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We consider an inelastic scattering of protons within the simplest real scalar model ϕ3 (phi-cubed).
Although this model has been studied for a very long time, the problem of accounting for the interference
contributions for all the possible particle multiplicities observed in experiments is not solved yet. We
propose a method which is based on grouping of the interference contributions into sets in such a way that
the sum of all interference contributions of each particular set can be calculated with Laplace’s method.
This approach allowed us to calculate all the interference contributions to the cross sections for
multiplicities up to n ∼ 50 at the energy

ffiffiffi
s

p
∼ 50 GeV. The obtained models of the energy dependence

of the total pp scattering cross section and the inclusive rapidity distribution are in qualitative agreement
with the experiment. We also consider the well-known effect of the energy dependence of the shape of
inclusive rapidity distribution and propose an explanation for this dependence and consider it exactly as the
interference effect.

DOI: 10.1103/PhysRevD.101.076021

I. INTRODUCTION

When calculating the cross sections of inelastic proton
scattering within the multiperipheral model [1,2], it is
common to make an assumption that the multi-Regge
region [3–7] makes a main contribution to the multidi-
mensional integrals. According to this assumption, the
produced particles are strongly ordered in rapidity. The
Reggeization approaches [1,2,6,8] use approximations
based on this assumption, resulting in the wide variation
of the energy-momentum within the integration domain
(see the last section in Ref. [9]). At the same time, it is
possible to specify, without any assumptions, the integra-
tion domain which makes a main contribution to the
multidimensional integrals for the scattering cross section.
It has been shown (see [9–14]) that the squared modulus of
the multiperipheral diagram contribution to the scattering
amplitude has quite a distinct conditional maximum given
that the energy-momentum law is satisfied. This maximum
point may be found either using any numerical method or
analytically within a certain approximation [10]. Then one
may use Laplace’s method [15] to calculate the integrals for
the cross sections. The main contribution to the cross-
section integral is made by the neighborhood region of the

maximum point; according to Laplace’s method, this region
is determined by the second derivatives of the logarithm of
the integrand at the maximum point. This region is also
very different from the multi-Regge one, since it does not
force the produced particles to be strongly ordered in
rapidity. In particular, when the energy

ffiffiffi
s

p
is close to the

threshold energy for production of the n secondary par-
ticles, all the rapidities at the maximum point are approx-
imately equal and close to zero; moreover, the distances
between the rapidities at the maximum point increase
logarithmically slowly [9] as the energy

ffiffiffi
s

p
grows and

decrease as the n grows. Consequently, the strong ordering
of the rapidities for a given multiplicity n may appear only
at the energies

ffiffiffi
s

p
such that the partial cross section of the

process with production of the n particles is almost zero.
An absence of the strong ordering of rapidities makes it

pointless to consider the multiperipheral diagrams without
considering the interference contributions (which represent
the various ways of joining of the identical particle lines to
the diagram [9,12]). Although the values of the interference
contributions may be small, their number is too large to be
neglected. Moreover, it has been shown (see [12]) that the
contribution from the ladder diagram is much smaller
compared to the sum of the other contributions. Each
interference contribution can be calculated quite easily with
Laplace’s method [9–14] even for the large number of
secondary particles n. However, it is problematic to account
for the large number of such contributions even for
numerical computations. Therefore, the objective of this
work is to propose an approximate calculation method
which would allow one to calculate the sum of all the
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interference contributions for the processes with a large
number of secondary particles (n ∼ 50).
The problem of accounting for the interference contri-

butions is considered in Ref. [16] and briefly in Ref. [17].
However, the physical meaning of our approach is sig-
nificantly different. In Refs. [16,17], the interference con-
tributions have been considered within the approximations
which are used in the Amati-Bertocchi-Fubini-Stanghellini-
Tonin (ABFST) model (see [1]), whereas our approach is
based on Laplace’s method (the difference is analyzed in our
previous paper [9]). Note that the assumption about the
strong ordering of rapidities is used implicitly in the ABFST
model (in order to simplify the integration limits in the
integral equation for the n-particle contribution to the
imaginary part of the scattering amplitude at zero four-
momentum transfer). In addition, in Ref. [16], a calculation
of the cross sections is considered only for the cases of the
small multiplicities of produced particles, where the simple
direct summation of all interference contributions is pos-
sible. However, the number of the interference contributions
increases rapidly (as n!) as the number of the secondary
particles n grows.
It is also necessary to emphasize the difference between

our approach and the known models like QGSJET [18] and
EPOS [19]. These models are based on the parton-ladder
and Pomeron exchange mechanism including Abramovskii-
Gribov-Kancheli cutting rules (see, e.g., [20,21]).
Consequently, they also use the assumption about the
dominance of the multi-Regge region. Using such an
assumption, one can easily calculate integration over
rapidities and obtain the well-known expression for cross
section sαðtÞ. The fact that we do not use such an assumption
in our approach leads to the necessity of considering the
complex rapidity dependence of the scattering amplitude.
Whereas in the mentioned models this dependence is not
considered, they do account for the interference contribu-
tions from the terms with the different positioning of
Reggeons relative to the diagram cut. However, they do
not consider the structure of the hadronic states within the
cut Reggeon. In contrast, in our work, we consider the
interference between the final states of the hadrons within
the single ladder. Since we do not rely on the mentioned
assumption, we do not consider such a ladder, in terms of
unitarity condition, as the cut Reggeon.
The Bose-Einstein correlations [22], or the correlations

between the four-momenta of the identity particles [23,24],
are almost the only interference effect discussed in the
literature describing the experiment. This effect is typically
considered in the context of the experimental determination
of the dimension of the secondary particle radiation region
[25–27]. A solution to this problem does not require a
detailed description of the dynamics of the inelastic process
[28,29]. At the same time, it is the dynamics that makes
the major difference between our model and the models
[30–37] which have been used for the description of the
interference effects. Let us discuss this difference.

