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Abstract 
 

Grinding temperature spreads over the depth of the surface layer and in some cases 
causes the appearance of grinding burns and micro-cracks. These thermal grinding 
defects are located at a certain depth from the surface machined during grinding. In 
several cases, such defects are generally not permissible. In other cases, the 
possibility of the formation of such a defective surface layer must be provided for in 
the amount of the grinding stock, based on the obvious condition: the defective 
layer must be completely removed when the grinding stock is removed. In any case 
there is a need to determine the depth of the defective layer formed during grinding. 
The simplest way to solve this problem is the ability to determine the penetration 
depth of a certain critical temperature, which leads to thermal damage to the surface 
layer of the workpiece. To determine the depth of such a damaged layer, an 
approach based on modeling the temperature field in the surface layer is proposed. 
The possibility of determining in explicit form the depth of penetration of a fixed 
temperature exceeding a critical value is shown in the paper. A prerequisite for the 
analytical solution of such a temperature problem was the possibility of replacing 
the Jaeger fast-moving heat source with the action time of some unmoving heat 
source. 
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In our previous studies, it was shown that it is possible to determine the grinding 
temperature by the traditional one-dimensional solution of the differential equation of 
heat conduction at the boundary conditions of the second kind and by the simplified 
equation if the Peclet number is more than 4, i.e. ³HH 4. 

The traditional equation at the stages of heating (with the index “H”) and cooling 
(with the index “C”): 
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The simplified equation at the stages of heating and cooling: 
In these equations HH and H are the Peclet number and dimensionless action time of 
unmoving heat source, respectively. 

From equations (1) and (3), we can find that the maximum dimensionless surface 
temperatures (at =X 0) according to these equations are the same, i.e. they are equal 
to each other. They correspond to the action time of the moving heat source 
of 2 /t =H h V where 2h in m is the width of the moving heat source and V  in m/s is its 
velocity. That is, the maximum grinding temperature at the heating stage in 
accordance with mentioned equations will be  

The pairs of equations (1)-(2) as well as (3) and (4) fully correspond to the 
following pairs of equations which were obtained by prof. V.A. Sypailov in [20] for 
fast-moving heat source, i.e. 
where H  and Z are dimensionless half-width of moving heat source (Peclet number) 
and Cartesian coordinate in the direction of which the heat source moves with 
velocity V . By the other words, equations (6) and (7) allow you to find the grinding 
temperature on the surface during the heating and cooling stages for fast-moving heat 
source, i.e. when 4³HH . 

It is known that in order to optimize the grinding conditions according to the 
temperature criterion, the formulas are needed to calculate the temperature and depth 
of the defective layer during grinding. As a parameter to estimate the depth of the 
defective layer, the penetration depth of a fixed critical temperature is most often 
used, under the influence of which irreversible changes occur in the workpiece 
material being ground. Based on the analysis of the literature [18-20] and theoretical 
studies, new dependencies (1)-(4) were obtained to determine the dimensionless 
grinding temperature on the surface and along the depth of the surface layer both for 
the heating ( 0 £ £ HH H ) and cooling ( £ £HH H ∞) stages, respectively. 
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