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DIMENSIONALITY REDUCTION AND EXTREMAL PARAMETER
GROUPING FOR WEIGHTED GRAPH PROBLEMS

Vostrov G., Khrinenko A.

This work presents graph cut approach to dimensionality reduction and shows
connections between the problem of extremal parameter grouping and the problem of
maximization of positive definite quadratic form on the set of vertices of k-dimensional
hypercube of side 1 by modulo. It is shown that the last problem is reduced to the
minimum negative cut search for a weighted graph. A heuristic algorithm for solving
this problem is given.
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INTRODUCTION

In the process of studying objects and events, it becomes necessary to
analyze and interpret a priori information obtained through an experimental
research. The main form of presenting such information is a matrix, where
columns correspond to various parameters, properties, etc. Matrix rows
correspond to individual objects, which are described by one set of
parameters. Advance in science has leaded to the development of new
techniques for data analysis that are generating enormous amounts of data,
which have implied growth of many databases and also aggravated visual
representation of this data in a graph form, that could help to understand
underlying nature and structure of the data. Since a vertex-edge diagram is the
most popular method for graph visualization wide range of methods have been
developed to lay out a vertex-edge diagrams [1]. Layout selection influences
individual’s understanding of the graph, thus it is important to find satisfactory
method that can effectively depict the structure of the graph. Since real-world
problems imply large-scale datasets it is not practical to compute different
layouts and compare results for further usage. For a graph with million
vertices it can take hours or days to calculate single representation and since
there is no consensus on which layout is more preferable in general each
dataset needs to be presented in its own way. Figure 1 shows that a graph in
different layouts provides completely different understanding of dataset
structure. One of the central problems in analysis of such information is
selection of the most significant parameters in a given set or construction of
generalized factors that sufficiently reflect the informational properties of the
original description and allow a clear meaningful interpretation and
representation in graph form. Thus, dimensionality reduction problem occurs.
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In order to solve this problem, an alternative low-dimensional representation
of given data should be obtained. There is a wide range of techniques for
previously stated problem. Principal component analysis (PCA) and metric
multidimensional scaling (MDS) represent most popular methods [2].

Fig.1 — Graph layouts

First method maximizes data variance captured by the low-
dimensional projection, and has many extensions. First example is kernel
PCA, which apply PCA on a feature space instead of initial data space.
Second, probabilistic extension, that address a few weaknesses of PCA:
partitioning of data into r-dimensional projected subspace (signal) and (d-r)-
dimensional subspace (noise), where d is initial dimensionality, and lack of
explicit generative model. Third, robust extension that is driven by fact that a
small number of highly corrupted data inputs can drastically influence
standard PCA. The latter method also tries to preserve pairwise distances as
closely as possible in the least squares sense. One of advantages of this
method is that it generally requires only pairwise dissimilarities and not data
itself. However, projections of data onto linear subspaces could be insufficient
in many cases, when no linear projection is able to provide a satisfying
representation. Therefore, this work introduces a graph cut approach to
perform supervised dimensionality reduction.

FORMULATION OF PARAMETER GROUPING PROBLEM

Parameter and factor search is performed in order to simplify an a
priori description and to study influence of some parameters on others. One of
approaches to solve this problem is the approach based on the selection of
closely correlated parameters in the original description of groups. A formal
formulation of the problem of parameter grouping is given in [2], which is
reduced to maximization of one of the two functionals.

m m
=22 Gk L= 20D
Jj=1 x;e4; Jj=1 x;e4;
where X,,...,Xx, — random variables (parameters), 4,,...,4
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of the set {X;,...,X, } on a given number of m groups, f,,..., f, —random
functions (essential factors) defined on groups A4,,...,A4,, (x,,f,)-
coefficient of correlation or covariance of the vectors X, and fl for parameter
partition on groups as well as for random function selection fi,..., f, ..

As it is shown in the [3], functional J, is similar to the functional J| .