The main problem when accounting for the interference
contributions within the proposed model is that the real-
valued integrands of different interference contributions
reach their maximum at different points. If all the inter-
ference contributions had a common single maximum
point, the sum of these interference contributions would
also have a single maximum at that point. In this case, one
could use Laplace’s method to calculate the whole sum of
the interference contributions rather than calculating each
contribution separately. Moreover, as we show below, in
this case the maximum of such a sum would become more
pronounced as n grows. As a result, accounting for the
interference contributions would not be a problem for an
arbitrarily large number of secondary particles. Meanwhile,
in our model, the different interference contributions have
different maximum points. Consequently, the sum of all
interference contributions may have multiple maximum
points depending on the energy

ffiffiffi
s

p
and the number of

secondary particles n. The number of these maximum
points may become so large that the time required for the
numerical calculations increases critically. Even when the
sum of all interference contributions has only a few
maxima, they can be not pronounced enough under certainffiffiffi
s

p
and n to limit to the quadratic terms in Laplace’s

method. It means that one should take into account the
higher-order terms in the Taylor expansion of the integrand
logarithm around the maximum point. By contrast, the
models considered in Refs. [30–34,38–41] assume that the
secondary particles are produced by independent sources,
and the Bose-Einstein correlations occur only when the
particles propagate from the source to the detector. In this
case, different interference contributions are the Fourier
transforms of the same function but at different points. As a
result, the different interference contributions reach the
maximum at the same point, which means that the
dynamics in these papers is fundamentally different from
the dynamics considered herein. The same is true for the
models in Refs. [31,34,35,37,41], in which the problem of
the field interacting with the fixed or random (Langevin)
source is considered instead of the dynamics of interacting
fields. In this case, the secondary particle momentum
distribution for an arbitrary number n of the secondary
particles is determined by the single function (i.e., by the
Fourier transform of the external source); thus, the different
interference contributions reach the maximum at the same
point. Such models also have an obvious problem asso-
ciated with the violation of the energy-momentum con-
servation law caused by space-time translation symmetry
breaking. The latter is evidenced by the fact that, according
to these models as well as to the models based on the multi-
Regge kinematics [42], the multiplicity of secondary
particles has a Poisson distribution [31]; thus, the particle
production processes [43] at different regions of the phase
space are independent of each other; consequently, the
probability of the production of an arbitrarily large number

O. POTIIENKO et al. PHYS. REV. D 101, 076021 (2020)

076021-2



of secondary particles is not zero. In addition, the models
with an external source imply source averaging with the
corresponding density matrix [33,44–47]. However, the
density matrix is actually postulated rather than determined
with the time evolution operator obtained within some
dynamical model.
From the above, one may conclude that interference

effects in the proton-proton scattering must be evident not
only in the measurement of the Bose-Einstein correlations,
but in any measured quantity. In this paper, we argue that
the energy dependence of the shape of inclusive rapidity
distribution [48–54] may be considered as an interference
effect. The experimental data for the inclusive rapidity
distribution are described by the different models [55–64],
which, however, do not take into account the interference
effects. The manifestation of the interference effects in the
inclusive pseudorapidity distribution is considered in
Refs. [34,39], though using the above-mentioned approx-
imations in which the different interference contributions
reach a maximum value at the same point. By contrast, in
this paper, we show that the behavior of the inclusive
rapidity (pseudorapidity) distribution shape under the
energy

ffiffiffi
s

p
growth is associated with the change of the

distances between the maximum points of the different
interference contributions. The mentioned difference
between the dynamics considered in this paper and the
one considered in Refs. [34,39] becomes apparent from the
comparison of the shapes of inclusive rapidity distributions
obtained within these models.
In order to focus on the problem of accounting for the

interference contributions, let us start with the simplest
model ϕ3. Note, however, that Laplace’s method can be
applied not only to theϕ3 diagrams but also tomore complex
dynamicmodels, as shown in Refs. [13,14,65]. Accordingly,
the problem of accounting for the interference contributions
will also take place within the more realistic models that
consider the rapidity dependence of the scattering amplitude.

II. LAPLACE’S METHOD, ϕ3 MODEL

We consider the so-called ladder diagrams for the
inelastic pp scattering within the real scalar ϕ3 model,
assuming that the masses of the secondary particles are
equal to the pion mass mπ . All the physical quantities used
in this work (four-momenta, masses, energies, etc.) are
nondimensionalized by the pion mass mπ .
Let Sn be the set of all possible permutations of

Nn ¼ f1; 2;…; ng. Each diagram of the form in Fig. 1 is
characterized by a corresponding permutation π ∈ Sn.
Assuming the one-line notation for the permutations,
πðiÞ denotes the index of the secondary particle which is
joined to the ith vertex in the corresponding diagram.
Each permutation π ∈ Sn specifies the diagram of the

form in Fig. 1 and, thus, represents an analytic expression—
the additive contribution to the scattering amplitude

anðP1; P2; P3; P4; pπð1Þ;…; pπðnÞÞ; ð1Þ

where P1 and P2 are the four-momenta of the colliding
particles in the initial state, P3 and P4 are the four-momenta
of the scattered particles in the final state, and
pπð1Þ;…; pπðnÞ are the four-momenta of the secondary
particles in the final state. According to the Feynman
diagram technique, the scattering amplitude Tn of the
considered process is the sum of all expressions an corre-
sponding to the elements of Sn:

TnðP1; P2; P3; P4; p1;…; pnÞ
¼

X
π∈Sn

anðP1; P2; P3; P4; pπð1Þ;…; pπðnÞÞ: ð2Þ

For convenience, we introduce the following notations. We
will consider the scattering process in the center-of-mass
reference frame using the right-hand coordinate system in
which z axis is codirectional with P1. Here the expressions
anðP1; P2; P3; P4; pi1 ;…; pinÞ depend on the real particles
four-momenta which satisfy the following equations:

ðPiÞ20 ¼ M2
i þ P2

i ;

ðpiÞ20 ¼ m2 þ p2i ; ð3Þ

whereMi is the mass of the ith incident particle in the initial
state and m is the mass of the secondary particle. The
components of P1 and P2 in the chosen reference frame are
ðP1Þx¼ðP2Þx¼0, ðP1Þy ¼ ðP2Þy ¼ 0, and ðP1Þz ¼ −ðP2Þz.
Thus, P1 and P2 can be uniquely determined by the single
quantity

ffiffiffi
s

p ¼ ðP1Þ0 þ ðP2Þ0—the total energy of the
colliding particles in the center-of-mass reference frame.

