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ABSTRACT 

 
Skin cancer is the most prevalent type of cancer disease. The most of skin cancer deaths are caused by melanoma, despite being the 

least common skin cancer. Early and accurate detection and treatment is the best healing, however detection of this type of 

malignancy in the early stages is not obvious. Data-driven solutions for malignant melanomas detection can make treatment more 

effective. Convolutional neural networks have been successfully applied in different areas of computer vision, also in the 

classification of cancer types and stages. But in most cases, images are not enough to reach robust and accurate classification. Such 

metadata as sex, age, nationality, etc. could also be applied inside the models. In this paper, we propose an end-to-end method for the 

classification of melanoma stage using convolutional neural networks from an RGB photo and persons' metadata. Also, we provide a 

method of semi-supervised segmentation of the region of melanoma appearance. From the experimental results, the proposed method 

demonstrates stable results and learns good general features. The main advantage of this method is that it increases generalization and 

reduces variance by using an ensemble of the networks, pretrained on a large dataset, and fine-tuned on the target dataset. This 

method reaches ROC-AUC of 0.93 on 10982 unique unseen images. 
Keywords:  computer vision; convolutional neural networks; multi-task learning; skin cancer; image classification; image 

segmentation 
For citation: Tymchenko B. I., Marchenko P. O., Khvedchenya E. M. Classification of skin lesions using multi-task deep neural networks. 
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INTRODUCTION 
 

Skin cancer is the most widespread type of 

human malignancy, and melanoma, specifically, is 

responsible for most of the deaths. The worldwide 

problem of melanoma incidence has risen rapidly for 

the last 50 years and became a problem that a lot of 

scientists from different countries trying to deal 

with. This year an estimated 100350 adults (60190 

men and 40160 women) in the United States are 

expected to be diagnosed with invasive melanoma of 

the skin, and around 70000 of them could be fatal. 

Melanoma is the fifth most common cancer among 

men and the sixth most common cancer among 

women [1].  
Similar to other cancer types, early and mild 

stages are hardly distinguishable visually. Currently, 

dermatologists evaluate every one of a patient's 

moles  to  identify  outlier lesions  or  that  are  most 
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likely to be melanoma. If melanoma is caught early, 

most of them can be cured with minor surgery. 
Existing AI approaches have not adequately 

considered this clinical frame of reference. 

Dermatologists could enhance their diagnostic 

accuracy if detection algorithms take into account 

“contextual” images within the same patient to 

determine which images represent a melanoma. If 

successful, classifiers would be more accurate and 

could better support dermatological clinic work. 
Convolutional neural networks have been 

successfully applied in different areas of computer 

vision, also in the classification of cancer types and 

stages. But in most cases, images are not enough to 

reach robust and accurate classification. Such meta-

data as sex, age, nationality, etc. is also applied 

inside the model [2]. Also, the way of preprocessing 

is significant, e.g. sometimes it's important to 

understand the contour of the lesion, and sometimes 

only the texture matters [3]. The Skin Cancer 

Foundation gives simple guidelines for self-check, 

which can be used in a computerized solution [3]:  
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 Most melanomas are asymmetrical.  

 Melanoma borders tend to be uneven and may 

have scalloped or notched edges. 

 Melanoma may have different shades of 

brown, tan, or black. The colors red, white, or blue 

may also appear. 

 A lesion is the size of about 6 mm is a 

warning sign 

 Any change in size, shape, color, or elevation 

may be a warning sign of melanoma. 

Also, there are several works on multi-task 

models of classification and segmentation [4–6]. 

However, all this models learned segmentation from 

annotated datasets. Thus, we research a method for 

learning segmentation only from binary annotated 

dataset and without any additional info about 

segments.  
 

THE AIM 

The aim of this work is to propose an end-to-

end method for the classification of melanoma stage 

using convolutional neural networks from an RGB 

photo and persons' meta-data, as well as to provide a 

method of semi-supervised segmentation of the 

region of melanoma appearance.  
 

TASKS OF THIS WORK 

Main tasks of this work are: 
 to summarize the most influential works in 

this field; 

 to analyze available datasets for melanoma 

classification; 
 to implement a method for melanoma 

classification and unsupervised segmentation; 

 to test the developed method in the 

experiment 
 

ANALYSIS OF THE LATEST RESEARCH 

AND PUBLICATIONS 

Recent research in the field of automatic 

malignancy detection is connected with state-of-the-

art deep learning approaches in image recognition, 

there are much fewer works with classical machine 

learning and handcrafted features. Here, we state the 

most influential works in this field. For example, 

Mustafa et al. [7] created an approach with manually 

extracted features (GrabCut for lesion segmentation) 

and trained SVM with a radial basis kernel to 

discriminate cancerous lesions. Also, Nasiri et al. [8] 

