
Sharing of Functional and Special Means in
Pipeline Floating-Point Systems with Strongly

Connected Versions
Oleksandr Drozd1, Igor Kovalev1, Myroslav Drozd1, Oleksandr Martynyuk1, Serhii Polozhaenko1

1 Odessa National Polytechnic University, ave. Shevchenko, 1, Odessa, 65044, Ukraine,
drozd@ukr.net, igoryan33@ua.fm, myroslav.drozd@opu.ua, anmartynyuk@ukr.net, sanp277@gmail.com

I. INTRODUCTION
The offered research lies on crossing of two important directions in development of computer systems:
• the multi-version technologies which are aimed at increase in functional safety of critical applications;
• processing of approximate data in the floating-point formats reflecting a tendency to growth of the importance

of approximate calculations, in particular, in processing of measurement results which are initial data in the safety-related
systems.

Multi-version technologies belong to advanced fault tolerance decisions. They play an important role in ensuring
functional safety of the instrumentation and control safety-related systems and their objects of control which are
characterized by the increased risk of operation.

Powerful power supply systems belong to them: power plants and power grids and also aircraft and land high-speed
transport, different types of arms and spacecrafts.

Multi-version systems offer several versions of the solution of the same task, for example, a majority voting system
which channels are developed with the use of various types of a diversity aimed at providing various reaction of versions
to the same failures. Channels can be developed by various teams with the use of various tools. Such approach allows to
detect and parry common cause failures, including design errors and also to reduce a set of the hidden faults which can be
accumulated in normal mode of safety-related systems and be shown in its emergency operation.

It should be noted that the initial majority voting system with three identical channels already is fault tolerant in
relation to fault in the scheme of one channel. This fault tolerance is reached thanks to the natural version redundancy
based on natural types of a diversity. Channels cannot be made absolutely identical. They are already versions, and their
natural version redundancy is sufficient for obtaining the fault tolerant decision. The requirement to resist to common
cause failures is determined by the international standards which regulate norms for ensuring functional safety of
instrumentation and control safety-related systems and objects of the increased risk.

Problem of multi-version systems is their complexity which grows together with the number of versions and therefore
limits development of these systems. However, such complication of the multi-version systems is not their integral
property, as well as full mutual independence of versions. In the natural world multi-version systems show the inverse
property: versions are functionally connected among themselves.

For example, fingers of a hand are versions of each other, but is together functional more richly than each of them.
FPGA design raises a checkability of the scheme and trustworthiness of results when using several connected versions of
the program code.

In traditional multi-version systems, the possibility of parrying the common cause failures follows from maximum
mutual independence of all versions i.e. in each their couple. Independent versions are not dependent on the same fault.
In other words, if versions are independent, then the fault caused by the common reason is parried. Such definition of the
problem narrows a number of decisions as the purpose to parry this fault is changed to the purpose of obtaining
independent versions.

In fact, it is important to estimate as far as versions can be connected among themselves for parrying of common
cause failures. Such approach defines systems with strongly connected versions which refuse full independence of
versions and allow their general parts, for example, in residue number systems with detection and correction of errors.

Such systems contain k blocks. Each of them executes processing of numbers on their remainders of division on one
modulo of k of mutually simple modules. Any subset from k – 2 blocks provides functionality of a system, i.e. is its
version. Two more blocks allow to have two right versions in case of refusal of any one block. These versions allow to
find and exclude the faulty block from calculations.

Parrying of common cause failures in the connected versions is based on two conditions:

• the set of versions has to contain at least one right version, i.e. the version which is independent of fault;
• there has to be an acceptable method of finding of the right version.
The connected versions together have considerably smaller complexity in comparison with a set of the same, but

independent versions.
Modern computing systems are developed like pipeline. Their sections are the arithmetic units constructed on the

basis of the matrix structures made of uniform operational elements with regular connections. Examples of such
arithmetic units are parallel adders and shifters, iterative array multipliers and dividers which are close to the organization
of systems with strongly connected versions.

The safety-related systems including the cyber-physical and the Internet of things systems relating to critical
applications process the results of measurements received from sensors. Processing of these approximate data is carried
out in floating-point formats where numbers are represented with a mantissa and an exponent.

Interaction between them is carried out by means of operations of a denormalization of operands and normalization of
the results, as a rule, applied when performing each floating-point operation. Operations of normalization and a
denormalization are executed with the use of an arithmetic shifter of mantissa code.

One of the easiest ways of search of the right version consists in consecutive change of versions before emergence of
the required version. Identification of the right version is carried out by control of result with the use of on-line testing
methods.

In matrix structures of the arithmetic units transformed to the organization of systems with strongly connected
versions, change of versions is carried out with the use of cyclic shifters which position codes of operands and choose
codes of result.

Shifters of binary codes in circuits with matrix structures are rather complex arithmetical units which make a
considerable part of expenses of the equipment both in systems with strongly connected versions and in pipeline floating-
point systems.

