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ABSTRACT

Skin cancer is the most prevalent type of cancer disease. The most of skin cancer deaths are caused by melanoma, despite being the
least common skin cancer. Early and accurate detection and treatment is the best healing, however detection of this type of
malignancy in the early stages is not obvious. Data-driven solutions for malignant melanomas detection can make treatment more
effective. Convolutional neural networks have been successfully applied in different areas of computer vision, also in the
classification of cancer types and stages. But in most cases, images are not enough to reach robust and accurate classification. Such
metadata as sex, age, nationality, etc. could also be applied inside the models. In this paper, we propose an end-to-end method for the
classification of melanoma stage using convolutional neural networks from an RGB photo and persons' metadata. Also, we provide a
method of semi-supervised segmentation of the region of melanoma appearance. From the experimental results, the proposed method
demonstrates stable results and learns good general features. The main advantage of this method is that it increases generalization and
reduces variance by using an ensemble of the networks, pretrained on a large dataset, and fine-tuned on the target dataset. This
method reaches ROC-AUC of 0.93 on 10982 unique unseen images.
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INTRODUCTION likely to be melanoma. If melanoma is caught early,
most of them can be cured with minor surgery.
Existing Al approaches have not adequately
considered this clinical frame of reference.
Dermatologists could enhance their diagnostic
accuracy if detection algorithms take into account
“contextual” images within the same patient to
determine which images represent a melanoma. If
successful, classifiers would be more accurate and
could better support dermatological clinic work.
Convolutional neural networks have been
successfully applied in different areas of computer
vision, also in the classification of cancer types and
stages. But in most cases, images are not enough to
reach robust and accurate classification. Such meta-
data as sex, age, nationality, etc. is also applied
inside the model [2]. Also, the way of preprocessing
is significant, e.g. sometimes it's important to
understand the contour of the lesion, and sometimes
only the texture matters [3]. The Skin Cancer

Skin cancer is the most widespread type of
human malignancy, and melanoma, specifically, is
responsible for most of the deaths. The worldwide
problem of melanoma incidence has risen rapidly for
the last 50 years and became a problem that a lot of
scientists from different countries trying to deal
with. This year an estimated 100350 adults (60190
men and 40160 women) in the United States are
expected to be diagnosed with invasive melanoma of
the skin, and around 70000 of them could be fatal.
Melanoma is the fifth most common cancer among
men and the sixth most common cancer among
women [1].

Similar to other cancer types, early and mild
stages are hardly distinguishable visually. Currently,
dermatologists evaluate every one of a patient's
moles to identify outlier lesions or that are most

© Tymchenko B. l., Marchenko P. O.,
Khvedchenya E. M., Spodarets D. V., 2020

Foundation gives simple guidelines for self-check,
which can be used in a computerized solution [3]:
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—Most melanomas are asymmetrical.

—Melanoma borders tend to be uneven and may
have scalloped or notched edges.

—Melanoma may have different shades of
brown, tan, or black. The colors red, white, or blue
may also appear.

—A lesion is the size of about 6 mm is a
warning sign

—Any change in size, shape, color, or elevation
may be a warning sign of melanoma.

Also, there are several works on multi-task
models of classification and segmentation [4-6].
However, all this models learned segmentation from
annotated datasets. Thus, we research a method for
learning segmentation only from binary annotated
dataset and without any additional info about
segments.

THE AIM

The aim of this work is to propose an end-to-
end method for the classification of melanoma stage
using convolutional neural networks from an RGB
photo and persons' meta-data, as well as to provide a
method of semi-supervised segmentation of the
region of melanoma appearance.

TASKS OF THIS WORK

Main tasks of this work are:

—to summarize the most influential works in
this field;

—to analyze available datasets for melanoma
classification;

—to implement a method for melanoma
classification and unsupervised segmentation;

—to test the developed method in the
experiment

ANALYSIS OF THE LATEST RESEARCH
AND PUBLICATIONS

Recent research in the field of automatic
malignancy detection is connected with state-of-the-
art deep learning approaches in image recognition,
there are much fewer works with classical machine
learning and handcrafted features. Here, we state the
most influential works in this field. For example,
Mustafa et al. [7] created an approach with manually
extracted features (GrabCut for lesion segmentation)
and trained SVM with a radial basis kernel to
discriminate cancerous lesions. Also, Nasiri et al. [8]
tried to augment images with different algorithms and
trained k-nearest neighbor models to solve the task.