Maximization of the functional J2 is reduced to maximization of next
functional:
1
§ %
J, :Z Zajas(xj,xx) , 2
i=1

=1\ x;,x,e4;

s
both by splitting the set of parameters on groups A4,,...,A4, and by

coefficient selection o ;and O, where each coefficient equals to 1 in

absolute value. At the same time essential factors f,..., f, are defined with

next expression:
fi= Zajxj Z Zajas(xj,xs) , A3)

x,.eA, i=1 X; X €4

where i =1,2,...,m. From the expression of the functional J; it follows

that an important problem of functional maximization is to find the maximum
of a positive definite quadratic form:

k k
2.2.0:0,(x,.x)) )
i=1 j=1

on the set of vertices of a k~dimensional hypercube of side 1 by modulo. This
paper is devoted to present a heuristic algorithm for solving the problem
Maximization of positive definite quadratic form on the set of vertices of k-
dimensional hypercube. The formulated problem has a trivial solution
obtained by complete enumeration method. However, this method of solving
the problem is computationally inefficient. Previously formulated problem is
reduced to the minimum negative cut problem for weighted graphs with an
arbitrary weight function that is bounded from above and below.

Let R=[|(x;,x,)|| — matrix of correlation coefficients of the
parameters of the set {xi,...,xk} , that corresponds to an arbitrary group

from the set of groups {4,,..., 4, }. We define a weighted graph on this set
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as follows. To each parameter X, it is assigned vertex X, . Each pair of vertices

is connected by an edge. Let V' — set of edges of the obtained complete graph.
On a set of edges we construct a function according to the rule:

¢, =c(v;)=(x,x,),i,j=L...k,i# ], (5)
where v;; — an edge connecting vertices X; and x ;. We assume that there are

no loops at the vertices. The matrix C=|c; || of the weight function ¢, is
obtained from the matrix R by replacing its diagonal elements with zeros. To
denote the resulting weighted graph we will use the notation L(X,V,C).

Let us consider the set of all cuts of the graph L(X,V,C) into two
subgraphs. Obviously, each of the cuts corresponds to a partition of the matrix
of correlation coefficients of the parameters X,,...,X, and, accordingly, the

matrix C into blocks:

(x,x) (x,x,) (x,%,1) (x.x,)
: R : : R, :
_ (x;axl) (‘xs,xx) (‘x.sﬁxs+l) e (xka) (6)
(x,115%) (x5%,) (X)) (xy015%,)
: R, : : R, '
(x,,x,) (x,,x,) (X,%,,1) (x,,x;)

The main minors R, and R, of orders § and k—s determine,
according to the rule described above, subgraphs of graph cut, which are also
complete. A partition of the set X into two subsets 4 and 4 corresponds to
each cut of the graph L(X,V,C). The magnitude of the cut is the sum of the
correlation coefficients of the antidiagonal blocks R,andR;, which is
determined from next expression:

W(4,4)= Z(xi,xj): Z(x,'axj) (7
(xiaxj )ER, (xisxj)ERzl

If W(A4,4) <0, then the cut will be called negative, otherwise — non-

negative. The cut with the smallest value of W (A, A) will be called minimal.

Let construct a map of the set of all cuts of the graph L(X,V,C) to the set of
vertices of the k-dimensional hypercube of side 1 by modulo. To do this, we
assign one-to-one correspondence to each i-th dimension (i =1,...,k) of the

hypercube some parameter X, . To designate cuts of the graph L(X,V,C) in
terms of subsets of its vertices into which given graph is partitioned when all
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edges of the cut are removed. The map ¢ of the set of all cuts of the graph to
the set of vertices of the k-dimensional hypercube is defined as follows:

o(A, A)=(1,....1),if W(4,4)>0,
o4, 4)=(c,,...,0,), if W(4,4)<0, ®)

where &, =—1 under x, € 4 and &, =1 under x, € 4 .
Theorem 1. Let matrix R defines a graph that contains at least 1

negative cut. Next, an arbitrary negative cut (4, A)and its vertex

0'2(0'1,...,6'/{) after application of map @. Suppose that hypercube
dimensions are reassigned in a way that next is true:
ci=...=0,=—1, ©)
By multiplying rows and columns of matrix R on corresponding

components of vector o matrix R will be obtained. From definition of

vertex o it is follows that elements (x;,x,),i=1, k, j=s+1,k of matrix

R change their sign. Since negative cut (A, A) was chosen arbitrarily for
any such cut it is possible to write:

