
The 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
18-21 September, 2019, Metz, France

A Method of the Result Preparation
in Addition-Based Circuits

Oleksandr Drozd1, Anatoliy Sachenko2, Konrad Grzeszczyk3, Nadiya Vasylkiv2,
Julia Drozd1, Iryna Turchenko2

1 Odessa National Polytechnic University, ave. Shevchenko, 1, Odessa, 65044, Ukraine,
drozd@ukr.net, yuliia.drozd@opu.ua

2 Ternopil National Economic University, Peremoga Sq, 3, Ternopil, 46020, Ukraine,
as@tneu.edu.ua, nadiya.vasylkiv@gmail.com, itu@tneu.edu.ua

3 International Vision Machinery, VISORT Sp., J., Radom, 26-600, Poland, info@visort.pl

I. INTRODUCTION
The method of preparation of results is widespread under various names and without them. It is enough to pay attention

to various libraries, including IP-core library and library of the software, the prepared methods of its assessment .
The known component approach to creation of systems from the components taken “Off-The-Shelf” (OTS) including

components of commercial use “Commercial OTS” or COTS components and components for critical applications
“Critical OTS” or CrOTS components, is also implemented by method of preparation .

In the instrumentation and control safety-related systems ensuring functional safety of objects of the increased risk ,
scenarios and means of their realization for accident prevention and decrease in their consequences are prepared .

Fault tolerant decisions form a basis of functional safety, including the reconfigurable systems possessing a number of
the prepared configurations , and the multi-version technologies preparing a set of versions of calculation performance in
the solution of the same task for the purpose of opposition to common cause failure .

Besides, the prepared versions allow to raise a checkability of schemes and thus to reduce the risks connected with a
problem of the hidden faults .

The speed of search engines is provided with preparation of results too .
The method of preparation of results allows to accelerate process of obtaining result by parallelization of processes of

inquiry formation and preparation of a set of possible results.
An impression is originally made that the method of preparation of results is considerably labor-consuming. It is

possible to assume that the method can be effective only if the set of the prepared results is used for the choice of rather
large amount of the required results as it takes place in libraries. The case of the choice of one result seems unjustified from
a position of complexity in realization of a method what imposes restrictions in our models concerning its application in
circuitry for calculation of results when performing arithmetic operations.

However, application of a method of results preparation even for execution of basic arithmetic operation – addition
which plays the main role when performing all other arithmetic operations is known.

In this case the method of results preparation carries out the accelerated propagation of carry in the parallel multidigit
combinational fixed-point adder and is known as a method of carry precomputation in carry-selected circuitry. Its essence
consists in splitting the parallel adder into identical sections which, since the second, are duplicated for two cases of
receiving carry from an exit of the previous section: carry equal to zero, and carry equal to unit. All sections work at the
same time, and the sums calculated by the sections duplicating each other are preparations. The choice of the required sum
of result is carried out according to the calculated values of carry .

The method of carry-selected precomputation complicates the adder, but at the same time significantly reduces
operation time: the linear dependence of time on size of operands can be reduced to the level of logarithmic dependence.

The method of carry-selected precomputation is the basis for creation of adders, comparators, counters and other
similar arithmetical units in circuitry of the FPGA design which is carried out with the use of a modern CAD . Such
schemes are under construction in the LUT-oriented architecture of FPGA with the use of the next logical LE elements
which are adjusted on calculation of both sum and the carry of the full binary adder in the dynamic arithmetic mode. Carry,
as well as the sum, is calculated for two values of an input signal of carry. Further both versions of a signal of carry
propagate between the next logical LE elements by the prepared shortest ways .

FPGA of a chip are also preparations under projects, and results calculated on the programmed FPGA chip are
prepared in memory of the LUT units which are a part of the logical LE elements .

mailto:drozd@ukr.net
mailto:yuliia.drozd@opu.ua
mailto:as@tneu.edu.ua
mailto:nadiya.vasylkiv@gmail.com
mailto:itu@tneu.edu.ua
mailto:info@visort.pl

Use of the method of precomputation in realization of basic arithmetic operation on modern technologies of FPGA
design is an important argument in its advantage. Thanks to this method, arithmetic operations gain additional
development in FPGA projects .