FIG. 1. Feynman ladder diagram within the ϕ3 model for the
inelastic 2 → 2þ n scattering process. The diagram is associated
with a permutation π ∈ Sn.
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Weuse the components ðpiÞx and ðpiÞy of four-momenta and
the rapidities yi of the secondary particles as the independent
variables which uniquely determine all the four-momenta
pi. The rapidities yi are determined from the following
expression:

ðpiÞz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpiÞ2x þ ðpiÞ2y

q
sinhðyiÞ: ð4Þ

Wealso introduce another two independent variablesPa
x and

Pa
y using the following expressions:

Pa
x ¼ ðP3Þx − ðP4Þx;

Pa
y ¼ ðP3Þy − ðP4Þy: ð5Þ

It follows from Eq. (3) and the energy-momentum con-
servation law that all the components of P3 and P4 can be
uniquely determined by specifying the

ffiffiffi
s

p
, Pa

x , and Pa
y and

all the yi, ðpiÞx, and ðpiÞy.
Finally, instead of 4ðnþ 4Þ variables (the arguments

of an), we have 3nþ 3 independent variables, so the
expression (1) may be rewritten as

anð
ffiffiffi
s

p
; y1;…; yn; ðp1Þx;…; ðpnÞx;

ðp1Þy;…; ðpnÞy; Pa
x; Pa

yÞ: ð6Þ
It is convenient to consider the introduced variables (exceptffiffiffi
s

p
) as the components of some vector X ∈ R3nþ2:

X ¼ ðy1;…; yn; ðp1Þx;…; ðpnÞx;
ðp1Þy;…; ðpnÞy; Pa

x; Pa
yÞ: ð7Þ

Finally, it is also natural to introduce the notation for
permutations of the components of X. To this end, to
each permutation π ∈ Sn we assign a linear operator
π̂∶R3nþ2 → R3nþ2, which can be defined as

π̂X ¼ X0 ¼ ðXπð1Þ;…; XπðnÞ;

Xnþπð1Þ;…; XnþπðnÞ;

X2nþπð1Þ;…; X2nþπðnÞ;

X3nþ1; X3nþ2Þ; ð8Þ
or the same: ðπ̂XÞinþj ¼ XinþπðjÞ for i ¼ 0…2 and
j ¼ 1…n, while ðπ̂XÞi ¼ Xi for i ¼ 3nþ 1 and 3nþ 2.
One can see that according to the definition (8) of π̂, we
associate the operator π̂2π̂1 with the composition of
permutations π1∘π2 such that

ðπ̂2π̂1XÞinþj ¼ ðπ̂1XÞinþπ2ðjÞ
¼ ðXÞinþπ1ðπ2ðjÞÞ ¼ ðXÞinþðπ1∘π2ÞðjÞ; ð9Þ

where π̂i is the operator associated with πi. Hence, using
the introduced notations, the expression (2) can be rewritten
in the following way:

Tnð
ffiffiffi
s

p
; XÞ ¼

X
π∈Sn

anð
ffiffiffi
s

p
; π̂XÞ: ð10Þ

Now let us consider the expression for the partial cross
sections σn of inelastic scattering and rewrite this expres-
sion using the notations introduced above:

σn ¼
ð2πÞ4
4n!I

Z
dP3

ð2πÞ32ðP3Þ0
dP4

ð2πÞ32ðP4Þ0
Yn
i¼1

dpi

ð2πÞ32ðpiÞ0

× δ4
�
P1 þ P2 − P3 − P4 −

Xn
i¼1

pi

�

× jTnðP1; P2; P3; P4; p1;…; pnÞj2; ð11Þ

where I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1P2Þ2 − ðM1Þ2ðM2Þ2

p
. First, we need to

integrate out the energy-momentum-conserving delta func-
tion in Eq. (11) and then change the variables of integration.
The Jacobian of the transformation and the multipliers
appearing as the result of delta function integration can be
included in the scattering amplitude Tn. This procedure is
described in detail in Ref. [9]. As a result, the integral (11)
takes the following form:

σnð
ffiffiffi
s

p Þ ¼ Rðn; ffiffiffi
s

p Þ
Z Y3nþ2

i¼1

dXijTnð
ffiffiffi
s

p
; XÞj2; ð12Þ

where Rðn; ffiffiffi
s

p Þ ¼ ð2πÞ4=4n!I.
Now, let us consider the problem of calculations of

multidimensional integrals of the form (12).

A. Calculation of the partial cross sections
within the ϕ3 model

Let us substitute the expression (10) for the scattering
amplitude Tnð

ffiffiffi
s

p
; XÞ in the expression of the partial cross

section (12):

σnð
ffiffiffi
s

p Þ ¼ Rðn; ffiffiffi
s

p Þ

×
Z Y3nþ2

i¼1

dXi

X
πk∈Sn

X
πl∈Sn

½a�nð
ffiffiffi
s

p
; π̂kXÞ

×anð
ffiffiffi
s

p
; π̂lXÞ�: ð13Þ

Note that one of the two sums over Sn in Eq. (13) can be
calculated by renaming the variables of integration:

σnð
ffiffiffi
s

p Þ ¼ Rðn; ffiffiffi
s

p Þn!