_ k
4W(A,A):Z(xi,xj)—ZO'iO'j(xi,xj)<O, (10)
i,j=1 i,j=1
i.e. expression (4) at vertex o obtains value higher that at vertex

o =(1,...,1) by exactly quadrupled value of negative cut for which o is an

image. Since minuend at (E1) constant then W(A,Z) will be minimal only
when subtrahend is maximal. It implies that if graph L(X,V,C) does not

contain negative cuts then maximum for expression (4) on hypercube vertices
reach minimal negative graph cut at vertex (1,..,1) or otherwise at vertex that
is an image of minimal negative graph cut. The quadratic form (4) attains
maximal value at that vertex of the k-dimensional hypercube, which is the

image of the minimal negative cut of the graph L(X,V,C)under the map
@ . This theorem allows us to construct an iterative algorithm to find the

minimum negative cut of the graph L(X,V,C). Suppose some procedure P

for negative (not only minimum) cut search in weighted graph is given. As a
result of its application to any graph some negative cut will be obtained or it
will be determined that given graph does not consist negative cuts that can be
found with this procedure. Weighted graph and solution vector, obtained on s-

th step of the algorithm, are denoted as L(X,V,C") and & respectively. On
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the first step of the algorithm &' =& . According to (5) map @’ is defined

on the set of graph cuts for L(X,V,C"):
1. Let on (s+1)-th step application of procedure P to graph

L(X,V,C*) gives negative cut (A*", 4**"). With map ¢ vector o' is

obtained. If cut (4", A 1) is not negative, then go to step 4.
2. Construct vector:

Of\_s+1 — 55 @O_Hl, (11)

where symbol @ denotes componentwise product of given vectors. For this
vector next inequality occurs:

k k
A S+ A S+ ASAS
Zai oy (xi,xj)>20i0'j(xi,xj), (12)
i,j=1 i,j=l1
which follows from next relation:

k k
AW (A, A" )= 6]6(x,,x;)- 26,76 (x,,x,) <0 (13)
i,j=1 irj=1
and definition of procedure P.
1. Multiply matrix R by rows and columns on corresponding

coordinates of vector &', Matrix R'M,Which defines graph

L(X,V,C**")is obtained. Go to item 1 of (s + 2)-th step.

2. If on (s+1)-th step of procedure P application to L(X,V,C")
non-negative cut is obtained, then it means that iterative process is over.
Vector & is a solution.

Such algorithm will allow us to obtain a finite sequence of vertices of
the k-dimensional hypercube é'! ,...,0'. From the construction of this

sequence, it follows that at each subsequent vertex the quadratic form (4)
receives greater value than at the previous one. At each iteration step the value
of the quadratic form increases by a value, that is bounded from below. It
follows that the algorithm converges in a finite number of steps.

For such iterative algorithm of minimum negative cut search of the

graph, it is true that at the vertex &, the expression (4) receives a local
maximum in regard to the procedure P. This obtained maximum will be global
only when the procedure P has next property: if the graph L(X,V,C) contains

at least one negative cut, then the result of the procedure P will be some
negative cut.
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Algorithm for minimal negative cut problem of weighted graphs

The minimum negative cut search continues the search procedure for
an arbitrary negative cut of the graph. At first, the orientation of the graph is
formed and the initial flows are arranged. As a result, the graph turns into a
network. The resulting network is then converted to a network with non-
negative bandwidths. Then, using the Ford-Fulkerson algorithm [4], a minimal
network cut is computed and its analysis is performed. Let a complete k-vertex

weighted graph L(X,V,C) be given. We assume that the capacity matrix of the

edges of the network obtained by orientation of the graph coincides with the
weight matrix C. If i-th edges enter the network vertex and j-th edges exit, then

we will say that this vertex has (7, j) type. We assume that the set of all such
pairs of vertices <Xx,,Xx;, that i< j, is lexicographically ordered. Then,

cyclical sorting for vertices pairs sequencing from this set is started. At each
stage of the algorithm, we will consider one pair of vertices. Suppose that to the

(I+1) stage of the algorithm, we obtain matrices C' and a k-dimensional

vector &l, where coordinates equal to 1 in absolute value. In addition, let a
number of selected negative cuts for the next vertices pairs sorting equals 7 and

the pair of vertices <x P ,xt> is under study. In this case, each stage contains 12
steps:
1. We assume that X is a source, X, is a sink.