CNNs have emerged to be one of the major
techniques for image classification in the last few
years since a large number of improvements have

been made. Also, many techniques train networks to
solve classification problems appeared and prove
their work on a lot of outstanding results. One of the
most popular techniques is transfer learning.

Brinker et al. [9] experimented with ImageNet
pretrained networks, such as ResNet-50, to classify
early stages of melanomas. 4204 biopsy-proven
images of melanoma and nevi (1:1) were used for
the training of a convolutional neural network
(CNN). Also, new techniques of deep learning were
integrated: differential learning rates, rather than the
same learning rate for all layers, reduction of the
learning rate based on a cosine function, stochastic
gradient descent with restart, to avoid local minima.

Codella et al. [10] proposed a system for the
segmentation and classification of melanoma from
dermoscopic  images of skin. For disease
classification, they employed an ensemble of recent
machine learning methods, including deep residual
networks, convolutional neural networks, etc. They
proved that ensembles are capable to perform better
results, than models separately.

Nasiri et al. [4] researched skin lesions
classification using deep learning for early detection
of melanoma in a case-based reasoning (CBR)
system. This approach has been employed for
retrieving new input images from the case base of
the proposed system DePicT Melanoma Deep-
CLASS to support users with more accurate
recommendations relevant to their requested
problem (e.g., an image of the affected area). Their
methodology derived from a deep CNN generates
case representations for case base to use in the
retrieval process. Integration of this approach to
DePicT Melanoma CLASS, significantly improving
the efficiency of its image classification and the
quality of the recommendation part of the system.

Research in the field of multi-task learning was
also performed by Song et al. [5]. They proposed
framework which can perform skin lesion detection,
classification, and segmentation tasks
simultaneously without requiring additional pre-
processing or post-processing steps.  Similar
work was done by Chen et al. [6], which used
multitask U-Net network for detection and
segmentation.

Yang et al. [11] proposed even harder multitask
model, which solves different tasks (e.g., lesion
segmentation and two independent binary lesion
classifications) at the same time by exploiting
commonalities and differences across tasks.

PROBLEM STATEMENT

In the recent research, multiple ways of the
classification and segmentation were presented.
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However, semi-supervised multi-task learning is not
researched together. Additionally, the usage of
person-level meta-data is insufficiently studied.
Besides, these researches do not investigate the
influence of data augmentations.

In our research, we address the problem of semi
supervised segmentation along with multi-task
learning. Additionally, we add patient’s level meta-
data to improve image representations and an
additional augmentation process, which is used on
the source images, as an efficient way to prevent
model from overfitting to the training data from
different distributions.

The dataset

The image data used in this research was taken
from several datasets with identical structures. We
use SIIM & ISIC datasets from 2017, 2018, 2019,
and 2020 years. These datasets were generated by
the International Skin Imaging Collaboration (ISIC)
and images were from the following sources:
Hospital Clinic de Barcelona, Medical University of
Vienna, Memorial Sloan Kettering Cancer Center,
Melanoma Institute Australia, The University of
Queensland, and the University of Athens Medical
School.

All these datasets consist of around 50000 RGB
images in total, from which around 3000 were
malignant. The dataset contains 434 duplicate
images. Besides the image data, meta-data about
patients were given. Images and meta-data were
provided in DICOM format, which is a commonly
used medical imaging data format. Also, the dataset
was available in JPEG format with images resized to
a uniform 1024x1024. Meta-data was also provided
outside of the DICOM format, in CSV files [12].