×
X
π∈Sn

Z Y3nþ2

i¼1

dXia�nð
ffiffiffi
s

p
; XÞanð

ffiffiffi
s

p
; π̂XÞ: ð14Þ

The summands in Eq. (14) are called the interference
contributions to the cross section. Each particular permu-
tation π specifies some interference contribution which can
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be represented by the so-called cut diagram (Fig. 2). The
way in which the vertices from both parts of a cut diagram
are linked is specified by the permutation π—according to
Eq. (14), the πðiÞ is the index of the vertex in the left part of
the diagram which is linked with the ith vertex in the right
part of the diagram. Each particular interference contribu-
tion can be calculated using Laplace’s method (see [9]).
This method allows one to easily calculate a multidimen-
sional integral provided its integrand has a single maxi-
mum point.
Indeed, it has been shown (see [9]) that the function

anð
ffiffiffi
s

p
; XÞ has the single maximum point Xð0Þ at fixed

ffiffiffi
s

p
:

Xð0Þ ¼ ðyð0Þ1 ;…; yð0Þn ; ðpð0Þ1 Þx;…; ðpð0Þn Þx;
ðpð0Þ1 Þy;…; ðpð0Þn Þy; Pað0Þ

x ; Pað0Þ
y Þ: ð15Þ

At the same time, the function anð
ffiffiffi
s

p
; π̂XÞ has the single

maximum point π̂−1Xð0Þ, where π̂−1 is the operator (8)
associated with permutation π−1 ∈ Sn inverse of π; there-
fore, the product a�nð

ffiffiffi
s

p
; XÞanð

ffiffiffi
s

p
; π̂XÞ also has a single

maximum point. As a result, Laplace’s method can be
applied to the calculation of the integrals in expression (14).
The calculation of the total cross sections with Laplace’s

method even within the simplest ϕ3 model allows one to
obtain the qualitative description of the experimental data
(see [9–14]). Moreover, we plan to use Laplace’s method to
calculate the cross sections within the multiparticle field
approach which is based on QCD (see [66,67]).
However, the number of the summands in (14) is n!,

which increases dramatically as the energy grows. It
becomes impossible to account all of them by calculating
each interference contribution separately. So we propose
the method which makes it possible to account all the
interference contributions for the processes with up to 50
secondary particles.

III. THE MAIN IDEA OF THE
PROPOSED METHOD

Let us consider a simple example to illustrate the main
idea of the proposed method. We say that the maximum
points of two functions, each having a single maximum
point, are close if the sum of these functions also has a
single maximum point. Let ϕaðxÞ ¼ exp ð−ðx − aÞ2Þ be the
function parametrized by the parameter a and has single
maximum point x ¼ a. Now let us consider the sum

gaðxÞ ¼ ϕ−aðxÞ þ ϕ−a=2ðxÞ þ ϕa=2ðxÞ þ ϕaðxÞ; ð16Þ

for different values of a, and the partial sums ψ−ðxÞ ¼
ϕ−aðxÞ þ ϕ−a=2ðxÞ and ψþðxÞ ¼ ϕa=2ðxÞ þ ϕaðxÞ. It is
easy to see that in the case of a ¼ 0 the function g0ðxÞ
has the single maximum point x ¼ 0. Then, the distances
between the maximum points of summands of gaðxÞ grow
with the parameter a. For the values of a in range ½0; 1�,
each of the functions gaðxÞ, ψ−ðxÞ, and ψþðxÞ has
a single maximum point, as can be seen in Figs. 3(a)
and 3(b). With further growth of a, the distances between
the maximum points of the summands ϕ of gaðxÞ become

FIG. 2. Cut diagram representing the interference contribution
associated with particular permutation π such that πð1Þ ¼ n,
πð2Þ ¼ 1;…; πðnÞ ¼ 2.

(a)

(c)

(b)

FIG. 3. Plot of the sum gaðxÞ for the different values of
parameter a: (a) a ¼ 0.5, (b) a ¼ 1.0, and (c) a ¼ 1.6. The
summands ϕaðxÞ are represented by the dashed lines, the partial
sums ψ−ðxÞ and ψþðxÞ by dot-dashed lines, and the total sum
gaðxÞ by the solid line. Note that the functions are normalized and
shifted vertically to avoid overlapping.
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so large that the single maximum of the function gaðxÞ
splits into two separate maxima [Fig. 3(c)]. At the same
time, the partial sums ψ−ðxÞ and ψþðxÞ still have the single
maximum points.
The similar effect may be observed for the scattering

amplitude Tnð
ffiffiffi
s

p
; XÞwith the energy growth at fixed n > 1.

The function Tnð
ffiffiffi
s

p
; XÞ has a single maximum at low

energies which then splits into a few separate maxima as
the energy grows. To show this, let us consider the features of
the maximum point Xð0Þ of the function anð

ffiffiffi
s

p
; XÞ. At this

point, the transverse components of the particles momenta

are equal to zero: ðpð0Þi Þx ¼ 0; ðpð0Þi Þy ¼ 0, Pa
x ¼ 0, Pa

y ¼ 0,
while the rapidities of the secondary particles form the
following arithmetic progression (see [9]):

yð0Þi ¼ yð0Þ1 − Δyði − 1Þ; where

yð0Þ1 ¼ n − 1

2
Δy;

Δy ¼
2

nþ 1
arcosh

� ffiffiffi
s

p
− n

2M

�
: ð17Þ

As seen from Eq. (17), yi ¼ −yn−i. Now consider the
expression for the scattering amplitude Tnð

ffiffiffi
s

p
; XÞ, i.e.,

the sum (10), taking into account the mentioned features
of Xð0Þ. As we have already shown in the previous section,
each summand of this sum [i.e., the function anð

ffiffiffi
s

p
; π̂XÞ] is

associated with some permutation π and reaches its maxi-
mum at the single point π̂−1Xð0Þ. The distance ρ between the
maximum points of two such summands (associated with π1
and π2) is defined by the following expression:

ρðπ̂−11 Xð0Þ; π̂−12 Xð0ÞÞ ¼ jΔyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

