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INVESTIGATION OF THE INFLUENCE OF STRUCTURAL
INHOMOGENEITIES ON THE STRENGTH OF WELDED
JOINTS OF FUNCTIONALLY GRADIENT MATERIALS

A.B. Ycos, FO.O. Moposos, M.B. Kyniyun, A.M. Tonxonoxcenko, 1.0. Yepruw. JIocaixKeHHsI BILITABY CTPYKTYPHHX HEOXHOPiXHOCTEH
Ha MilHiCTH 3BapHUX 3’€IHAHb (YHKUIOHAJBLHO-TPAJiEHTHMX MarepianiB. Posrismaerbes BIUIMB AedeKTiB HA MeXaHIUHI BIACTHBOCTI
3’€JIHaHb ()YHKIIOHAJBHO-TPAIIEHTHUX MaTepiaiiB, SKUi 3aJIeKUTh Bl 1X (OPMH, YMOB EKCILTyaTallii, Ta XapakTepy HaBaHTaXeHHs. HasBHICTh
nedekTiB y 3BapHUX 3’€[HAHHAX CYTTEBO 3HIDKYIOTh POOOUY 31aTHICTH KOHCTPYKIIH, a HPU HEBHHX YMOBAaX MOXYTh IPUBECTH JO iX
pyiinyBanHs. [IpoGiema MIIJHOCTI KOHCTPYKIiH, SKi MarOTh 3BapHi 3’€[HAHHS IIOB’s3aHa 3 BCTAHOBJICHHSAM JIOKAIBHUX KOHLIEHTPATOPIB
HarpyXeHb Ousl edeKTiB TUITy TPILMH, B SKUX HAIPYXECHHS 3HAYHO MEPEBUIIYIOTh CepeiHi 3Ha4YeHHs. J{J11 BU3HAYCHHS MIIHOCTI 3BAPHHX
3’€/IHaHb | BCTAHOBJICHHA BHMOT sIKi IPEJ SIBISIIOTBCS 10 iX SIKOCTI MOOyZOBaHA MaTeMaTHYHA MOJENb, sKa J03BOJIA€ JOCHIDKYBAaTH BILIMB
HaOUIBII BiporinHuX JedeKTiB Ha MIIHICTh 3’€HaHb. BpaxyBaHHS Ne()eKTHOCTI, 1110 MAOTh MICLIE y 3BapIOBAIBHUX 3’€JHAHHIX HA HECYdy
3MIATHICTh KOHCTPYKILIIM MOXKHA peaiizyBaTH OCHOBHHM KpPHTEPIEM JIOKAIBHOTO PYiHYBaHHS K. Ta €0 eKCIUTyaTalliiHUX HaBaHTaKeHb. 1o
3HaNICHOMY 13 MOJIEITi 3HAYCHHIO KOe(illieHTa IHTEHCHBHOCTI HaNpy)KeHb Ta BEIMYUHI TEIUIOBOTO MOTOKY, LIO Ji€ Ha KOHCTPYKIIIO 1 3aBASKH
SIKOMY y 3’€iHaHHI (JOPMYIOTBCS HANIPY>KCHHS, MOXKHA BU3HAYNTH IPAHIYHI 3HAUCHHS PO3MIPY Ae(EeKTy, IPH SKOMY el Je(eKT 3aInINThCS Y
CTaHi piBHOBaru 0e3 ()OpMyBaHHS i3 HBOTO MariCTpaJIbHOI TPIlIMHU. AJICKBaTHICTb OICP)KaHUX TEOPETHYHUM IIUIIXOM Pe3yJIbTaTiB JOCIiIKEHb
nepeBipsUIack Ha MIIHOCTI 3BapHUX 3’€[HAHb ANIOMIHIEBHX CIUIAaBIB 3 ypaxyBaHHSAM HAsBHOCTI B HMX rapsumx TpimmH. Jledopmariiine
3MIIHEHHS 3BapHHX 3’€IHaHb, SIKE BiIOYBA€THCS Y BUCOKOMIIIHUX CKJIAJHUX JIETOBAHUX AJIFOMIHIEBHX CIUIABIB CHPHSE TIOHIKEHHIO iX MIIJHOCTI B
3B’SI3KY 3 MOSIBOIO y HUX IHTEpMETANIIHUX (a3, a TAKOXK HE MPOBapIB.

