin’s conjecture 

a P(a,1) P(a,2) P(a,3) P(a,4) P(a,5) P(a,6) P(a,7) P(a,8) P(a,9) P(a,10) 
2 0,374 0,280 0,066 0,046 0,018 0,049 0,008 0,035 0,007 0,014 
3 0,373 0,299 0,066 0,056 0,019 0,033 0,008 0,014 0,007 0,015 
4 0 0,560 0 0,093 0 0,099 0 0,070 0 0,028 
5 0,393 0,265 0,070 0,066 0 0,047 0,009 0,016 0,007 0,028 
6 0,374 0,280 0,066 0,074 0,018 0,049 0,008 0,014 0,007 0,014 
7 0,374 0,282 0,066 0,068 0,018 0,050 0,008 0,017 0,007 0,014 
8 0,224 0,168 0,199 0,028 0,011 0,149 0,005 0,021 0,022 0,008 
9 0 0,598 0 0,112 0 0,066 0 0,028 0 0,030 

10 0,374 0,280 0,066 0,071 0,018 0,049 0,008 0,016 0,007 0,014 
11 0,374 0,281 0,066 0,069 0,018 0,050 0,008 0,017 0,007 0,014 
12 0,374 0,299 0,066 0,056 0,018 0,033 0,009 0,014 0,007 0,015 
13 0,376 0,278 0,067 0,069 0,019 0,049 0,009 0,017 0,007 0,014 
14 0,373 0,280 0,066 0,070 0,018 0,049 0,008 0,017 0,007 0,014 
15 0,373 0,279 0,066 0,070 0,018 0,050 0,008 0,017 0,007 0,015 
16 0 0,374 0 0,186 0 0,066 0 0,140 0 0,018 
17 0,375 0,279 0,066 0,069 0,019 0,049 0,009 0,017 0,007 0,014 
29 0,374 0,280 0,066 0,070 0,018 0,049 0,008 0,017 0,007 0,014 
53 0,374 0,280 0,066 0,070 0,019 0,049 0,009 0,017 0,007 0,014 

An interesting result is the equality of the constants 
             ...1,171,15...1,101,71,61,31,2 ccccccc   up to 

one thousandth, although  1,8c  and  1,5c  are radically different. On the 
basis of modern number theory and the theory of random processes, the 
validity of such results is proved. Evidence of these allegations of remoteness 
is built only on the basis of data obtained by computer simulation. When 
analyzing the data, an assumption arose that the constructed classes for 
primitive roots have common primes. Table 3 shows the results of the analysis 
of sets of classes  1,aP  for all pairs of primitive roots that were obtained 
using the constructed filter system. It turned out that all pairs of primitive 
roots have the same number of common primes with great accuracy. However, 
the classes  1,3P  and  1,12P  have exactly twice as many primes. This fact 
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is strictly mathematically justified. Note that other sets of primes of the form 
 kaP ,  with values greater than unity were not the object of even a brief 

analysis, since in order to obtain their exact values it is necessary to increase 
the number of primes analyzed, at least by an order of magnitude. This is due 
to the fact that they are found much less frequently in the set of primes. 

Table 3. The intersection of prime numbers with a=2..16 and a=2…10 
a\base 2 3 4 5 6 7 8 9 10 

2 0,3740 0,1473 0 0,1619 0,1474 0,1473 0,2243 0 0,1328 
3 0,1473 0,3739 0 0,1619 0,1474 0,1500 0,1020 0 0,1474 
4 0 0 0 0 0 0 0 0 0 
5 0,1619 0,1619 0 0,3937 0,1620 0,1620 0,1120 0 0,1620 
6 0,1474 0,1474 0 0,1620 0,3741 0,1474 0,1020 0 0,1474 
7 0,1473 0,1500 0 0,1620 0,1474 0,3741 0,1019 0 0,1474 
8 0,2243 0,1020 0 0,1120 0,1020 0,1019 0,2243 0 0,0919 
9 0 0 0 0 0 0 0 0 0 

10 0,1328 0,1474 0 0,1620 0,1474 0,1474 0,0919 0 0,3741 
11 0,1474 0,1483 0 0,1620 0,1474 0,1476 0,1020 0 0,1473 
12 0,1473 0,2947 0 0,1619 0,1474 0,1500 0,1020 0 0,1474 
13 0,1492 0,1493 0 0,1639 0,1492 0,1493 0,1033 0 0,1493 
14 0,1474 0,1474 0 0,1619 0,1499 0,1474 0,1020 0 0,1473 
15 0,1473 0,1327 0 0,1619 0,1474 0,1471 0,1020 0 0,1474 
16 0 0 0 0 0 0 0 0 0 

When analyzing the data, an assumption arose that the constructed 
classes for primitive roots have common primes. Table 3 shows the results of 
the analysis of sets of classes  1,aP  for all pairs of primitive roots that were 
obtained using the constructed filter system. It turned out that all pairs of 
primitive roots have the same number of common primes with great accuracy. 
However, the classes  1,3P  and  1,12P  have exactly twice as many 
primes. This fact is strictly mathematically justified. Note that other sets of 
primes of the form  kaP ,  with values greater than unity were not the object 
of even a brief analysis, since in order to obtain their exact values it is 
necessary to increase the number of primes analyzed, at least by an order of 
magnitude. This is due to the fact that they are found much less frequently in 
the set of primes. 