½π−11 ðiÞ − π−12 ðiÞ�2
s

: ð18Þ

Here we have taken into account that Xi ¼ 0 for
n < i < 3nþ 2. Given the fixed number of secondary
particles n, one can see from Eq. (18) that the common
difference jΔyj of the rapidity arithmetic progression tends to
zero as the energy

ffiffiffi
s

p
goes to the threshold value 2M þ n. In

this case, all the summands are close, so the whole sum (10)
has a single maximum point; it means that one can apply
Laplace’s method to calculate the integral (12), thus
taking into account all the interference contributions in the
simple way.
However, the jΔyj slowly increases as the energy grows,

and at some point the distances between the summands in
Eq. (10) become so large that the whole sum acquires
several maxima. In other words, the single maximum of the
scattering amplitude Tnð

ffiffiffi
s

p
; XÞ splits into a few separate

maxima as the energy grows. We have already faced the
similar effect for the one-dimensional function in the
beginning of this section. In this case, Laplace’s method
cannot be applied to the calculation of the integral (12),
since its integrand has several maxima. One could still
consider the sum (14) and calculate each interference
contribution with Laplace’s method, but this way it is
impossible to calculate all the interference contributions for
the processes with a large number of secondary particles.
The main idea of the proposed method of accounting for

the interference contributions is to apply Laplace’s method
not to each interference contribution separately, but to the
sums of the interference contributions whose integrands
have close maximum points. The integrand of such a sum
has a single maximum point, so the whole sum can be
calculated with Laplace’s method. Although the scattering
amplitude Tnð

ffiffiffi
s

p
; XÞ acquires several maxima as the

energy grows, we can split the sum (10) into subsums,
each having a single maximum point. To this end, we group
the neighboring vertices of the diagram into k groups. Then
we group all the permutations π ∈ Sn into subsets I1; I2;…
in such a way that any two permutations belong to the same
subset if and only if they specify the diagrams in which the
lines of the secondary particles are joined to the same
groups of the vertices regardless of the order within the
groups. So the diagrams specified by the permutations
belonging to the same subset Ii differ only in the order of
joining inside the groups of vertices. Therefore, according
to Eqs. (17) and (18), we expect the functions associated
with such diagrams to have close maximum points. Thus,
for each subset Ii, we consider the sum bið

ffiffiffi
s

p
; XÞ ¼P

π∈Ii anð
ffiffiffi
s

p
; π̂XÞ. For any given values of n and

ffiffiffi
s

p
,

we select such a number, and the sizes of the groups that
make each of the functions b1, b2;… have a single
maximum point. As a result, one can use Laplace’s method
to calculate the sum of the interference contributions
associated with each subset Ii ⊂ Sn rather than calculating
the interference contribution associated with each permu-
tation π ∈ Sn.

FIG. 4. Grouped vertices.
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Such an approach reduces greatly the number of calcu-
lations and allows one to account for all the interference
contributions for the processes with high production of the
secondary particles (up to 50 secondary particles at 72 GeV
at present). The specific implementation of the proposed
idea will be described in the next section in detail.

A. Grouping the vertices of the diagram

Let us group the neighboring vertices of the diagram in
Fig. 1 into the k groups (nonempty sets), each containing ni
vertices (Fig. 4). For this purpose, we consider the sequence
of sets G1; G2;…; Gk, each specifying a corresponding
group. The set Gi contains the indices of vertices that are
grouped into the ith group:

Gi ¼
�
ν ∈ Nnj

Xi−1
k¼1

nk < ν ≤
Xi

k¼1

nk

�
ð19Þ

for 1 ≤ i ≤ k, where ni is the number of vertices in the
ith group.
The lines of the secondary particles in the connected

diagram specified by a permutation π are distributed among
the groups of the vertices in some way depending on the
permutation. Thus, for any permutation π ∈ Sn we can also
consider the sets πðG1Þ; πðG2Þ;…; πðGkÞ, where πðGiÞ ¼
fπðνÞjν ∈ Gig is the set containing the indices of the
secondary particles which are joined to the vertices of
the ith group in the diagram specified by the permutation π.
It allows us to introduce the equivalence relation ∼ on the
permutations set Sn in the following way:

πi ∼ πj ⇔ ∀ l ∈ ½1…k�; πiðGlÞ ¼ πjðGlÞ; ð20Þ

which means that any two permutations πi and πj are
equivalent if they specify the diagrams in which the
external lines of the secondary particles are joined to the
same groups of the vertices regardless of the joining order
inside the groups (Fig. 5). As a result, the permutations set
Sn may be split into the equivalence classes ½π� ¼
fπi ∈ Snjπi ∼ πg. In other words, the introduced equiva-
lence relation ∼ provides the partition Sn=∼ of the under-
lying set Sn, where Sn=∼ is the quotient set of the
permutations set Sn by ∼; i.e., the set contains all the
equivalence classes [π]:

Sn ¼ ⋃
½π�∈Sn=∼

½π�: ð21Þ

Taking into account (21), the expression (10) may be
rewritten as

Tnð
ffiffiffi
s

p
; XÞ ¼

X
½π�∈Sn=∼

�X
πi∈½π�

anð
ffiffiffi
s

p
; π̂iXÞ

�
: ð22Þ

Now let us consider the auxiliary function Anð
ffiffiffi
s

p
; XÞ:

Anð
ffiffiffi
s

p
; XÞ ¼

X
e∈½ϵ�

anð
ffiffiffi
s

p
; êXÞ; ð23Þ

where [ϵ] is the equivalence class containing the permu-
tations equivalent to the identity permutation ϵ such that
ϵðiÞ ¼ i for all i ∈ ½1…n�. The maximum distance between
the maximum points of summands in Eq. (23) may be
significantly reduced compared to the summands of
Eq. (10) by increasing the number of groups k and
decreasing their sizes n1; n2;…nk. Therefore, for any given
values of n and

ffiffiffi
s

p
, one may select such a number of the

groups k and sizes of the groups n1; n2;…nk that make
function Anð

ffiffiffi
s

p
; XÞ have a single maximum point. It may

be shown that for any permutation πi ∈ ½π� there exists a
permutation e ∈ ½ϵ� such that πi ¼ π∘e, where π is the
representative (any member) of the class [π]; taking this
into account and also (9), let us represent the scattering
amplitude (22) in terms of Anð

ffiffiffi
s

p
; XÞ:

Tnð
ffiffiffi
s

p
; XÞ ¼

X
½π�∈Sn=∼

�X
e∈½ϵ�

anð
ffiffiffi
s

p
; êðπ̂XÞÞ

�

¼
X

½π�∈Sn=∼
Anð

ffiffiffi
s

p
; π̂XÞ; ð24Þ

where π̂ is the permutation operator (8) associated with the
representative of [π]. As a result, the integral (12) may also
be written in terms of Anð

ffiffiffi
s

p
; XÞ:

FIG. 5. Example of equivalent permutations πi and πj given
n ¼ 6, G1 ¼ f1; 2; 3g, and G2 ¼ f4; 5; 6g. Here πiðG1Þ ¼
πjðG1Þ ¼ f1; 3; 5g and πiðG2Þ ¼ πjðG2Þ ¼ f2; 4; 6g, which
imply that πi ∼ πj.