At the same time, according to resource approach, models, methods and means develop from simple to real on the way
of structuring under features of the parallel and fuzzy natural world. Simple forms are initial exact and consecutive
representations (models) and possibilities (methods) of the person. Real forms are parallel and approximate .

The dominating development in parallel processing of approximate data and the corresponding improvement of its
hardware support in computer systems is shown on the example of personal computer evolution: from Intel 287/387
coprocessors of optional delivery to several floating-point pipelines in Pentium and several thousand such pipelines in the
graphic processor used for performance of parallel calculations with the use of CUDA technology .

As a rule, approximate data are represented and processed in floating-point formats where the approximate nature of
numbers is directly shown regarding mantissas .

Therefore, the purpose of this paper is distribution of a method of preparation of results on processing of approximate
data on the example of floating-point addition.

 Section II considers features in execution of floating-point addition. Section III describes a method of precomputation
of results in relation to circuitry realization of floating-point addition of numbers. Section IV shows results of simulation of
the floating-point adder designed on FPGA.

II. FEATURES OF EXECUTION OF FLOATING-POINT ADDITION
Floating-point addition of two numbers presented as AFP = aM 2A and BFP = bM 2B where aM and bM – mantissas, A

and B – exponents, is traditionally carried out by several consecutive steps .
The result SFP = AFP + BFP is represented as SFP = sM 2S by means of S exponent and sM mantissa which are

determined on steps 1 – 4 by the following formulas, respectively:

S = max(A, B); (1)
A* = S – A, B* = S – B; (2)

aM SHIFT = aM 2–A*; bM SHIFT = bM 2–B*; (3)
sM = aM SHIFT + bM SHIFT, (4)

where A* and B* are the leveling differences determining the size of shift of mantissas;
aM SHIFT and bM SHIFT are the shifted mantissas.

Let the size of a mantissa and exponent be equal to n and r, respectively. Calculations are carried out on FPGA with
the LUT-oriented architecture. The LUT unit is the generator of logic function of four variables and can work in the
normal and arithmetic modes with a delay τN and τA, respectively .

Then time of calculation of the sM mantissa can be estimated by the following formula:

TA = TA1 + TA2 + TA3 + TA4,

where TA1, TA2, TA3, TA4 are the delays in process of calculation of the sM mantissa by steps 1 – 4, respectively.
Similarly, complexity of the calculation scheme of the sM mantissa is beeing defined by quantity of the

NA1, NA2, NA3, NA4 LUT units used on each step 1 – 4: NA = NA1 + NA2 + NA3 + NA4.
The TA1 delay consists of comparison time of the exponents A, B and the choice time of the greatest of them.

Comparison is most expedited by subtraction in the arithmetic mode for time r τA + τN on r + 1 LUT units. The last
LUT unit is used for carry transfer from a chain of its accelerated propagation to normal LUT exit. The greatest
exponent is chosen for time τN by the parallel use of r LUT units. Thus, the step 1 is carried out for time
TA1 = r τA + 2τN with the use of NA1 = 2 r + 1 LUT units.

Sizes of shift are calculated, starting with the younger bit, by the formula (2). The younger bit is formed for time τN
after which the arithmetic shift along with calculation of the following bits of shift size begins to be carried out,
according to formula (3).

Therefore, the step 2 brings TA2 = τN delay and it is carried out with the use of NA2 = 2 r LUT units.
Operation of shift is carried out on one-digit multiplexors, each of which is implemented in one LUT unit. The

scheme of arithmetic shift executed on a step 3 contains r levels with n LUT units at each level. It determines TA3 = r τN
and NA3 = 2 r n.