The tabular info was provided as follows:

1. image_name — unique identifier, points to
filename of related DICOM image;

2. patient_id — unique patient
(string);

3. sex — the sex of the patient (is blank when
unknown);

4. age_approx — approximate patient age at
time of imaging (integer);

5. anatom_site_general_challenge — location
of imaged site (string);

6. diagnosis — detailed diagnosis information
(string);

7. benign_malignant — indicator of malignancy
of imaged lesion (string, one of “benign” and
“malignant”);

8. target — binarized version of the target
variable (boolean).

Values for anatom_site_general_challenge are

identifier

taken from predefined finite set, so we encode it as
one-hot vectors.

Meta-data is available per patient, so different
images can have the same set of patient-level
features. We use all available meta-data, except of
patient_id and diagnosis, as they are available only
in training datasets.

The dataset has a high class imbalance. The
distribution of diagnoses is shown in Fig. 1. For the
diagnosis, unknown researchers guarantee that it is
not malignant [13].
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Fig. 1. Distribution of diagnoses in the dataset.
Notice the log scale

Additionally, there are differences between
train and test distributions of variables in meta-data.
Melanoma is found more frequently in older men.
Some images of the same patient are spread in time,
and others are not.

Depending on the cancer stage, the outlook of
malignant and benign lesions can be similar and
different. Early-stage melanoma tends to be almost
indistinguishable from benign lesions.

Image samples for benign and malignant
classes are shown in Fig. 2 and Fig. 3 respectively.

Due to different sources of images and different
imaging standards, they have structured noise in
form of linear bars, regions marked with a pen,
centering lines, etc. Depending on a site of neoplasm
and gender, hairline could be also be observed. All
of these additions could make a significant influence
on the training process and may lead to overfitting,
so it became an additional challenge to make models
robust to it.

Train-validation data splitting

In this dataset, there are multiple factors, which
can lead to the leakage of the diagnosis from the
training subset to the validation subset while
training. It can lead to overoptimistic results, along
with the poor ability to generalize to the unseen data.
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Fig. 3. Samples of malignant lesions

Here, under leakage we understand factors,
which are spuriously correlated with diagnosis but
have no causal relationship to it. E.g. images from
the same patient can have similar visual features
(hair type, skin color, etc.), or the number of images
per patient can reveal information about the
diagnosis process, that will not be available at the
testing time.

We use a triple-stratified leak-free K-Fold
cross-validation scheme [14]:

1. remove duplicate images;

2. isolate images from the same patient within
a single fold;

3. balance folds to have the same distribution
of malignant to benign images (1.8 %);

4. balance folds by the number of images per
patient.

This method provides a more reliable cross-

validation scheme, which is especially important
when using models ensemble.

Evaluation metric

In this research, we used the area under the
ROC curve [15] as our main metric. This metric is
widely used by many researchers for binary
classifiers. Also, in medicine, ROC analysis has
been extensively used in the evaluation of diagnostic
tests. The output of a binary classifier is interpreted
as a probability distribution over the classes. Objects
with an output value greater than 0.5 are assigned to
the positive class in a binary classifier and objects
with an output value less than 0.5 are assigned to the
negative class. But according the ROC-AUC
approach, the threshold used for classification
systematically varies between 0 and 1, and the
sensitivity and specificity are determined for each
selected threshold. The ROC curve is calculated by
plotting the sensitivity against 1-specificity and can
be used to evaluate the classifier. The further the
ROC curve deviates from the diagonal, the better the
classifier. As a single value of classifiers quality,
area under curve is calculated.

MULTI-TASK LEARNING

Multi-task learning is an approach to inductive
transfer that improves generalization by using the
domain information contained in the training signals
of related tasks as an inductive bias. It does this by
learning tasks in parallel while using a shared
representation; what is learned for each task can help
other tasks be learned better [16].

Here, we research multi-task learning for two
tasks — classification and segmentation of the lesion.

Network architecture

In this research, we focus on the lesion
classification. Presented neural networks are based on
the conventional deep CNN architecture. As training
deep CNNs from scratch is computationally
expensive, we utilize inductive transfer from
Imagenet-trained convolutional neural networks [17].