Kniouosi cnoea: MiLHICTH 3BapHOTO 3’€IHAHHS, JIC(PEKTHICTh, MaTEeMAaTHYHA MOJCNb, KOE(II[ieHT IHTEHCHBHOCTI HalpyXeHb,
aJIeKBATHICTh

A. Usov, Yu. Morozov, M. Kunitsyn, A. Tonkonozhenko, I. Chernush. Investigation of the influence of structural inhomogeneities
on the strength of welded joints of functionally gradient materials. The effect of defects on the mechanical properties of joints of func-
tionally gradient materials, which depends on their shape, operating conditions, and the nature of the load, is considered. The presence of
defects in the welded joints significantly reduces the working ability of the structures and, under certain conditions, can lead to their destruc-
tion. The problem of the strength of structures that have welded joints is because of the installation of local stress concentrators, near defects
of the cracks in which the stresses are well above average. To determine the strength of welded joints and to establish the requirements for
their quality, a mathematical model is built that allows you to investigate the impact of the most likely defects on the strength of the joints.
The defects taking place in the welding joints on the load-bearing capacity of the structures can be realized by the necessary criterion of local
destruction of K. and the action of operational loads. Based on the value of the stress intensity factor and the value of the heat flux acting on
the structure found by the model, by which the stresses are formed in the joint, it is possible to determine the limiting values of the defect
size, at which this defect will remain in equilibrium without forming the main crack. The adequacy of the research results obtained was theo-
retically verified by the strength of welded joints of aluminum alloys, taking into account hot cracks in them. The deformation strengthening
of welded joints, which occurs in high-strength complex alloyed aluminum alloys, reduces their strength because of the appearance of inter-
metallic phases in them, and welds.

Keywords: weld strength, defect, mathematical model, stress intensity factor, adequacy

Introduction

Various technological operations contribute to the occurrence of hereditary defects in the surface
layer of products. These defects, being stress concentrators, contribute to crack formation, and, to the
loss of the bearing capacity of structural elements both during their manufacturing and during operation.

Especially significant losses in the national economy from marriage because of hereditary defects
that form in products during their manufacture and the operation of these products.
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Reducing defects in the manufacture of structural elements, improving the operational properties
of such products, is an important national economic task, the solution of which leads to significant
savings in material resources, labor and cost of them, and improving reliability during their operation.

Analysis of recent research and publications

The effect of defects on the mechanical properties of welded joints [1 — 6] of functionally gradi-
ent materials is determined by the size and shape of the defects, their repetition rate, construction ma-
terial, operating conditions and nature of the load [7, 8], therefore, the presence of defects in welded
joints does not mean the loss of their performance. However, defects can significantly reduce the per-
formance of structures and, under certain conditions, lead to their destruction. Therefore, to determine
the reliability of welded structures and establish requirements for the quality of welded joints, it is
necessary to have information about the influence of the most probable defects on the strength of
joints. The greatest danger to structures is represented by internal defects since they must be detected
without destroying the welded joint.

In structures operating under static and dynamic loads, the same defects unequally affect welded
joints. Under a static load, the relative strength of the defect has the main effect on the strength of
structures operating at temperatures down to —60 °C, provided that the material of the welded joint has
a large plasticity margin. At lower temperatures, the strength is characterized by the intensity of the
stresses in the defect zone. Under dynamic loads, the strength of welded joints is determined by their
resistance to fatigue stresses [9, 10]. Undercuts, pores, slag inclusions, and lack of penetration (and/or
lack of fusion) reduce the durability of structures, being the causes of the formation of stress concen-
tration. Cracks of any size are not allowed in welded joints, as they contribute to the concentration of
internal stresses, quickly spreading deep into the metal.

Lack of penetration (and/or lack of fusion) has a significant effect on the impact strength of the
weld metal. According to [7], a lack of penetration (and/or lack of fusion) of 10 % of the thickness of a
welded joint can reduce fatigue strength by half, and a lack of penetration (and/or lack of fusion) of
40...50 % reduces the endurance limits of steel by 2.5 times.

The operation of welded structures shows that welding stresses and strains contribute to a de-
crease in the bearing capacity of structures [9]. Sometimes, changing the size and shape of the welded
structure reduces its performance, spoils the appearance, and can even lead to destruction. There is a
general pattern of reduction in the strength of welded structures under the influence of shock in the
presence of undercuts, pores, slag inclusions, and lack of penetration. The types, quantity, and sizes of
permissible internal defects depend on the design purpose.

The purpose of research

To build a mathematical model that allows us to study the effect of defects in welded joints on
the strength of welded structures and to determine the requirements for their quality, and to verify its
adequacy by the experimental method.