2. The edges incident to the vertex X are replaced by edges that go out of this

vertex, and the edges incident to the vertex X, are replaced by edges that return

to it.
3. Enumeration of all 4-vertex subgraphs, generated by a set of vertices

{xs,xi,xj,xt}, i, =1,_k and 1 # ] #§#t.In each such subgraph the edge

v;; is replaced by an edge that goes out of the vertex X, if ¢;+c;, >c;+c,

and an edge, that returns to this vertex, if ¢, +¢; >c; +¢;. In case of equality

¢ tc; >c,+c, the edge v;; is not oriented at this step.

4. Arrange all the vertices of a partially oriented graph in decreasing order by
the number of edges that return to them. Then, all the vertices are successively
considered and replace incident to them edges that are not oriented by the
moment of scanning, by the edges that go out of them.

5. Arrange the original streams f'(V;;) according to rules:
a) f(v)=—cifi+j#s#l,
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b f)=—g-p+De, f(,) =,

if vertex has type (p,q) and g > p,

o f(v,)=f(,)=—c, if vertex X, has type (p,q) and p =g,

d f(v,)=—cf(v,)=—(q—p+1)yc, if vertex X, has type (g,p) and
q > p, where c =max | ¢, |.

6. Build a new networtlvjvwith non-negative capacities by using formula
c(v)=c(v;)forall i, j= I,_k and [ # j. Initial flows over all edges are

set to zero.
7. Apply Ford-Fulkerson algorithm to find the minimum cut of the resulting
network.
8. Check if the resulting network cut is a graph cut using the algorithm for
collocation labeling [4]. Value of the obtained minimum cut of initial network
is determined from the expression:

77 gl i+ * —

WA, A7) = Z(f V) + V), (14)

i=l,i#s

where A" R A"~ vertex sets into which the graph is cut. Go to step 11.
9. If the network cut is not a graph cut, then we divide the set of all vertices of
the network, excluding source and sink, into non-overlapping subsets. In order
to do so suppose that all these vertices are arranged in descending order
according to number of its exit edges. If vertex is reachable from the source,

then all vertices X,,...,X, that are reachable from x will be successively

S1
appended to subset A4, until first unreachable vertex X, .- In case, when
vertex X, is unreachable subset A, is appended by all vertices X,.. ., X, that

are not reachable from vertex X, until first attainable vertex x, ., . This
process proceeds for all vertices. As a result, a sequence of non-overlapping
subsets 4, ,..., Akl will be obtained. In this sequence subsets of reachable and

unreachable vertices will alternate. Next, complete set of these subsets is
divided onto two non-overlapping groups. First group consist of those subsets,

where vertices are reachable from X . The rest of subsets create second group.

10. Based on the initial network a new network is built by changing the
orientation of some edges. Edge orientation that exit second group’s vertices
and enter first group’s ones change to opposite. For all vertices that were
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changed new flows for edges V_, , V. are set according to step 6 and for the

si oVt

rest of edges source flow is unchanged. Go to step 7.

11.If there is inequality W(AM,Z "*1), then we construct the vector &'
new matrix of weights C'*' is created by using the matrix C' and
components o™ and the vector§'™ =6’ @ o’ . Increase the counter of
found negative cuts r by one. If W(AM,ZM),Z 0, then define matrix
C™ =" and proceed further.

12. Check if the pair <xs ,xt> is the last in a lexicographically ordered list of all
pairs of vertices. If true and7 =0, then the work is finished and s a
solution. If 7 # 0, then define =0 and proceed to step 1. If the pair
<xs,x,> is not the last one, then select the next pair and go to step 1 of
(I +2) -th stage.

Next theorems were used to substantiate given algorithm.