 
CONCLUSION 

Based on the analysis of the processes of formation of classes of primes 
for any bases, fundamentally new information technologies for solving 
complex mathematical problems by the methods of modern experimental 
mathematics were created. The correctness of the developed approach and 
computational efficiency are proved. A generalized theory of Artin’s 
hypothesis has been developed which its classical version is a very special 
case. Estimates of the Artin’s constants for bases greater than two are 
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obtained, and the statistical validity of the estimates obtained is proved. A 
detailed analysis of the classes of primes is carried out and the foundations of 
effective methods for the structural analysis of classes are created. It is proved 
that a new method for modeling the dynamics of the formation of classes of 
primes and a description of their properties creates the basis for constructing 
more advanced models of pseudo-prime generators, the development of new 
methods of information protection in modern cryptography, opens up new 
possibilities for constructing models of nonlinear dynamic systems. 
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КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РАЗВИТИЯ 
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В ДИНАМИЧЕСКИХ 
ПРОЦЕССАХ ФОРМИРОВАНИЯ КЛАССОВ ОБОБЩЕННОГО 
ГИПОТЕЗА АРТИНА 

Востров Г., Опиата Р. 
                 Исследована взаимосвязь процессов формирования классов 

простых чисел в обобщенной гипотезе Артина и теории информации, и, как 
следствие, информационных технологий. Доказано, что вероятностные методы 
теории информации и информационных технологий являются основой для 
построения компьютерных моделей классов простых чисел в соответствии с 
обобщенной гипотезой Артина. Разработаны методы расчета артинских 
констант и установлена сходимость оценок констант по вероятности для 
ограничения значений. Созданы основы теоретико-числового анализа констант 
Артина и родственных классов. 
 Ключевые слова. Обобщенные классы Артина, постоянные Артина, классовые 
вероятности, устойчивость оценок постоянных Артина, сходимость по 
вероятности 
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УПРАВЛІННЯ СМУГОВИМ ЧАСТОТНО-ЗАЛЕЖНИМ 
КОМПОНЕНТОМ ІНФОРМАЦІЙНО-УПРАВЛЯЮЧОЮ 
СИСТЕМОЮ ДЛЯ УСУНЕННЯ ДЕТОНАЦІЇ ДВИГУНА 
ВНУТРИШНЬОГО ЗГОРАННЯ 
 

 
Ухіна Г., Теплечук А., Кірьязов Ю., Ситніков В. 

 
У роботі розглянуті підходи усунення детонації двигуна внутрішнього 

згорання. Виявлено недолік базових рішень, для підвищення ефективності та 
економічності системи запропоновано  використовувати систему керування на 
основі зміни коефіцієнта надлишку повітря.  

Це дозволило зменшити апаратні витрати, габаритні розміри, і як 
наслідок зменшити собівартість системи в цілому. Головні переваги цієї 
системи: універсальність, підвищення економічності двигуна і використання 
одного смугового цифрового фільтру. Ідея керування при зміні коефіцієнта 
надлишку повітря полягає у наступному.  

При появі детонації система керування збільшує коефіцієнта надлишку 
повітря, це переводить роботу  двигуна в режим збіднення робочої суміші. При 
цьому виникає падіння потужності двигуна, що призводить до зниженню 
навантаження на двигун, що приведе не тільки до зникнення детонації, а і до 
економії палива і зниженню СО, NOX та СН. Оскільки основною задачею 
смугового фільтрує розпізнавання детонації і власних шумів двигуна на різних 
частотах, знайдені формули для розрахунку нових значень коефіцієнтів 
цифрового смугового фільтру другого порядку. Таке рішення дозволило 
зменшити похибки при роботі блоку виділення детонації на початкових етапах 
зародження детонації, що дає змогу оперативніше приймати рішення на 
усунення небажаної детонації. 

Ключові слова. Коефіцієнт надлишку повітря, датчики детонації, 
обробка сигналів, кут випередження запалювання, цифровий смуговий фільтр, 
перебудова коефіцієнтів фільтру. 

 
ВСТУП 

Сучасний стан розвитку гібридних та електричних автомобілів не 
знімає проблеми підвищення економічності бензинового двигуна 
внутрішнього згорання і зниження токсичних газів у вихлопах 
автомобіля, що є однією із важливих задач при розробці та експлуатації 
автомобіля. Несумісність цих показників приводить до ускладнення 
системи керування двигуном. 

Підвищення економічності залежить від значення коефіцієнта 
надлишку повітря α  [1] 
де TG  – вага палива, яке подається у циліндри ДВЗ, 

    BG  – вага повітря, яке подається на такті впуску у циліндри ДВЗ, 