NEW METHOD OF ACCOUNTING FOR INTERFERENCE … PHYS. REV. D 101, 076021 (2020)

076021-7



σnð
ffiffiffi
s

p Þ ¼ Rðn; ffiffiffi
s

p Þ

×
Z Y3nþ2

i¼1

dXi

� X
½πi�∈Sn=∼

A�
nð

ffiffiffi
s

p
; π̂iXÞ

×
X

½πk�∈Sn=∼
Anð

ffiffiffi
s

p
; π̂kXÞ

�
: ð25Þ

One of the two summations in the integral (25) may be
calculated by renaming the variables of integration as was
done between Eqs. (13) and (14). Note that in this case the
number of the elements in the set of summation Sn=∼ is
n!=n1!n2!…nk!:

σnð
ffiffiffi
s

p Þ¼Rðn; ffiffiffi
s

p Þ n!
n1!n2!…nk!

×
X

½π�∈Sn=∼

Z Y3nþ2

i¼1

dXiA�
nð

ffiffiffi
s

p
;XÞAnð

ffiffiffi
s

p
; π̂XÞ: ð26Þ

Taking into account that the function Anð
ffiffiffi
s

p
; XÞ has a

single maximum point, Laplace’s method may be used to
calculate the summands of Eq. (26). The number of the
summands in Eq. (26), which is equal to jSn= ∼ j ¼
n!=n1!n2!…nk!, may be significantly reduced by selecting
the number of groups k such that k ≪ n. Each summand of
Eq. (26) can also be represented by the corresponding cut
diagram in Fig. 6. Hence, according to Eq. (26), it is
sufficient to consider only a single permutation from each
equivalence class [π] rather then all permutations of Sn in
order to calculate all the interference contributions to the
cross section σn. Moreover, we will show that there are
many similar summands in Eq. (26) which may be easily
calculated by the corresponding weight factors.
Let us consider a summand of Eq. (26) associated with a

class ½πi�. Then change the integration variables: X → êX,
where e is a permutation belonging to class [ϵ]. Note that

the function An is symmetric with respect to such a
transition: Anð

ffiffiffi
s

p
; êXÞ ¼ Anð

ffiffiffi
s

p
; XÞ:Z

dXA�
nð

ffiffiffi
s

p
; XÞAnð

ffiffiffi
s

p
; π̂iXÞ

¼
Z

dðêXÞA�
nð

ffiffiffi
s

p
; êXÞAnð

ffiffiffi
s

p
; π̂iêXÞ

¼
Z

dXA�
nð

ffiffiffi
s

p
; XÞAnð

ffiffiffi
s

p
; π̂lXÞ: ð27Þ

According to the definition of permutation operator (8), the
operator π̂l ¼ π̂iê is assigned to the permutation πl ¼ e∘πi.
It may be shown that the permutations πi and e may be
selected such that πi and πl ¼ e∘πi belong to the different
equivalence classes ½πi� and ½πl�. As a result, one can see
from Eq. (27) that there are two similar contributions to the
sum (26) associated with the different equivalence classes.
In other words, the definition of the function An implies

that both parts of the cut diagram in Fig. 6 are symmetric
with respect to the order of joining inside the groups of
vertices. Consequently, the permutations which establish
the same number of connections between the groups of
vertices differ only in the order of linking inside the groups
and, therefore, represent similar contributions to the sum
(26). To clarify this statement, let us consider the number of
connections mij between the ith group in the left part and
the jth group in the right part of the cut diagram (6)
specified by a permutation π:

mij ¼ jπðGiÞ ∩ Gjj; ð28Þ

where j · j denotes the number of elements in the set (i.e.,
the power of the set). In this way, each equivalence class [π]
may be characterized by a matrix m of size k × k whose
elements are defined by Eq. (28). If any two classes ½πi� and
½πj� are characterized by the same matrix m, then they
specify the equivalent cut diagrams, which means that they
correspond to similar contributions to the sum (26),
because one of these diagrams can be obtained from
another by rearranging the vertices inside the groups.
In order to consider all the unique summands of Eq. (26),

we consider the set M of all possible matrices m of size
k × k such that the sum of the elements of the ith row
(column) is equal to the number of vertices in the ith group:

M ¼
�
m ∈ Mk;kðNÞ∶

Xk
j¼1

mij ¼
Xk
j¼1

mji ¼ ni

�
: ð29Þ

Each matrix m represents a summand in Eq. (26). All the
summands similar to this one can be accounted by weight
factor Wm uniquely determined by the elements of the
matrixm. To calculate the summand specified by the matrix
m, one needs to link the vertices of the cut diagram in a way
specified by the matrix (Fig. 7). As a result, one obtains the

FIG. 6. Cut diagram in which the vertices of both parts are
grouped into k groups.
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permutation πm such that jπmðGiÞ ∩ Gjj ¼ mij, which
makes it possible to calculate the summand associated
with the class ½πm�. The weight factor Wm may be
calculated by counting the number of different equivalence
classes [π] characterized by the same matrix m. The
number of such classes is equal to the number of all
possible ways in which one can group the elements of the
sets G1; G2;…; Gn into k sets G0

1; G
0
2;…; G0

k such that
jGi ∩ G0

jj ¼ mij, where i; j ∈ ½1…k�, so that each set G0
j

contains exactly mij elements from the set Gi:

Wm ¼
Yk
i¼1

ni!Q
k
j¼1mij!

: ð30Þ

Finally, the expression for the partial cross section may be
rewritten as

σnð
ffiffiffi
s

p Þ ¼ Rðn; ffiffiffi
s

p Þ n!
n1!n2!…nk!