Statement of the main material

Consider an infinite composite cylindrical body (Fig. 1) comprising three thin-walled transversal-
ly isotropic hollow cylinders, one of which is finite, 2h high, models a weld. Between the cylinders,
the full adhesion conditions are satisfied, and inside the weld, there are flat defects of an arbitrary na-
ture (such as cracks, delaminated, and not delaminated inclusions) [11 — 17].

To determine the stress intensity factor under tensile load, it is necessary to construct a discontin-
uous solution [14] for a piecewise-homogeneous transversely isotropic space. Consider a space con-
sisting of two different transversally isotropic half-spaces fully linked along the z = 0 plane. On an
arbitrary piecewise continuous surface Q, defects of an arbitrary nature are located (such as cracks,
exfoliated and non-exfoliated inclusions).

Stress and displacement components:

Gzck(xiin)E:1:lecy’GZ’Tyz’sz'Txy’ (1)
u=u,(xy,2),_ =uv,w.
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When (x, y, z) ¢ Q satisfy the generalized Hooke law:
3
OUy =Y 540, k=123, 0,U,+0,U;=5,0,, @
j=1

O,Uz +0,3U; =S,,0c, O,U; +0,U, =SeC.
And equilibrium conditions:
0,6,+0,65+0,0; +F =0,
0,6, +0,0,+0,0,+F,=0, (3)
0,65 +0,6,+0,0,+F, =0.
Where skj(xa):sjk(xa)z{sz_"’ X0 0 02 5 0 E kT3 are the
Sy at X3 <0, OX oy oz
components of the volume forces, s — the coefficients of the generalized Hooke law of a transversely
isotropic medium, respectively, for the upper (x, >0) and lower (x, <0) half-space.

Interface

| ERE

Fig. 1. Design scheme for determining the influence of 1, }, y i)
defects located in a weld on the bearing capacity of 1/ Jv Jv/
cylindrical composite structures: welded body of a My~ 10 Ly Ny

cylindrical structure (a); diagram of the power load on W

the element of the cylindrical structure (b) b

To write the conditions on the surface Q, where discontinuities of all components of the vectors o
and u are possible, we introduce at each point on the surface Q the local coordinate systems (N, M, S)
Fig. 1 b. To do this, draw a tangent plane P and a normal vector n to it at each point on the surface.
The direction of the N axis coincides with the direction of the n vector. We choose the other two axes
M, S mutually perpendicular to the plane P so that after the rotation of the axes, the directions of the
axes (N, M, S) coincide with the direction of the corresponding axes (Z, X, Y). In the new coordinate
system of stress and displacement, we denote this:

oy ={6, (XY, 2)}.1 ={0y,05,0,,Tss Ty Ths (4)
Uy ={0, 3, ={uy,vs, Wy}

Depending on the contact interaction with the surface space, six of the following values may be
known:
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1 = T =G (0% %) £ 8 (00 X0, %), (%, X0 %) €€,
Gl ={o5 (X1 %5, X3), 05 (X1, Xy, X3), O (Xy5 X5 X3), Ui (X, Xp5 X3 ), U3 (X, Xy, X3), UF (%, X5, X5) ), (5)

(of, ug) = lim (o} (%5, 56), UE (%, %5, %)), =13
i i

Point (x*,y*,z*) on the normal side n, and point (x-,y—,z-) is on the opposite side. For defi-
niteness, on the surface Q we assume the following jumps to be known:

T =Gt Y,2) - Cr(%,y,2), k=16, (x,y,2)eQ (6)

The solution of the boundary value problem (2), (3), (5), (6) must be sought in the class
Ci(R*) ML (IR3), where C}, is the space of functions continuous in all derivatives up to the m-th

order with the exception of the surface Q2, L, (IR?) is the space of functions integrable in R3.
We introduce the notation:

v={v,(X,y,2)H,, v, =0,, k=16, v,,,=U,, k=13,

v={0,(X,y,2)}_,, 0, =6,, k=16, 0,,,=0,, k=13,

D 0
D9[X3161’82153]: ° st,
-S(x;) D}
f={-F,-F,,-F;,0,T,a,T,a,T,0,0,0},

6, 0 0 8, o,

0
8, 0 8, 0 4|

D,=| 0
0 0 9, 0, 0, O
S(X,) ={Skj (Xs)}k,j:?ﬁ’
Sy S S 0 0 0
S, Sy S 0 0 0
S(x,) = S;3 S;3 S 0 0 0
7o 0 0 s, 0 0F
6 0 0 0 s, O