To concentrate the attention of CNN on the
lesion itself, we use two branches: for classification
and segmentation. We use same two-branch
classification CNN structure as [18] (Fig. 4),
replacing attention gating with the separate
segmentation branch.

During training and inference time, we use the
segmentation branch both as an attention mask for
classification [19], and as a separate segmentation
output. We utilize ImageNet-trained encoder as is,
connecting segmentation decoder and the classifier
to its last convolutional layer.
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Fig. 4. General two-branch CNN structure

Meta-data usage

To incorporate meta-data into the model, we
add separate encoder for meta-data along with the
image encoder and concatenate representations from
both encoders. Binary and string parameters are
encoded as one-hot vectors, while numerical
parameters are left as is. Then, all representations
are concatenated into a single vector M;,,.

For the meta-data encoder, we use a single
linear layer with ReL U activation.

Let M;, be normalized onehot-encoded meta-
data, F — features from image encoder, Wand bare
the weight and bias of the linear layer, respectively,
and @is the vector concatenation. Then,

M, = ReLU(WM,,, + b), )
V=M, DF. (2)

Here, V is a result vector which is passed to the
decoder and classifier. The structure of the
multimodal model is shown in Fig. 5.

—>» Encoder Decoder —>»

Input image
Mask

Classifier —»

Logits

Metadata
encoder

Input metadata

Fig. 5. CNN structure with meta-data encoder

Incorporation of meta-data into the model,
allows it to learn discriminative image features

better, than without meta-data. As meta-data is
correlated with diagnosis (e.g. sex and age), we
observe, that learning is improved, because the
image encoder does not use its capacity to infer
patient-level features from images. Thus, meta-data
creates a prior, which is then refined using image
features in decoders.

Unsupervised lesion region segmentation

During training, we use the segmentation
branch to refine classification.

We define classifier function as f¢jqssifier, and

mask decoder function as fsegmentation- L€t C and
M be the classification and segmentation result
tensors, respectively, and V is the encoder result
vector:

C= fclassifier W),
M = fsegmentation(V)-

We define refined segmentation mask as:
Mrefined =o(M)oC. (4)

(3)

Where ois the element-wise  matrix
multiplication,ois  the element-wise  sigmoid
activation function:

1
®)

771+ exp(—M)’
Where exp(—M)is the element-wise matrix
exponential function.

For a single image, classifier output C is a
single number, and the segmentation mask M and
refined segmentation mask My, fineq are matrices of
the shape [H, W], where H and W are height and
width of the decoder output.

To get refined classifier logits, we sum refined
mask matrix Myefineq and divide by the sum of
sigmoid of the segmentation mask M elements:

Z;-ll ZK/V Mrefined(hw)
Zlf-ll Zw o (th)

Then, Crefineq 1s a single number.

For a batch of images, the same calculations are
performed for every image in the batch. Graphical
representation is show in the Fig. 6.

The detailed architecture of decoders is shown
in Fig. 7. Here, encoders are image and meta-data
encoder. For image encoder, any pretrained CNN
can be used. In our experiments, we found, that
EfficientNet [20] models achieve the best
performance.

Crefined —

(6)
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Fig. 6. Network structure during training

Naturally, CNN learns to assign high values
(close to 1 after sigmoid activation) to regions with
lesions in order to propagate gradients for the
classification branch, while down-weighting regions
without lesions. This way, we can use this attention
map at the inference stage as a segmentation mask.

Additionally, samples with inconsistent
attention maps tend to be classified wrong, so it can
be a warning sign for doctors checking predictions
manually.

Preprocessing

Both model training and inference are done
with preprocessed versions of original images.

Because skin lesions are mostly in the center of
the image, we crop the central square of the original
image, and then resize it to the desired resolution,
depending on the receptive field of the encoder part
of the neural network.

To increase the contrast of lesions, we utilize
CLAHE [21] processing on cropped and resized
images.

Because skin lesions can be found in every
person, with different lighting, or on different skin
conditions, we apply data augmentation to increase
the variability of the dataset.