The shifted mantissas are added on a step 4 with the use of NA4 = n + 1 LUT units for time TA4 = n τA + τN.
 The total number of LUT units and operation time of 1 – 4 steps are determined as NA = 2 r n + n + 4 r + 2 and

TA = (n + r) τA + (r + 4) τN, respectively.

The following steps in processing of a mantissa is determination of the direction and shift size of the sM mantissa for
normalization of result and performance of this operation.

Consecutive performance of all described steps leads to considerable addition time of mantissas. For reduction of
duration of a clock cycle in a pipeline system, the sequence of steps can be divided into several sections of the pipeline.

However, in case of performance of the accumulating addition, such system will accumulate several sums, for
example, the sums of numbers with odd and even numbers at division of the sequence of steps into 2 sections. Addition
of these sums will face the same problem of consecutive performance of steps.

Therefore, there is a need for reduction of floating-point addition time. Such acceleration of calculations can be
reached by application of a method of the results preparation.

III. FLOATING-POINT ADDITION WITH PRECOMPUTATION OF RESULTS
Method allows to carry out at the same time the processing of the exponents (steps 1 and 2) and addition of the

shifted mantissas (a step 4). The step 3 is in fact the choice of operands for performance of operation (4). This step can
be replaced with the choice of result (a step 5) from a set of the sums of mantissas with various situation from each
other, i.e. with shift on one, two, …, n – 1 positions, where n is size of a mantissa.

For accounting of all mutual provisions of mantissas, it is necessary to prepare 2n + 1 sums. In case of shift on n
positions, the sum is not calculated as it is equal to one of aM or bM mantissas. The number of the calculated sums is
equal to 2n – 1.

The choice of each bit of (n + 1)-digit result is carried out from 2n + 1 prepared sums.
We can estimate the expected complexity of the scheme in number of LUT units and time of calculations.
Steps 1 and 2 are carried out, as well as in the previous option, for time TA1+2 = r τA + 3τN with the use of

NA1+2 = 4 r + 1 LUT units.
Step 4: Calculation of 2n – 1 sums with the use of n-digit adders can be executed on NA4.P = (2n –

 1) (n + 1) LUT units for time

TA4.P = TA4 = n τA + τN.

The 5th step of choice of the prepared sums is carried out on multiplexors from two directions to one according to
the pyramidal scheme of their connection. Each multiplexor is implemented by one LUT unit. The pyramidal scheme of
the choice of one bit of result uses 2n LUT units. The step 5 is carried out for time TA5.P = (r + 1) τN with the use of
NA5.P = 2n (n + 1) LUT units.

The total number of LUT units and time of performance of 1, 2 and 4, 5 steps are determined as follows:

NA.P = 4 n2 + n + 4 r + 1;
TA.P = max(TA1+2, TA4.P) + TA5.P.

In view of that TA1+2 < TA4.P, as r << n, then TA.P = n τA + (r + 2) τN.
The method of preparation of results reduces time of calculations by ΔTA.P = r τA + 2 τN, when using

ΔNA.P = 2 n (2 n – r) – 1 LUT units in addition. Considerable complication of the scheme limits to use of such decision.
The efficiency of offered method can be significantly increased in case of partial preparation of results.
We suggest to prepare the sums only for two cases: A ≥ B and A < B.
Step 1. Difference A – B: its value SA – B and sign SSIGN are calculated in the two’s complement code. The S exponent

is chosen from the exponent A and B under control of the SSIGN sign.
Step 2. For mantissas bM and aM, two shifted mantissas b SHIFT and a SHIFT are prepared. For this purpose, the bM

mantissa is shifted arithmetically to the right (with loss of younger bits and filling of the released positions with the sign
bit) on a size SA – B. The aM mantissa is shifted arithmetically to the right at a size

 SB – A = (¬ SA – B) + 1. (5)

Performance of operations of inversion and incrementation in (5) does not demand complication of shift of the aM
mantissa in comparison with bM mantissa. Inversion of bits of the size SA – B at the address inputs of multiplexors is
compensated by renumbering of their information bits upside-down as it is shown in Fig. 1 for the one-digit
multiplexor.