Theorem 2. For every cut (A,A) of canonic network to given
arbitrary network there is next equality:

W4, A)= Yc*)= Y (ev)=c(vi)= Y c(vi)-

vyl (4,4) vyl (4,4) vyl (4,4)
ZCO(VIJ)+ ZCO(VU) ZCO(VU)_ ZC(VU) (15)
v, eV(A A) vy €V (4,4) Vi EV A,4) V; eV(A A)
ZCO(V’/) ( ZCO(VU) Zco(vi/)) = W(Aa A) —V-
vyl (4,4) VeV (4,4) vyl (4,4)

Since initial flow value through any cut of an arbitrary network is
constant then from above mentioned equality it is follows that minimum cuts of
an arbitrary network coincide with minimum cuts of its canonic network.
Therefore, it is necessary to switch to canonic network and apply Ford-
Fulkerson algorithm to it in order to find minimum cut of initial arbitrary
network. Every graph with an arbitrary weight function can be transformed to
an arbitrary network by selecting some vertex pairs as a source and a sink and
certain orientation of its edges. Each such network is associated with number,
that equals to minimum cut. Size of minimum cut for obtained network
depends on graph orientation and choice of vertex pairs. Thus, some minimum
arbitrary network is obtained.
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Theorem 3. Let some weighted graph L(X,V,C) and its minimal cut

(A4, A4) are given. Next, we choose vertices X, X, from set Aand A in
arbitrary way and take them as source and sink respectively.
All edges that are incident to vertex X, substitute to arcs that exit this

vertex and edges that are incident to vertex X, substitute to entering arcs.

Edges that connect vertices from set 4 to vertices from set A replace with
arcs that exit set 4 . Orientation for the rest edges we choose arbitrary. For
every arc we assign flow capacity that equals to weight of corresponding edge.
Initial flow function is chosen according to 6th step of algorithm for minimal
negative graph cut search. It is clear that for obtained network conditions (7) -

(9) are true. Let show that cut (A,Z) of obtained network will be its minimal

cut. Suppose that network cut (A* R A*) is smaller then there is an inequality:
W(A,A) =W (A4, A)= > c(vy)>W (4", 4')=
vijeV (A4,4)
= ZC;(VU)_ Zco(vij)'
viyeV (47,47) vl (4,47

With next condition:
i) < f(vip)<ce(vii), ¢, (vii) <0, [cy(vip) [Ze(vi) (17)

(16)

It is follows that:
WA A= Y - Yetn>
eV (47,4") vyl (A5, A
_ _ ' (18)
> o)+ De(vy)=W (A, 4.
vjeV (47,47 vl (4, 4%

Thereby, W(A, Z) >W(A ,A") that contradict with minimum

condition of graph cut(A, A). And it is follows that for any graph with an
arbitrary weight function there is such orientation and vertex pair option as
source and sink for which minimum cut of the obtained network coincide with
minimum cut of the graph and also equals to it and such network is a
minimum arbitrary network.

Theorem 4. Let minimal network cut (A, A) is not the graph cut. Set

of all vertices is divided on subsets in a way that is described in 9th step of the

235



algorithm. Suppose that Al.,...Al.k and Ajl,...Aj — reachable and
1 1 ky

kl
unreachable vertex subsets respectively. Suppose B = UAl. and

s=1

k _
B = U A; . In this regard minimal cut (4, A) has next value:

s=1

W(4,A)= cv)+ D e+ D cvi)= Y c(vi).

x,€B viiV (B,B) x;eB viiV (B ,B) (19)

After reorientation of arcs from set »(3,8) we obtain network in

which the same cut (A4, Z) has value:

W'(A,Z):ZC(GS,‘H D)+ Yei)+ Y e(vy)

x,€B vV (B,B') x,€B vijeVl™ (B,B) (20)

where V' (B,B) -arc set that link vertex sets B and B where

reorientation have not applied and ¥~ (B,B’) — arc set where reorientation
was applied. According to condition (17) it is follows that

W(A,A)=W (4,A) <W (A, A) and then minimal cut of new network does
not increase in accordance to theorems 2 and 3. As a result it can be stated that
if minimal cut of arbitrary networkis not a cut for corresponding graph then
there is effective algorithm for reorientation that allows for minimal cut of
new network not to increase and it is possible to achieve network with the cut
that also belongs to the graph in finite number of steps. Hence, minimum
negative cut problem for weighted graphs with an arbitrary weight function is
reduced to search problem for graph orientation, that all edges of its minimum

cut (A4, A) exit vertices of set A. Previously stated algorithm of minimum

negative cut search of the graph is based on idea of minimum arbitrary cut
search that will enable to find global minimum negative cut of given graph.