Image input

~
|

Metadata input

L
|

’ Encoders

|
L
/ \
GlobalAvgPooling | Dropout2D

¢ A4

Conv2D
BatchNorm1D BatchNorm2D
v RelLU
Dense v
\ 4 Conv2D
l Dropout | BatchNorm2D
\ 4 RelLU
Dense \ 2
| Conv2D |

Class output
Mask output

Fig. 7. The detailed architecture of decoders

Data augmentation

We used online augmentations, at least one
augmentation was applied to the training image
before inputting to the CNN. We used
augmentations from Albumentations [22] library:
horizontal and vertical flips; shift, scale, rotation;
shift of RGB channels; random changes of
brightness, contrast, and gamma.

Due to the way the dataset was collected, there
is a spurious correlation of diagnosis and zoom level
on the dermatoscope. To alleviate this correlation,
we use the Microscope [23] augmentation, which
adds a random black circle outline to the image of
the lesion. The example of the true and the
augmented images are shown in Fig. 8.

Fig. 8. Microscope augmentation [23]: original
and augmented images

Additionally, we use Cutout regularization [24]
to improve the robustness of CNN to partially
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covered or obscured with hair lesions. In order not to
accidentally obscure big parts of the lesion in the
image, we mask several small patches at random
instead of the single big one.

Training process

We utilize a single-stage training process,
which includes transfer learning and multi-task
learning.

Training is performed in a 3-fold cross-
validation scheme. The feature extractor is
initialized with noisy-student [25] trained weights.
In our experiments, we observed that this
initialization leads to consistently better results, than
Imagenet initialization.

We randomly resample the dataset at each
epoch to better capture the minority class and to
reduce training time. We downsample the majority
class (benign lesions) to match the number of
minority class (malignant). To match the source
distribution, we initialize the bias term of the last
layer of the model according to class imbalance
ratio.

During our experiments, CNNs were trained up
to 50 epochs with early stopping [26]. Training
stopped automatically in a range from 20 to 40
epochs. In this task, we used a Radam optimizer,
consistently better, than Adam [27] and SGD [28]
baselines.

We use cosine annealing learning rate schedule
to achieve a better any-time performance of our
CNNs [29].

During training, we monitor the distribution of
the classifier predictions for both classes separately.

To stabilize training, we use an exponential
moving average (EMA) for weights of the CNN
[30]. The validation curve for the ROC-AUC [15]
metric on a holdout test set for a single model is
shown in Fig. 9. We notice a similar improvement in
all experiments.

Loss functions

To train our models we used different loss
functions and their combinations. As we resample
the dataset to mitigate class imbalance, binary cross-
entropy loss is enough to achieve good classification
for the majority of samples.

However, we observed the situation when
benign and malignant melanomas looked quite
similar (e.g. amelanotic melanoma, where the
malignant cells have very little or no pigment at all),
so we opted to down-weight the influence of well-
classified examples and concentrate the optimization
process on hard examples.

0.925

0.915

0.905

ROC AUC

0.895

0 5 10 15 20 25 30 35 40 45 50

Epoch

Fig. 9. Validation curve with (orange) and
without (blue) EMA. Best viewed in color

Focal loss [31]

This loss focuses on training on hard examples
and prevents the vast number of easy negatives from
overwhelming the classifier during training. Focal
loss reduces the weight (or impact) the values CNN
predicted correctly, which often happens with the
majority class.

The focal loss could be calculated as follows:

FL(py) = —a;(1 —p)"log(py)- (7
Where
p: =p © y = l,otherwisep, =1 —p.

In our experiments we found that a =
0.25,y = 2 worked the best.

Online Hard Example Mining (OHEM) [32]

This loss back propagates only on hard examples,
which are drawn from the current state of the network.
Simply, we set the threshold for the per-sample loss
value and calculate the reduction function on samples,
which have greater loss than a defined threshold. We
also set a minimum number of examples to be selected
(in our experiments, the minimal number is half the
size of the batch). As a loss function here we used
binary cross-entropy with mean reduction.

Experimentally, we found that with small
batches (64 images), OHEM outperforms Focal loss;
however, with batches larger than 100 elements,
Focal loss outperforms OHEM.