Therefore, we offer researches on sharing of shifters in these systems. The main scientific contribution consists in
combining special means of the choice of the right version and functional means of processing of approximate data in the
systems of critical application.

Section 2 considers features of systems with strongly connected versions in relation to matrix structures of arithmetic
blocks on the example of the iterative array multiplier. Section 3 analyzes possibilities of joint realization of cyclic and
arithmetic shifter for the choice of the right version in the course of a denormalization of operands. Section 4 represents
results of experiments on combination of cyclic and arithmetic shifter at their design on FPGA.

II. FEATURES OF SYSTEMS WITH STRONGLY CONNECTED VERSIONS
We will understand as the version such smallest part of a system with strongly connected versions which can replace

a system in the absence of faults. Addition of the version is the rest of a system, independent of it.
The right version of a system exists at its one fault if additions of all versions are mutually independent and cover all

system.
Really in this case, fault of a system belongs to one addition which version is true.
We will consider the organization of a system with strongly connected versions on the example of the iterative array

multiplier which carries out multiplication of n-bit binary codes for one clock cycle and contains n of identical lines of
operational elements for multiplication of bits of a multiplier by the code of a multiplicand.

The matrix of the multiplier is complemented in one more line which connects to the last and first line, forming ring
structure with an excess line. This structure is complemented with elements of a rupture of a ring after each next line,
defining the next line superfluous. The excess line is addition for the version consisting of n of the previous lines. The
system excludes a faulty line from computation process if this line becomes superfluous.

The system contains a set of n + 1 versions which are in pairs connected by the general n – 1 lines. Their general
part Δ = 1 – 1 / n increases with growth of n, for example, Δ = 87.5% and Δ = 98.4% for n = 8 and n = 64, respectively.
At the same time, relative complication of a matrix regarding operational elements decreases on δ = 1/n part: δ = 12.5%
and δ = 1.56%.

Independence of additions, i.e. lines of a matrix, it is necessary to provide regarding the duplicated multiplicand bits
which create ways for propagation of an error between lines.

For this purpose, inversions of these bits come to inverse inputs of two AND elements consistently connected. The
first AND element executes logical multiplication of the bit of a multiplier and the main bit of a multiplicand. The
second AND element calculates conjunction of the received result on the duplicating bit of a multiplicand. Fault of one
of the duplicating inverse bits of a multiplicand can extend to other lines only at zero value. In this case in correct lines,
one AND element becomes the repeater. Other AND element calculates the correct conjunction of the bit of a
multiplicand on the bit of a multiplier.

It should be noted that the younger part of a matrix of conjunction of the product excluded from calculations in a
method of truncated multiplication shows faults in the form of the errors which are inessential for trustworthiness of
result.

When changing versions, the most part of a matrix estimated as ΔM = (n – log2n) / n appears on the place of its
younger part: ΔM = 84.4% and ΔM = 90.6% for n = 32 and n = 64, respectively.

On-line testing methods distinguishing essential and inessential errors, allow to mask the faults which are not
breaking trustworthiness of result.

The main complication of the multiplier in a system with strongly connected versions is associated with transition to
the following version which is provided with cyclic shift.

III. JOINT REALIZATION OF CYCLIC AND ARITHMETIC SHIFTERS
According to standards of a floating-point arithmetic, the M mantissa of the normalized number changes in all basic

and extended binary formats in the limits determined by inequality: 1 ≤ М < 2.
This inequality determines change ranges for mantissas of results in all operations with the normalized numbers.
Operation of multiplication of two normalized mantissas defines a MP product mantissa in limits: 1 ≤ MP < 4.

Normalization of result regarding the MP mantissa is carried out by its shift on one position to the right with loss of the
younger bit in case MP ≥ 2.

Operation of division of the normalized mantissas defines a MQ quotient mantissa in limits: 0.5 ≤ MQ < 2.
Normalization of result regarding a mantissa of MQ is carried out by its shift on one position to the left with filling of
the younger bit with zero or value of the sign in case MQ < 1.

Operation of addition or comparison of the normalized mantissas is carried out by alignment the exponents. If
exponents differ on L, then denormalization of the mantissa with a smaller exponent by shift on L positions to the right
with loss of the L younger bits is carried out. The L senior bits accept zero value or value of the sign.

The MA mantissa of addition result can be calculated in limits: 0 ≤ MA < 4. In case of MA ≥ 2, normalization is
carried out like result of multiplication, and by cyclic shift at 0 ≤ MA < 1.

We will consider joint performance of arithmetic and cyclic shift respectively on L and C positions to the right for
the most difficult case of a denormalization of a mantissa in operation of a floating-point addition.

Joint performance of arithmetic and cyclic shift of a n-bit M{1, …, n} mantissa where the bit M{1} is a senior, is
implemented in several steps.