In this paper correlation coefficients were used for dependence
estimation that imply some limitation on overall estimation of dependence
between vectors since there is difference between dependence measurements of
n random variables and pairwise dependence measurements. One of approaches
to tackle this problem was presented in work [9] where new method that able to
distinguish between pairwise independence and higher-order dependence of
random vectors is shown. Since the main aim of this paper represent another
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subject more details on above mentioned aspect will be examined in further
works.

Results of given algorithm application to the real-world data will be
presented in the following publications on this topic.
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YMEHBUIIEHUE PASMEPHOCTHU U I'PYIIIIUPOBKA OKCTPEMAJIBHBIX
IHAPAMETPOB JIUIS1 3AJAY B3BEHIEHHOI'O T'PA®A

Boctpos I'., Xpunenko A.

B pabome npedcmasnen nooxod epagoeoco paspeza K YMEHbUIECHUIO
PA3MEPHOCMU U NOKA3AHbLL CES13U MedicOy 3a0adeil Spynnupo8anusi IKCMpemManbHbIX
napamempos u 3adavelt MakCUMU3AYuL NOJ0NCUMENbHO ONPEOeNeHHOU K8AOPAMUYHOU
Gopmbl na mHodcecmee Gepuiun k-meprnoeo eunepkyboa cmopouvl 1 no mooymuio.
Ilokaszano, umo nocnedusiss 3adaua  CGOOUMCS K  NOUCKY — MUHUMATbHO2O
ompuyamenvHo2o paspeza 0 636euiennozo epaga. Ilpuseden sepucmuyeckuii
aneopumm pewerust 3a0a4u.

Knioueswvie crosa. Habopwvl dannwix, ymeHbuieHue pazmepHocmu, epaghbl.
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BBIBO/IbI

B BEBINONHEHHO!N KOJUICKTUBHONW MOHOTpaUM MPHUBEICHBI PE3yIbTATHI
HAy4YHBIX HCCJEJOBaHWH B 00JacCTH WH()OPMALMOHHBIX HHTEIUICKTYAIbHBIX
TEXHOJIOTH, MOJENUPOBAaHUS B WHOOPMAIMOHHBIX YHPABJISAIOMIMX CHCTEMAX,
yIOpaBiCHUs] 3alMTOH  MHGOPMAIMOHHBIX CHCTEM, COBEpIICHCTBOBAHHS
MHPOPMAIMOHHO-PECYPCHOTO 00eCIIeUeHUS HAyKH.

[IpuBeeHHbIC MATEPUAIIBI TO3BOJIMIIN PELIUTH PSJT 3a/1a4 CBSI3aHHBIX C:

COBEpIICHCTBOBaHHEM  HMH(OPMAIHOHHO-PECYPCHOTO  OOecredeHus
HAayKH, TEXHHUKH W COLMAJBbHOW CQepbl; CIOCOObl M METOJABI 3alIUThI
uHdopmanumy;

I/IH(i)OpMaI_[I/IOHHI)IMI/I HMHTCJUICKTYaJIbHBIMU TECXHOJIOTUAMN JJIA
ABTOMATH3MPOBAaHHBIX CUCTEM 00PaOOTKH JIaHHBIX U YIPABICHHS;

MaTe€MaTU4YCCKUM MOJCIUPOBAHNUEM n OHTI/IMI/I38.HI/IeI\/'I B
MH()OPMAIMOHHBIX YIPABISIONUX CUCTEMAX;

UH()OPMAMOHHBIMU TEXHOJIOTUSIMH YITPABICHHS IPOCKTAMHU.

Pe3ynbTaThl BBIMONHEHUS pabOT MO MEPEUYHCICHHBIM — pasjeiiaM
MO3BOJISIIOT PEIIUTh HEKOTOPBIE MPOOIEMbl HH(POPMAIMOHHBIX YIPABISIONIIIX
CHCTEM U TEXHOJIOTHIA.
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