Flood loss [33]

As deep neural networks overfit fast to the large
number of negative samples the training dataset, we
have to add regularization. Along with weight decay
and dropout, we use a direct solution called flooding
that intentionally prevents further reduction of the
training loss when it reaches a reasonably small
value, which we call the flooding level. This
approach makes the loss float around the flooding
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level by doing mini-batched gradient descent as
usual but gradient ascent if the training loss is below
the flooding level.

If the original learning objective is J, the
proposed modified learning objective J/1°°¢ with
flooding:

Jrteod =1](8) — bl + b, (8)

where b > 0 is the flooding level specified by the
user, and 8 is the model parameter.

With flooding, the model continues to random
walk with the same non-zero training loss, and we
expect it to drift into an area with a flat loss
landscape that leads to better generalization, which
is crucial in the melanoma classification task.

Inference

During inference, we resize testing images to
the size, on which models were trained. We trained
models with following image sizes: 256x256,
384x384 and 512x512.

Predicted masks are resized from their native
resolution, which can be from 16x16 to 64x64
depending on the encoder, to the resolution of the
input image using bilinear interpolation.

We utilize mask post-processing, test-time
augmentations and ensembling to achieve more
stable results.

Mask post-processing

Mask output from CNN is continuous. As we
train the mask segmentation branch in an
unsupervised fashion, we cannot directly predict the
range of the segmentation output. To alleviate the
calibration of the model predictions, we binarize the
mask using the Otsu threshold [34].

After the mask has been binarized, we apply a
morphological opening to reduce the number of
small false-positive regions.

Examples of the unsupervised segmentation for
malignant and benign lesions are shown in Fig. 10
and Fig. 11 respectively.

However, sometimes CNN fails to capture all
pixels to the consistent mask, especially with big or
uneven lesions. Such examples are shown in the
Fig. 12; Fig. 13 and Fig. 14.

We are going to address this issue in future
research.

Test-time augmentations

To reduce the variance of predictions, we
utilize test-time augmentations (TTA) [35]: we make
predictions on different changed versions of the
original images, and then average prediction results.

Fig. 10. Examples of segmentation for malign
lesions
Red — outline of the binarized mask, green —
bounding box around the mask. Best viewed in color

As pictures of lesions can be viewed from any
angle and with different illumination, we utilize the
following changes to each original image:

1. Original image;

2. Horizontal flip;

3. Vertical flip;

4. Transpose.

Which in total gives us an average of 16
predictions per single image. We use ttach — an
efficient implementation of TTA [36].

Ensemble

For the Kaggle competition [11], we used
predictions from models and setups from each fold
of cross-validation in the ensemble.

Additionally, we experimented with different
random seeds to get a more robust ensemble of
models [37]. For the final ensemble, we selected raw
predictions of low pairwise correlation from best
models according to ROC-AUC and applied sigmoid
activation to raw outputs. We merged all predictions
into one by taking the mean of sigmoid outputs.
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Fig. 11. Examples of segmentation for benign
lesions
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Fig. 12. Incomplete segmentation of the
malignant lesion

200 100 200 300 400 500

Fig. 13. Complete failure to capture the region
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Fig. 14. Failure case with inconsistent
regions in the mask

Our best ensemble consisted of the following
encoder architectures:

1. EfficientNet-B4 [20].

2. EfficientNet-B5 [20].

3. EfficientNet-B6 [20].

4. SE-ResNext 101 [38].

Additionally, selected models have different
training setups and head classifiers for output
features, which increases the accuracy and
robustness of the ensemble.

We used the Catalyst framework [39] based on
PyTorch [40] with GPU support. Evaluation of the
whole ensemble was performed on Nvidia V100
GPU in about 100 minutes, processing 4.5 seconds
per image with test time augmentation.

RESULTS

Our test stage was split into two parts: holdout
testing and final testing, which contained 10982
unseen images. For final test reliability, it was split
on 30 % of the public test, and rest 70 % was blind.
Such an approach helped us to check whether the
model works stable on unseen data.