0 0 0 0 0 s
0y, ; — zero rectangular matrix of dimension k x .
Then equations (2), (3) can be represented as:
DIX;,0,,0,,05]v="F, (X, X,,X;) £Q. (7

We continue the matrix equation (7) to the entire space. To do this, using the properties of the
generalized functions of slow growth J'(R?), we continue the desired functions to the space J'(R?)

whose singularity carrier comprises the surface Q, i.e., suppsing = Q.
Given the relationship between conventional and generalized 5k (k =1,2,3) derivatives:
00, =00, (V) ak;8(Q) + 857 (%, Y), j=13 k=19,

C))
K, =C0S(N, X), k, =cos(N,Y), k; =cos(N,Z),

where 5j, j=1,3 are the differentiation operators in the space J'(R?), §(Q) is the generalized Dirac

function concentrated on the surface Q. Taking into account formulas (8), we reduce the boundary-
value problem (5), (6), (7) to the following boundary-value problem in the space J'(IR3):
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D[z,0,,0,,0,]v =T, 9)
v; =v;, k=34,517,8,9, (20)
where vf e 3, (R3), f ={f,}%_;
ﬂ (U oK, +(Vg) gk + (V) o K,)0(Q) - F;
2= (U)K, +{(Vy)aKs +(V6) k1)) — Fy;
3 = (V) o K3 +(V,) K, +(Vs) 5 k,)(Q) — F;
4 =(07)K,8(Q);
s =(Vg) 5 K,0(€);
6 =(Vg)K30(€);
7 =(Vg)g K5 +(Vg)5K,);
fo = (V) ks +(0g) 5 1,)3(Q);
f~9 = (V) 0K, +{(Vg)5K,)3().
The w; ={w(X, Y, Z, Xy, ¥o:Zo)} 50 W €T'(R®), j=1,9 vector system is called the funda-

mental solutions of a discontinuous (FSD) for a piecewise homogeneous transversely isotropic space if
they satisfy the following system of boundary value problems:

{ D[staliéz’aS]W:foj; j:ﬁ, (Xl’xz’xa)ERa’

—h . —hy —hy
I Ve | | R |

13

—h
Il

w; =w;, k=3,5,9, wi e J'(R?), (11)
FOj Z{fk?}k:fg Z{Skj}k:fgs(xl - X101 X, — Xg’ X3 — Xg)-
If the fundamental solution is found, then the discontinuous solution is obtained using convolution:
9 9
v =D W, - f; =Zj W (X, X°) £, (x2)dX®, X =(X;, X,, X), X° = (X2, X3, X9). (12)
j=1 j=1r3

Applying the three-dimensional Fourier transform to (11), we obtain with respect to
Wi (o, 0,5, 0.5) = F5[wc] with respect to the variable o the Riemann matrix boundary value problem

in the space J'(R3):
M, W;=M W; +f,;,
M, =+£D[+0, o, —ia,,—l0,], (13)
fy={f. }={8 e }ie; =e™ =t oWy =W .
We will carry out all further calculations for the case when the surface Q is a plane defect parallel
to the plane x,=0, i.e, when x, =x,=0 and «, =1, therefore fj =0, j=4,59 and f.; =0,
j=4,5,9, respectively.
Using the theorems from [1] we obtain the representation:
e, =€f +ey,
: : 1 : 1 (14)
[(_IO('S)ij = (("O%)Wﬁ +5Xf€oj _((_Ias)wkj _EXIO )]'
where x;,, k=19, k#4,5,9 —sums of transformants of functions W, at X, =0.
Then, taking into account (14) and using Theorem 2.2 from [1], we obtain:
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M, (mlo,,—lag)Wf =TF

TF = {tkij }k=ﬁ

_1 (15)
= G(izo)eg{ﬁkj}+5 fo

where {C, }, 5= fo" ={xzo. %o %30 0-0, %o Xdor X300 O

To solve equations (15), we introduce the following combinations

Wy = ~(ict, v, (e, W,

5 = (o) v — (Hiog)ws),
RPN e P (16)
W3 =—(—|oc2)1:1fj —(—I()Ll)rgj Wy = (—Iocl)rlfj —(—Iocz)rgj,
where Vi T, k=12 are new unknown functions
Then the system of equations (15) decomposes into two independent systems
L, (—ia,, r))W®s =70,
? o (17)

G, (Hog, r))W; 7 =Tz,

—C5r2 (i
where L, (—ia,,r2)=| (o) ;
B —(-lag) /ey
{le }I =1,2 _{r WL’ rZTL}

jl)i Z{(_Iaz)tfj - (_Ial)t_'

ngz)i = {Wéz)i}|:1,4 ={r?z3;,

W
’(_Ial)t_' _(_iaz)tsij};