Incrementation is considered by the shift of an initial mantissa on one position.
Step 3. Two sums sM 1 = aM + b SHIFT and sM 2 = bM + a SHIFT are prepared.
Step 4. The result of sM gets out of two versions of sM 1 and sM 2: sM = sM 1 and sM = sM 2 in case of SSIGN = 0 and

SSIGN = 1, respectively.

Time and quantity of LUT units for performance of steps 1 – 4 is estimated by the following sums:

TA.PP = TA1.PP + TA2.PP + TA3.PP + TA4.PP,
NA.PP = NA1.PP + NA2.PP + NA3.PP + NA4.PP.

The step 1 uses NA1.PP = 2 r + 1 LUT units, just as NA1. The delay TA1.PP = τN as the step 2 begins after calculation of
the younger bit of shift size SA – B.

The step 2 carries out in parallel two operations of arithmetic shift with delay TA2.PP = r τN on NA2.PP = 2 r n LUT
units.

The step 3 executes in parallel two operations of addition with delay TA3.PP = n τA + τN on NA3.PP = n τA + τN LUT
units.

The step 4 chooses result with delay TA4.PP = τN with the use of NA4.PP = n LUT units.
The total number of LUT units and time of performance of 1 – 4 steps are determined as follows:

NA.PP = 2 r n + 3 n + 2 r + 3;
TA.PP = n τA + (r + 3) τN.

The method with partial preparation of results reduces time of calculations on

ΔTA.PP = r τA + τN

when using ΔNA.PP = 2 (n – r) + 1 LUT units in addition.

IV. RESULTS OF SIMULATION
Design of the floating-point adder regarding performance of steps 1 – 4 was carried out with the use of a CAD of

Intel (Altera) Quartus II v. 13.0 SP1 Web Edition on a chip of FPGA Intel (Altera) Cyclone II EP2C35F672C6 for n =
15, r = 4 and n = 31, r = 5.

Calculated estimates show complication of the floating-point adder scheme by 15.0% and 14.6% in case of n = 15
and n = 31, respectively. Results of design determine estimates, close to that. The scheme becomes complicated by
16.0% and 14.9%.

Calculated values of TA and TA.PP and also results of simulation of operation time TA.E and TA.PP.E with the use of the
TimeQuest Timing Analyzer utility for the initial scheme of the adder and scheme with the partial preparation of results
are shown in table 2.

Calculated estimates show decrease of operation time from TA = 9.06 ns to TA.PP = 6.83 ns and from TA = 10.43 ns
to TA.PP = 8.10 ns, i.e. by 24.6% and 22.2% for n = 15 and n = 31, respectively.

Results of simulation show bigger time in comparison with calculations, but also confirm advantages of the offered
method in time which decreases from TA.E = 9.76 ns to TA.PP.E = 7.33 ns and from TA.E = 10.72 ns to TA.PP.E = 8.87 ns,
that is by 24.9% and 17.3%.

CONCLUSIONS
In this paper the method of preparation or precomputation of results which reflects trends of development of

computer engineering is considered.
Possibilities of this method are shown on reduction of operation time in FPGA implementation of the floating-point

adder.
Further researches are planned in the direction of development of the results preparation method for other arithmetic

operations and their on-line testing taking into account truncated execution of calculations and their residue checking .
The prospects of such researches are based that the arithmetic shift belongs to the truncated operations. Besides,

operands and results in on-line testing of approximate calculations are mantissas and their short check codes.
It promotes increase in efficiency of precomputation method which replaces operation of the choice of operands

with simpler operation of the choice of results.

	I. Introduction
	II. Features of Execution of Floating-Point Addition
	III. Floating-Point Addition with Precomputation of Results
	IV. Results of Simulation
	Conclusions