Our best single model (EfficientNet-B5, OHEM
loss) scored 0.9304/0.9402 of ROC-AUC points.
The same model, trained without segmentation
branch reaches ROC-AUC scores of 0.9286/0.9372.
The same model, trained without meta-data input
reaches ROC-AUC scores of 0.9104/0.9253.

For comparison, ensembling with test time
augmentation performed better on the public and
blind test sets, as it has a better ability to generalize
on unseen images.

We tried several types of ensembling:

1) mean ensemble of raw outputs of the model,
which scored 0.9347/0.9497 of ROC-AUC points
blind/public test sets;

2) mean the ensemble of sigmoid outputs of the
model, which scored 0.9353/0.9511 of ROC-AUC
points blind/public test sets;

3) log-mean ensemble, which scored
0.9392/0.9492 of ROC-AUC points blind/public test
sets.
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In the Kaggle competition [11], our method was
ranked 420/1148 on blind/public test sets. The
method with rank 1/1148 in this competition scored
0.9490/0.9586 ROC-AUC.

Future work can extend our method with
modifications of segmentation head and more
accurate augmentations to decrease the influence of
noisy additional info (such as hair). Additionally, the
method can be extended with explicit filtering of
image features with meta-data features.

CONCLUSIONS

In this paper, we proposed an end-to-end
method for the classification of melanoma
malignancy using convolutional neural networks
from an RGB photo and persons’ meta-data. We
provided a method of semi-supervised segmentation

of the region of melanoma appearance, which also
improves results of classification by concentrating
attention of the lesion instead of its surroundings.

Segmented regions with melanomas could be
used as a preprocessing step, as cleaning
augmentation, or as an additional informative part
for classification.

The main advantage of this method is that it
provides solutions for the task of segmentation, even
if segmented training data is not provided. This
method can provide guidance to doctors and to
inform them, when the diagnosis should be clarified
manually. Besides, this method benefits from using
an ensemble of the networks, pretrained on a large
dataset, and finetuned on the target dataset
increasing generalization and reducing variance.
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AHOTANIA