W3j ! WJJ ! rz\‘rl;_rj};

LIS ={(Ha)t; + (Hay)ty;, t5;, 55, (Hla)ty; + (Hog)tg; )

H f3 + C1i32
(Hlay) ——=r?2 0 —jci———|r
33 Ca
1 (—ia3) 0 0
G, (o, r?)= ct ,r2=o0?2+as.
. (-lag, r?) 0 ]:r (ciat,) % 1 2
C3 C3
1 .
- 0 —r? (—Iocs)
Cau

Directly from equations (17) we obtain:

WO = L (—iog, r2) TR,
Wj(z)i =G (-ia,, rz)Tj(Z)i,
L Z{Ii}t}i,jﬂ,z'
G ={9;"} iz
In expanded form, equalities (18) are written:

frovs, )= {e( exg) L)

(18)

et . 2
+6- ,
(Hia,) ™ P(ag,r) "0y 2Pt (a3, kz }HZ
{res, wi, ws;; riyi}=<6(£x?) (o) & 0 5 Zg”f(
2 e 2 (Cioy) ™ Pr(ag, 1) P o0 " 2P+(a3,r) A
where {Ip 322 ={I 305,

114
By}t 51052785
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*+ 1 *+ H 2-k (£ r2)(k-1) *+ *+ .

i (g, 1) =- T Ly (0, 1) = (<o) 2 (Cer )Y, k=12, 1,7 (a3, 1) = =15 (05, 1) ;

44
N (A
Pt (o, 1) =C&r2 +chal =cf, (o, — 22r) (o, — Z5r), 7% =it
Caa

{%;o}k:ﬁ = {Z(_l)i (=0 3)% o Z(_l)”l(_iag_i)?(fro} '

nj:{(i . ZjZE’SG'mj:{](_) . ]-J,i’:;:j {g;:}p:: :{g |_114123441
{Spj}p 16 ={8 i} p123678
gll(a3’r )=—hia3, 9i5(0g, r?)=-hyAs, 953(a;, r2) =hsk;, 9a(a,, r?)=hgds;;
hi =(-lay), hg=(-lay) ?r?, k=23, hy =(-la,)?, A =(chaf—cir3)cy, 1=13;
hi =(—ia;), hf =(-l0;)*?r2, k=2,3, hy =(-ia;)?, Af =(cza3 —cjr2)cs,, 1=1,3;
7‘32(61152_0%32)"2’ Ay =(C% —Ci? —CiCau)r? +C5C5035, A =(Ci3+Cq);
Mg = (—loy) H(C508 +¢5r?), A =(-lag)t(cz 0] +Ciir?);
Py (a5, 1) =C5C505 + (C5% + €37 — (C5 —C)?)r2af + CiiCql, T2 =CjiCay;

{iﬁo}kﬂj = {Z(—i%i)xrm X300 X600 Z(_iaie)xro}-

Inverting the Fourier transform regarding o, and passing to the limit at x, — +0, we obtain:

. o, )it | .
{W(l) oo =0EX)(= 1)”1% 1|S Zslk fuio , (19)
(—lo,) ™™ s
+ IOL r |z rx?
{W(Z) h 114=9(+X°)( 1) ) { 1|ZR|jn e Zle f|kao} ) (20)
I=1,4
0 j=12 5 B
where 0, =11 j=3,7,8; {f,}, 5 ={r.r2r} Rpkn='ﬁ, p k=14 R;k=ZR;kn;
g 0; (2T, (2))
2 ]=6
{ROYEs ={Rp )10 diag{s, ¥ 35, q:(z:)=]‘[(z ~2¢), Ui () = H(zf—zv
1=1,I#n
.= AT 15 (20) —
{SO+ - _{Spk}I;) i’édlag{Skj lj;%’ SﬁkZIp(;J_r(—Zi)’ p:l, 2, k:1,41

{flk}k=1,2 ={r+ fzk}k=1,2’ {FZk}k=1,2 ={Lr} q*(z*)=z*-7*, q*(z*)=7"-z*.
Equations (19), (20) contain six unknown functions. To determine them, we use conditions (10)
with respect to the variable x,. As a result, we get the idea:
+ k=1,2 (21)

{a‘cro,r%;o}=/lalb,-, Ajt={a;} A,=H'-H-, H:=£{S:}72,

b. _{( 1)J+1( |OL1) - ! |o¢1x{)+ia2xg (9(+X )SO+ iz*+rx§ e( X )S |z rx3)} ’
( I 2) p=12
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Lidor M30s T2U30, Mla0d=AgMd Aal{ai}}k jid = N*—N-, N*= i{Rﬁk}Ej% ' (22)