×
X
m∈M

Wm

Z Y3nþ2

i¼1

dXiA�
nð

ffiffiffi
s

p
; XÞAnð

ffiffiffi
s

p
; π̂mXÞ:

ð31Þ

Note that the number of summands in Eq. (31) may be
much smaller compared to the sum (11). At the same time,
Laplace’s method may be used to calculate each particular
summand of the sum (31).
It remains now to consider in detail all the components

necessary to apply Laplace’s method within the proposed
approach for the calculation of interference contributions.
First, we consider the feature of the maximum point of

the function Anð
ffiffiffi
s

p
; XÞ. We have already mentioned the

features of the maximum point of anð
ffiffiffi
s

p
; XÞ in Sec. III.

Since the function anð
ffiffiffi
s

p
; XÞ grows as ðp⊥Þi → 0 and

Pa⊥ → 0, the function (23) reaches the maximum value at a
point χð0Þ where ðp⊥Þi ¼ 0; i ¼ 1…n and Pa⊥ ¼ 0; so

χð0Þi ¼ 0 for n < i ≤ 3nþ 2.

As we mentioned above, we group the vertices of the
diagram in a way for the function Anð

ffiffiffi
s

p
; XÞ to have a

single maximum point. Taking also into account that
Anð

ffiffiffi
s

p
; êXÞ ¼ Anð

ffiffiffi
s

p
; XÞ for any e ∈ ½ϵ�, one can conclude

that

êχð0Þ ¼ χð0Þ ð32Þ

for any e ∈ ½ϵ�. This important feature of χð0Þ allows one to
calculate the value of function An together with its second
derivatives at the maximum point in a simple way:

A0
n ¼ Anð

ffiffiffi
s

p
; χð0ÞÞ ¼

X
e∈½ϵ�

anð
ffiffiffi
s

p
; êχð0ÞÞ

¼
�Yk

i¼1

ni!

�
anð

ffiffiffi
s

p
; χð0ÞÞ: ð33Þ

Let us consider the first n components of the vector of
derivatives ∂An=∂Xi of An at the maximum point χð0Þ

assuming that χð0Þ satisfies Eq. (32). We denote these
components by ∂An=∂yi:

∂An

∂yi ð
ffiffiffi
s

p
; χð0ÞÞ ¼

X
e∈½ϵ�

∂an
∂ye−1ðiÞ ð

ffiffiffi
s

p
; êχð0ÞÞ

¼
Q

k
j¼1 nj!

ngðiÞ

X
j∈GgðiÞ

∂an
∂yj ð

ffiffiffi
s

p
; χð0ÞÞ; ð34Þ

where gðiÞ is the index of the group containing the index i
(so that i ∈ GgðiÞ) and e−1 is the inverse permutation of e,
i.e., such that e−1∘e ¼ ϵ. The derivatives ∂An=∂ðpxÞi and∂An=∂ðpyÞi are calculated in the sameway as ∂An=∂yi. For
the last two components of ∂An=∂Xi, we have

∂An

∂Xi
ð ffiffiffi

s
p

; XÞ ¼
Yk
j¼1

nj!
∂an
∂Xi

ð ffiffiffi
s

p
; XÞ; ð35Þ

where i ¼ 3nþ 1; 3nþ 2.
The matrix of the second derivatives ∂2An=

∂Xi∂Xjð
ffiffiffi
s

p
; χð0ÞÞ may be split into blocks with respect

to the variables: yi and ðpxÞx, ðpxÞy. Then each block may
be considered separately. Let us start with the block
containing the derivatives ∂2An=∂yi∂yjð ffiffiffi

s
p

; χð0ÞÞ which

we denote briefly by Dð0Þ
ij :

Dð0Þ
ij ¼

X
e∈½ϵ�

∂2an
∂ye−1ðiÞ∂ye−1ðjÞ ð

ffiffiffi
s

p
; êχð0ÞÞ: ð36Þ

In order to calculate the sum (36), we denote the derivatives

∂2an=∂yi∂yjð ffiffiffi
s

p
; χð0ÞÞ by dð0Þij and consider the following

cases keeping in mind that χð0Þ satisfies Eq. (32).

FIG. 7. The number of the connections mij between the groups
in the cut diagram specified by some permutation π.
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(1) gðiÞ ¼ gðjÞ and i ¼ j:

Dð0Þ
ij ¼

Q
k
l¼1 nl!
ngðiÞ

X
i1∈GgðiÞ

dð0Þi1i1
; ð37Þ

(2) gðiÞ ¼ gðjÞ and i ≠ j:

Dð0Þ
ij ¼

Q
k
l¼1 nl!

ðngðiÞ − 1ÞngðiÞ
X

i1 ;i2∈GgðiÞ
i1≠i2

dð0Þi1i2
; ð38Þ

(3) gðiÞ ≠ gðjÞ:

Dð0Þ
ij ¼

Q
k
l¼1 nl!

ngðiÞngðjÞ

X
i1∈GgðiÞ
i2∈GgðjÞ

dð0Þi1i2
: ð39Þ

The rest of the blocks containing the derivatives ∂2An=
∂ðpxÞi∂ðpxÞjð

ffiffiffi
s

p
; χð0ÞÞ and ∂2An=∂ðpyÞi∂ðpyÞjð

ffiffiffi
s

p
; χð0ÞÞ

may be calculated in the same way as Eqs. (37)–(39).
Note that, according to Eqs. (37)–(39), all the mixed deri-
vatives ∂2An=∂yi∂ðpxÞjð

ffiffiffi
s

p
;χð0ÞÞ and ∂2An=∂yi∂ðpyÞj×

ð ffiffiffi
s

p
;χð0ÞÞ are equal to zero, since the derivatives ∂2an=

∂yi∂ðpxÞjð
ffiffiffi
s

p
; Xð0ÞÞ and ∂2an=∂yi∂ðpyÞjð

ffiffiffi
s

p
; Xð0ÞÞ are

equal to zero (see [9]).
Thus, we obtain all the components necessary to

calculate the sum (31) with Laplace’s method.