Step 1. Auxiliary n-bit code H{1, …, n} containing zero and unit respectively in L younger and n – L senior bits is
formed. The bit H{1} is a senior. The i bit, i = 1, …, n, of this code accepts the value calculated by the following
formula: Hi = (i > L).

Then the code is divided into two parts:

H{1, …, n – L} = 2L – 1;
H{n – L + 1, …, n} = 0.

Step 2. The M0{1, …, n} code of mantissa with zero on the place of the younger lost bits is calculated with the use of
the AND operation for each bit by the following formula:

M0{1, …, n} = M{1, …, n} AND H{1, …, n}.

In this case, the code is divided into two parts which are determined as follows:

M0{1, …, n – L} = M{1, …, n – L};
M0{n – L + 1, …, n} = 0.

In case of filling of the released positions with value of the sign in the one’s or two’s complement code, the
MS{1, …, n} code of mantissa is calculated by the following formula:

MS{1, …, n} = M0{1, …, n} OR S AND ¬H{1, …, n},

where S = S{1, …, n} – the n-bit code made of values of the sign.
The step 3 is carried out along with steps 1 and 2 and consist in calculation of the following sum:

SL + C = (L + C) mod n,

where it is necessary to subtract n in case of L + C > n.
Step 4. The code of result of the joint shift operation is calculated by cyclic shift of M0{1, …, n} or the MS{1, …, n}

code, calculated on the step 2, on SL + C positions to the right.
We can estimate complexity of performance of the joint shift operation on FPGA with the LUT-oriented

architecture.
Let LUT generate function of four arguments.
Steps 1 and 2 are performed by implementation of functions no more than R + 1 or R + 2 arguments for calculation

of each bit of M0{1, …, n} or the MS{1, …, n} code, respectively, where R is a size of the L and C codes, R =]log2n[.
These arguments are no more than R bits of the C code, the bit of the M{1, …, n} code and the bit of the sign in case of
calculation of the MS{1, …, n} code.

We can expect use of n LUT units for calculation of M0{1, …, n} code for R ≤ 3 and the MS{1, …, n} code for
R ≤ 2 and also no more 2n LUT units for calculation of M0{1, …, n} or MS{1, …, n} code in case of 3 < R ≤ 7 or
2 < R ≤ 6, respectively.

 The complexity of performance of the step 3 can be estimated as 2R LUT units.
The cyclic shifter which is carrying out the step 4 completely coincides with an initial cyclic shifter on C positions

and coincides in complexity with an arithmetic shifter on L positions to the right. The cyclic shifter constructed of R
levels with n multiplexors from two directions to one in each level is implemented with the use of R n LUT units.

Thus, joint performance of arithmetic and cyclic shift can be executed with the use of 104 and 524 LUT units for
n = 16 and n = 64, respectively. The total complexity of two initial shifters is 128 and 768 LUT units. Schemes become
simpler for 23.1% and 46.6%.

IV. FPGA DESIGN OF ORIGINAL BLOCK
The scheme of joint performance of arithmetic and cyclic shift contains the original block which is carrying out

steps 1 and 2, and standard blocks of the adder and a cyclic shifter.
For the experimental evaluation of the suggested method in the Quartus Prime 18.1 Lite Edition CAD system, the

VHDL-projects of original block for n = 7, 15 and 31 have been implemented on Intel Max 10 FPGA
10M50DAF672I7G.

The designed scheme of original block for n = 7 and R = 3 is shown in Fig. 1.
This scheme contains 3-bit control input L{1, …, 3}, 7-bit Inpf{1, …, 7} input of 7-bit operand, 7-bit Outf{1, …, 7}

of 7-bit result output and n = 7 LUT units according to condition R ≤ 3.
In case of n = 15 and n = 31, the circuit consists of 23 and 55 LUT units accordingly. The experiment confirms

estimates of complexity of schemes regarding the proposed solution.

CONCLUSIONS
In this work, we offered a method of joint performance of arithmetic and cyclic shift. This method allows to

combine special means of search of the right version in the multi-version systems with strongly connected versions and
the functional means of interaction of a mantissa and an exponent in pipeline floating-point systems.

 Such combination is useful, considering the interrelation existing between multi-version systems and pipeline
floating-point systems. This communication consists in the general the field of use, important for them, as components
of the safety-related systems. Multi-version components resolve issues of functional safety of a system and an object of
the increased risk. Pipeline floating-point systems are a basis for realization the multi-version components as they carry
out pipeline processing of the approximate data obtained from sensors of the safety-related systems.

Cyclic and arithmetic shifters make a considerable part of the multi-version systems with strongly connected
versions and pipeline floating point systems. Their joint realization leads a component of critical application to
significant simplification.

The offered method adds a synergy factor to uniform realization of these systems.

	I. Introduction
	II. Features of Systems with Strongly Connected Versions
	III. Joint Realization of Cyclic and Arithmetic Shifters
	IV. FPGA Design of Original Block
	Conclusions