—ia)"r oy X0 —ioipx3 IZ*X @iZmx
dj :{L TR M2 OZ(G(X??)RDJH 3 +e( X??)Rp]n " 3)}

1 —mj
(o) p=14

Applying the inverse two-dimensional Fourier transform to (18), taking into account (21), (22),
we obtain the representation for the fundamental discontinuous solution:
Wy (X, X%) = 0(+x3) Wi +0(—x3)wy;, k=3,9. (23)

The found fundamental discontinuous solution (23) allows using convolution (12) to obtain the

desired discontinuous solution.
Let a disc-shaped elliptic crack z=h be contained in a composite transversely isotropic space in

2 2

the Q:{X—12+;(—12<1} plane, to the banks of which a constant load is applied i.e. f;(x, y)=-
a

fr(x,y)=0, k=4,5.
8 1 1 1< 3
Zngak-eXE+_JIR56X§_3dXo__ZJin4-k 5K (X=X, 75, )dx, = Py,
k=7 T fo = n=1
Q Q
155+ Rl [ [0 ax + 2 [ 7| 808 - Risos = |k — Rso s +
m f m rO ry
Q Q
1 3 18 B
o2 (2 paao ki 00,2300 + 23 [ [ e - xoyo =,
T T
Q k=1 k=5" @

R B T U I R | = = 1(r-
—Ry30.%5 += j f T | S20% =~ R0z = |dx° ~[ S5 + Rﬁ]—ﬂxf?afzdx" *
T S ro r.0 n

3
1 ~ 7 2.+
+;J‘J‘X§ E BﬂnazKﬁ,’s (x=x0%2z3,)dx° + ZJ.J.XB kF (X —=x%)dx° =
Q k=1

—SQ
Given that
p 1 806mM 11 8060 1o 1 p0amx)0e =) g1 1
r, 2 ry rg r, 2 re rg r ry ry g

And introducing the following operators:
DE[FI(, y):lj f(t,r)ikdtdr, k=123,
T ry
Q

cpg[f](x,y):%ﬂf(t,r)Wdtdr,

O Fl(xy) =1 j ft, )(X D ttdv; 2[F1(%,%,) = j (x0) P22 o

0

we get:

8
ZR;kak s Xk (X0, X,) + Ry @, [751(Xy, Xp) —

__ZJ..[XM kﬁz;nKlLrl(X x%,Z;,)dx, =P,

k=5
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= = - 3.= - = - = .-
=3[S5, + R 10, [77 1%, X,) +§[82§®5[X§] —R®4[s11-R;0,%s +
1 . 1g _
= j 75 ) PrindaREi (=30, 23,)00 +— [ 75, F (x = x0)de =P,
n O k=1 n k=5 0
1
Ri0.Xs + J]X7 {8228 Rf%82 }dxo [Sz+3 + Rls] IJXSaHdX +
(24)
LD iR e,z g+ [ (e =,
T T
Q k=1 k=5 "0
Unknown functions are presented in the form:
% O X2) =0, (X, XV Z (XD, X2)
N1 Njp - - (25)
9 (¢, X8) =D > ak () (x3)1,
i=0 j=0

where Z(x?, x9) is a geometric description of the 6Q crack boundary.
With an elliptical region rotated through the angle o, the function Z(x?, x9) can be defined:
where & = x2cosa + x3sina;

e _(nY
Z(x0, xN=1-|=2| —-|—| =0,
¢ =1-(£] (1]
n = xJcosa — xPsina.

To determine the unknown coefficients af,

located collocation points (x,, y,)€Q, n =1LM :
Xq =T, €OS(¢, ),
Yo =T COS((Pt ):

k=7,8,9 system (24) is calculated at symmetrically

where ¢, =6—1:)t, t=12,...,59.

To take into account the strong influence of the polar angle on the stress intensity factor r, , are
chosen as the roots of the Chebyshev polynomial of the second kind, of the order of n:

N=26:UL,(r,)=0, r, =cos(52—+7ln), s=0,12.