IV. RESULTS

We applied the proposed method within the ϕ3 model to
calculate the energy dependence of the pp scattering total
cross section and the inclusive rapidity distribution for
inelastic pp scattering. The models presented in Figs. 8
and 9 are obtained at the value of effective coupling
constant L ¼ 29 (the expression for L is the same as in
Ref. [9], p. 876). As we can see from Figs. 8 and 9, a
comparison with the experimental data shows that the
proposed approach allows us to obtain the theoretical
predictions that are in qualitative agreement with the
experimental data even within the simplest model. The
following expression has been used for the calculations of
inclusive rapidity distribution:

∂σincl
∂y ð ffiffiffi

s
p

; yÞ ∝
XNð ffiffi

s
p Þ

n¼1

Xn
i¼1

Z Y3nþ2

j¼1
j≠i

dXjjTnð
ffiffiffi
s

p
; XÞj2

				
Xi¼y

;

ð40Þ

where Nð ffiffiffi
s

p Þ is for the maximum available number of the
secondary particles (each having mass m) which may be
produced as the result of inelastic scattering at a fixed
energy value

ffiffiffi
s

p
.

It is of interest to consider the peak behavior in Fig. 9. At
low energies, one can observe the single peak at rapidities
(pseudorapidities) close to zero. However, this peak
becomes less pronounced and transforms into the so-called
rapidity plateau as the energy

ffiffiffi
s

p
grows. With further

energy growth, the plateau splits into the two separate
peaks at nonzero points located symmetrically about zero.
The effect described above may be explained by analyz-

ing the behavior of the maximum points of the scattering
amplitude absolute value jTnð

ffiffiffi
s

p
; XÞj2 with the energy

growth. Note that the function jTnð
ffiffiffi
s

p
; XÞj has the same

maximum points as Tnð
ffiffiffi
s

p
; XÞ, since the scattering ampli-

tude (10) within the ϕ3 model is the real-valued function,
except for the constant complex factor which may be
neglected:

Tnð
ffiffiffi
s

p
; XÞ ¼

X
π∈Sn

anð
ffiffiffi
s

p
; π̂XÞ: ð41Þ

Let us consider Eq. (41) at the values of energy close to
the inelastic threshold energy

ffiffiffi
s

p ≳ 2M þm. In this case,
according to Eq. (17), for any n ¼ 1;…; Nð ffiffiffi

s
p Þ, the

rapidities of the secondary particles yð0Þ1 ; yð0Þ2 ;…; yð0Þn at
the maximum point of the function anð

ffiffiffi
s

p
; XÞ are close to

zero. Thus, the summands in Eq. (41) have close maximum
points, so the function Tnð

ffiffiffi
s

p
; XÞ has the single maximum

point ζð0Þ. It means also that the single group (k ¼ 1) is
enough to make Eq. (23) the function Anð

ffiffiffi
s

p
; XÞ [which in

(a)

(b)

FIG. 8. The energy dependence of the total cross section of pp
scattering. Experimental data [68] (a) and the dependency
calculated with the proposed method taking into account all
the interference contributions for the diagrams with up to n ¼ 50
secondary particles (b). Mp is the proton mass.
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this case is identically equal to Tnð
ffiffiffi
s

p
; XÞ] have a single

maximum point. Taking this into account and also Eqs. (17)
and (32), one may conclude that ζð0Þ ¼ ð0;…; 0Þ. Hence,
the most probable inelastic processes at low energies are the
processes in which all the secondary particles have near-
zero rapidities; i.e., the mean value of the vector of
secondary particle rapidities at low energies is equal to
zero. As a result, the inclusive rapidity distribution has the
single pronounced maximum at zero.
The continuous growth of the energy

ffiffiffi
s

p
increases the

distances between the maximum points of the summands in
Eq. (41). As a result, the single maximum of Tnð

ffiffiffi
s

p
; XÞ

becomes less pronounced; i.e., the absolute values of
eigenvalues jλij of the Hessian matrix (with respect to y)

of the function Tn at the maximum point ζð0Þ decrease and
tend to zero. It means that the variances of the rapidities of
the secondary particles are increasing with energy growth
while the mean values remain zero. Accordingly, the single
maximum of the inclusive rapidity distribution transforms
smoothly into the so-called rapidity plateau.
The further energy growth makes the maximum points of

the summands in Eq. (41) move away from each other so
far that the single maximum of the Tnð

ffiffiffi
s

p
; XÞ observed at

lower energies splits into a few separate maxima. As a
result, the eigenvalues λi become positive, while the first
derivatives are still equal to zero, which indicates that there
is a local minimum of the function Tnð

ffiffiffi
s

p
; XÞ at the point

ζð0Þ. It means that, as the energy grows, the processes in
which the secondary particles have nonzero rapidities
become more probable than the processes in which all
the secondary particles have zero rapidities. Hence, the
maxima of the inclusive rapidity distribution move away
from zero. Moreover, the maximum points of the function
Tn are symmetrically distributed about zero due to the
symmetry of the considered physical system with respect to
the inversion of the collision axis. As a result, the maxima
of the inclusive rapidity distribution at high energies are
also symmetrically distributed about zero, which is in
agreement with the experiment.

V. CONCLUSIONS

We developed the method of accounting for the inter-
ference contributions to inelastic scattering cross sections.
Using this method, we obtained the models of energy
dependence of the total cross section and rapidity distri-
bution for the proton-proton scattering at energies up to
72 GeVand multiplicities up to 50. This model reproduces
the experimental data only qualitatively, which can be
explained by the fact that the modeling has been performed
within the ϕ3 (phi-cubed) model—the simplest dynamical
model with the scalar field.
The obtained results indicate that it would be appropriate

to use the proposed method with a more complex model,
for instance, with the multiparticle-fields model based on
QCD [66].
In addition, the idea of the proposed method allowed us

to analyze the energy dependence of the shape of inclusive
rapidity distribution and to propose the physical explan-
ation for this effect.
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(a)

(b)

FIG. 9. Rapidity (pseudorapidity) distributions in pp and pp̄
collisions at various center of mass energies. Experimental data
[50,69] (a). Rapidity distribution calculated with the proposed
method within the ϕ3 model (b). Here N denotes the maximum
number of the secondary particles for which all the interference
contributions are calculated.
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