Pak mkipu € HaiflOLIBII NOMIMPEHUM BHIOM OHKOJIOTIYHHMX 3aXBOPIOBaHb. BUTBIIICTH BUMAAKIB CMEPTi Bi paKy WIKipH CHPHYMHEHI
MEJIaHOMOIO, X04a I1e HaliMEeHII NOIIMPEHUH paK MKipu. PaHHE Ta TOUHE BUSBIICHHS Ta JIIKyBaHHS € HafKpalluM 3IJICHHSAM, OJHAK
BUSIBJICHHS LbOTO BHJY 3JIOSIKICHOI NMyXJIMHHM Ha paHHIX CTaisX HE € JIeTKMM. PimeHHs, 3aCHOBaHiI Ha JAHWX [UIS BHSBJICHHS
37I0SKICHUX MEJIAHOM MOXYTH 3pOOUTH JIiKyBaHHsS OiIbII €(eKTHBHUM. 3TOPTKOBI HEHPOHHI MEpPEXi YCIIIIHO 3aCTOCOBYIOTHCS B
pi3HHX 00JAaCTAX KOMI'IOTEPHOrO 30pYy, a TaKOXK y Kiacudikarii THIB Ta cTamil paky. Aje B OUIBIIOCTI BHIIAIKIB 300pa)keHb
HEIOCTaTHBO ISl TOCATHEHHA HaliiHO1 Ta TouHOi Kiacudikamii. Taki MeTagaHi, K CTaTh, BiK, HALlIOHATBHICTD TOIIO, TAKOX MOXKYTh
Oyt 3acTocoBaHi BcepenuHi mopenedl. Y wiif po6ori mm mpomoHyemo end-to-end merton ximacudikamii cramii MexaHOMH 3a
JIOTIOMOTOI0 3TOPTKOBHX HEHpOHHMX Mepex i3 ¢ortorpadii RGB Ta Meramanux mnamieHTiB. Takok MH IIPOIIOHYEMO METOJ
HaIliBaBTOMATHYHOTO HABYAHHSA CETMEHTalii o0iacTi HOBOYTBOpeHHA. Ha OCHOBI eKCIICpUMEHTAIbHHUX  pe3yJbTaTiB
3aIPONIOHOBAHUN METO]] AEMOHCTPYE CTaOUIbHI pe3ysbTaTH Ta BHBYAE O3HAKH, IO JOOpE ONMUCYIOTh HOBOYTBOPEHHs. I 01I0BHOIO
MepeBaro MbOr0 METOAY € Te, IO BiH 30UIbIIye y3araJbHEHHS Ta 3MEHIIYE IHCIEPCiI0, BUKOPHUCTOBYIOUHM aHCAMOIb MEpex,
MOTIEPE/IHFO HABUCHHUI Ha BEJIMKOMY HaOOpi JaHWX Ta JOHABYCHHUI Ha IiTbOBOMY HaOopi manux. Lleit meton mocsrac ROC-AUC
0.93 Ha 10982 yHiKaIbHUX HOBUX 300paKCHHSX.
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Pak xoxxu — HamboJiee pacrpOCTpaHEHHBIH BUJ OHKOJOTHMYECKUAX 3a00ieBaHHi. BONBIIMHCTBO cMepTell OT paka KOKH BBI3BaHBI
MeJaHOMO#, HECMOTpPs Ha TO, YTO 3TO HAHMEHEee PacHpOCTPAHEHHBII BHI paka Koxu. PaHHee n TouHOe OOHapyXeHHE U JeUCHHE -
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Pemenust Ha OCHOBE JaHHBIX JJIsI OOHAPYKCHUS 3JI0KAYCCTBEHHOW MENAHOMBI MOTYT CIHENaTh JiedeHue Oosiee d((EKTHBHBIM.
CBepTOYHbIC HEWPOHHBIE CETH YCICIIHO MPHUMEHSIOTCS B PA3NIUYHBIX O0JACTAX KOMIIBIOTEPHOTO 3pEHHs, a TaKXkKe IpH
KIIaCCU(UKAIMK TUIOB W cTanuii paka. Ho B OONBIIMHCTBE CilydacB M300paKCHUI HEIOCTATOYHO JUIs HAJCKHOW M TOYHOM
kiaccudukanuy. Takue MeTaJaHHbIe, KaK MOJ, BO3PACT, HALMOHAIBHOCTh U T.M., TAKKE MOTYT MPUMEHSITHCS BHYTPH Mojeseid. B
9TOHN cTaThe MBI mpemiaraem end-t0-end mMeron KiaccH(pUKAIUU CTaJH MEIAHOMBI C UCIIOJIF30BAHUEM CBEPTOYHBIX HEHPOHHBIX
ceteii Ha ocHOBe RGB-doTorpadguu u MeraaHHBIX ManueHTOB. Takke MbI MpeJIaracM METO] TIOTyKOHTPOIHPYEMOI CEerMEHTAIIUI
00J1aCcTH MOSIBICHUS MeNaHOMBL. [10 pe3ynbTaTaM 9KCIEePUMEHTOB MPearaeMblii METOI AEMOHCTPHPYET CTAOUIIbHBIC PE3YIIbTaThl U
M3ydaeT XOpOIIe MPU3HAKH Ha M300pakeHns1X. OCHOBHOE MPEUMYIIIECTBO 3TOTO METOJIa 3aKIF0YacTCsl B TOM, YTO OH YMCHBIIIACT
JIUCTICPCHIO 32 CUYET HCIIOJIb30BaHMUA aHCaMOJIS ceTeld, MpeJBapUTEIbHO 0OYUSHHBIX Ha O0JIBIIOM Ha0Ope JaHHBIX U J000YUCHHBIX Ha
eseBoM Habope JgaHHbIX. DToT Metos nocturact ROC-AUC 0.93 Ha 10982 yHHKATBHBIX H300paKCHHSX.

KiioueBbie cioBa:
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KIIacCH(UKAIMS H300pakeHHH, CerMeHTaIHs N300pakeHui
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