We obtain the expression for the stress intensity factor [18, 19, 20, 21] depending on the geomet-
ric parameters of the defect and the applied load.
Where the crack  contour is described by a  second-order curve
L(x?,x9)=A+Bx?+C(xP)?+D(x9)?, where A, B,C, D are the coefficients characterizing the shape
of the curve (with an elliptical crack: L(x)=&?/a?+n?/b2-1, §&=x0coso + xJsina,
n=xJcosa — x%sina., C =1/a?, D=1/b?, A=-1, B=0), the expressions for the stress components
in the plane of the crack have the form (terms containing a singularity are written out):
Ry 1
ou(0=—2 j s (%)= de,

0
Rs 1
;'6 _U)@ (Xo)r_gdx
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= = 1(0(. 1 1((. = 1 = 1 .
o 5(X) =-S5 ; + R1T77j]_IIXE+jafz_dxo +__UX§4 {85,142612__ Rij,405— |dx°, j=12.
nd. r, mJs r, r,

By changing the variable x?=x, + pcosO, x? =x, +psin6, dx® =pdpd6 and performing the cor-
responding calculations, also considering that k, = Iirg\/ancs3 , Where r is the distance from the point
r—

(x) to the point (x°) of the crack contour, we obtain:

R+
20 9y (X2, X9)TT¥4(x0); TI(x°) = (B +2Cx?)2 +4D?(x9)2.
T

ki (x%) = (26)

From the found value of the stress intensity factor k,(x°) and the value of the tensile stresses act-
ing on the structure that forms the stresses o,,(X), one can determine the limiting value of the size of

the major semi-axis of the elliptical defect a, at which this defect remains in equilibrium without the
formation of the main crack from it.

Results and Discussion. The adequacy of the results obtained theoretically by determining the
intensity of stresses in places of accumulation of inhomogeneities will be checked on the strength of
welded joints of aluminum alloys [9], taking into account the occurrence of hot cracks in them. A
comparative analysis of softening and the strength level of welded joints of plastic low-alloyed alumi-
num alloys and high-strength complex-alloyed aluminum alloys are carried out. The strain hardening
of the joints of high-strength complex alloyed aluminum alloys obtained during argon-arc welding
with a non-consumable electrode (AWNCE) provides a higher level of their strength than in fusion
welding. In structures of critical use, exposed to significant force impact, high-strength complex al-
loyed aluminum alloys are used. For experimental studies, plastic low-alloyed aluminum alloys
AMtsN, AMg2M, and AMg5M were used, and high-strength complex alloyed aluminum alloys
AMg6M, 1420, 1201 and 1460. The mechanical properties of the welded sheets 1.8 mm thick are giv-
en in Table. 1.

Table 1
Mechanical properties of sheets of aluminum alloys with a thickness of 1.8 mm [7]

SO AIIoIg/Ngrade GOST | O MPa | cq,, MPa | 8, % | o, degrees
AIMn1 | EN AW-3003 | AMtsN 218 178 6 180
AlMg2 AlMg2 AMg2M 176 88 23 180
- - AMg5M 332 160 22 142
5056 - AMg6M 359 210 22 96
- - 1420 459 322 11 50
2219 - 1201 423 303 12 60
- - 1460 565 523 9 36

AWNCE was performed at a speed of 20 m/h on an MW450 installation (Fronius, Austria) using
the filler materials (Table 2). Standard samples were used from the welded joints obtained to deter-
mine the uniaxial tensile strength. The tests were carried out using the universal multi-purpose servo-
hydraulic system MTS 810. The samples obtained by AWNCE were tested after removing the weld
melt flush with the base metal, and with additionally cleaned their reinforcements, since these and oth-
er types of joints are used in welded structures. The softening of the metal in the welding zone was
tested by measuring its hardness on a ROCKWELL device at a load of 600 N and a ball diameter of
1/16". For welded joints of plastic alloys AMtsN and AMg2M, the microhardness of the metal was
measured using a PMT-3 microhardness tester with a load of 0.1 N. The microstructure of the welded
joints was studied using a MIM-8M optical microscope. Cross-sections of the compounds obtained by
AWNCE were preliminarily prepared by electrolytic polishing and their additional etching in a solu-
tion of perchloric, nitric, and hydrofluoric acids.
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The conducted experimental studies Table 2
Jevel, and srucural features of the Jomts Welding condition fo auminum allys 7]
obtained by fusion welding. It was estab- i __AWNCE
lished that during AWNCE of plastic low- ~ Alloy grade F'(lé‘:zremzf:)'al V,mh | 1,A | Q, I/min
alloyed aluminum alloys AMtsN and AMEN AM N’45 20 140 5
AMg2M, the minimum hardness occurs in AM ZM tsN (4.5+2.0) — 135 15
the metal, where the samples undergo ten- AMgSM A'\iﬁ’\i'\g(‘gi?'o) 8_2 140 15
sile fracture, and in welded joints of the g 95 (21.6)

o . AMg6M AMg6 (J1.6) 82 [130[ 15
AMg5M alloy the minimum hardness is in 1420 AMg63 (Z1.6) 82 130 20
the central part of the weld. Therefore, 1201 1281 @1 6') 82 145 15
samples without reinforcement are de- 1460 1460 (@1:6) 82 | 140 20

stroyed along the seam, and with amplifi-
cation, they are destroyed along the heat-
affected zone (HAZ).

It should be noted that the minimum values of metal hardness in the fracture zone of samples of
welded joints of alloys AMtsN and AMg2M obtained by both welding methods are approximately the
same, their tensile strength is at the level of 113 and 170 MPa, respectively (Table 3).

Table 3

Strength of welded joints of aluminum alloys obtained by various welding methods”

AWNCE
Alloy grade Reinforced Sample Non-reinforced Sample
o, MPa | Place of destruction | &,, MPa | Place of destruction
AMtsN 113 HAZ 113 HAZ
AMg2M 170 - 170 -
AMg5M 320 - 300 welding seam
AMg6M 345 fusion zone 324 -
1420 373 - 320 -
1201 296 - 239 -
1460 311 - 257 -

Only samples without reinforcement from AMg5M alloy obtained by AWNCE have lower (300
MPa) strength and are destroyed in the central part of the weld, where the metal is characterized by
minimal hardness. Therefore, structural changes in the weld metal and its fusion zones (FZ) with the
base metal occurring during fusion welding of these alloys. practically do not affect the strength of
welded seams.

So, when welding in the solid phase of the AMg6M alloy, the formation of fine grains in the weld
leads to its strain hardening. Therefore, the destruction of such samples occurs according to the HAZ,
where the metal hardness is minimal, and the strength is at the level of 336 MPa.

Non-reinforced Samples obtained by the AWNCE method break down along the seam and have a
tensile strength of 324 MPa. The maximum strength (345 MPa) is characterized by reinforced speci-
mens, which are destroyed by tension along the welded joint of the base metal.

In thermally hardened alloys (1420, 1201, and 1460), the solid solution is in a supersaturated
state. Therefore, because of thermomechanical action in the welds, besides grinding the grains, there is
a softening of the metal, because of the release of excess intermetallic phases from the solid solution
and their coagulation. Small hardening phases in the weld core are partially dissolved, and large low-
melting intermetallic inclusions are partially melted, forming a new solid solution.

" The average values of the indicators according to the test results of three to five samples are given
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In the welded seams of such alloys obtained by AWNCE, the minimum hardness of the metal is
observed in the central part of the welds, where the samples are destroyed without reinforcement [7].
Here, the difference in strength substantially depends on the chemical composition of the alloy being
welded. So, if for alloy 1420 it is only 22 MPa, then for alloys 1460 and 1201, respectively, 52 and 71
MPa. This is because of the peculiarities of the formation of seams with AWNCE.

The formation of a compound in the solid phase because of the movement of plasticized metal in
a limited volume at an over-pressure contributes to grain refinement, an increase in the volume frac-
tion of boundaries and crushing of intermetallic phases.

The samples with reinforcement obtained by AWNCE are always destroyed along the weld zone
of the base metal and have higher strength than the samples without reinforcement, which are de-
stroyed by the weld metal.

Strain hardening of seams occurring in high-strength complex alloyed aluminum alloys AMg6M,
1420, 1201 and 1460 obtained by AWNCE helps to reduce their strength.

Grinding of grains, an increase in the volume fraction of their boundaries and crushing of inter-
metallic phases in the joints at AWNCE. Aluminum alloys help to reduce their softening.

Conclusions

As a result of the research, methods for solving the scientific and technical problem are proposed,
which consist in establishing design dependencies for determining the influence of hereditary defects
formed in welded joints of structures on their crack resistance and creating technological requirements
for the welding operation, taking into account accumulated damage and heterogeneities. The following
tasks were solved:

1. The mechanism of the formation and development of defects such as cracks in welding joints
of functionally gradient materials under the influence of thermomechanical phenomena accompanying
the manufacturing technology and operation of structural elements is studied.

2. Mathematical models have been developed that describe the mechanical processes in the weld
of structural elements, taking into account heterogeneities that affect the formation of cracks, which
helps to reduce the bearing capacity of such elements.

3. The adequacy of the constructed model was checked on high-strength complex alloyed alumi-
num alloys obtained by argon-arc welding with a non-consumable electrode.
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