tried to augment images with different algorithms and 

trained k-nearest neighbor models to solve the task.  
CNNs have emerged to be one of the major 

techniques for image classification in the last few 

years since a large number of improvements have 

been made. Also, many techniques train networks to 

solve classification problems appeared and prove 

their work on a lot of outstanding results. One of the 

most popular techniques is transfer learning.  
Brinker et al. [9] experimented with ImageNet 

pretrained networks, such as ResNet-50, to classify 

early stages of melanomas. 4204 biopsy-proven 

images of melanoma and nevi (1:1) were used for 

the training of a convolutional neural network 

(CNN). Also, new techniques of deep learning were 

integrated: differential learning rates, rather than the 

same learning rate for all layers, reduction of the 

learning rate based on a cosine function, stochastic 

gradient descent with restart, to avoid local minima. 

Codella et al. [10] proposed a system for the 

segmentation and classification of melanoma from 

dermoscopic images of skin. For disease 

classification, they employed an ensemble of recent 

machine learning methods, including deep residual 

networks, convolutional neural networks, etc. They 

proved that ensembles are capable to perform better 

results, than models separately. 
Nasiri et al. [4] researched skin lesions 

classification using deep learning for early detection 

of melanoma in a case-based reasoning (CBR) 

system. This approach has been employed for 

retrieving new input images from the case base of 

the proposed system DePicT Melanoma Deep-

CLASS to support users with more accurate 

recommendations relevant to their requested 

problem (e.g., an image of the affected area). Their 

methodology derived from a deep CNN generates 

case representations for case base to use in the 

retrieval process. Integration of this approach to 

DePicT Melanoma CLASS, significantly improving 

the efficiency of its image classification and the 

quality of the recommendation part of the system.  

Research in the field of multi-task learning was 

also performed by Song et al. [5]. They proposed 

framework which can perform skin lesion detection, 

classification, and segmentation tasks 

simultaneously without requiring additional pre-

processing or post-processing steps.  Similar 

work was done by Chen et al. [6], which used 

multitask U-Net network for detection and 

segmentation.  

Yang et al. [11] proposed even harder multitask 

model, which solves different tasks (e.g., lesion 

segmentation and two independent binary lesion 

classifications) at the same time by exploiting 

commonalities and differences across tasks. 
 

PROBLEM STATEMENT 

In the recent research, multiple ways of the 

classification and segmentation were presented. 
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However, semi-supervised multi-task learning is not 

researched together. Additionally, the usage of 

person-level meta-data is insufficiently studied. 

Besides, these researches do not investigate the 

influence of data augmentations. 

In our research, we address the problem of semi 

supervised segmentation along with multi-task 

learning. Additionally, we add patient’s level meta-

data to improve image representations and an 

additional augmentation process, which is used on 

the source images, as an efficient way to prevent 

model from overfitting to the training data from 

different distributions. 

The dataset 

The image data used in this research was taken 

from several datasets with identical structures. We 

use SIIM & ISIC datasets from 2017, 2018, 2019, 

and 2020 years. These datasets were generated by 

the International Skin Imaging Collaboration (ISIC) 

and images were from the following sources: 

Hospital Clínic de Barcelona, Medical University of 

Vienna, Memorial Sloan Kettering Cancer Center, 

Melanoma Institute Australia, The University of 

Queensland, and the University of Athens Medical 

School. 

All these datasets consist of around 50000 RGB 

images in total, from which around 3000 were 

malignant. The dataset contains 434 duplicate 

images. Besides the image data, meta-data about 

patients were given. Images and meta-data were 

provided in DICOM format, which is a commonly 

used medical imaging data format. Also, the dataset 

was available in JPEG format with images resized to 

a uniform 1024x1024. Meta-data was also provided 

outside of the DICOM format, in CSV files [12].  

The tabular info was provided as follows:  

1. image_name – unique identifier, points to 

filename of related DICOM image; 

2. patient_id – unique patient identifier 

(string); 
3. sex – the sex of the patient (is blank when 

unknown); 
4. age_approx – approximate patient age at 

time of imaging (integer); 
5. anatom_site_general_challenge – location 

of imaged site (string); 
6. diagnosis – detailed diagnosis information 

(string); 

7. benign_malignant – indicator of malignancy 

of imaged lesion (string, one of “benign” and 

“malignant”); 
8. target – binarized version of the target 

variable (boolean). 
Values for anatom_site_general_challenge are 

taken from predefined finite set, so we encode it as 

one-hot vectors. 
Meta-data is available per patient, so different 

images can have the same set of patient-level 

features. We use all available meta-data, except of 

patient_id and diagnosis, as they are available only 

in training datasets. 

The dataset has a high class imbalance. The 

distribution of diagnoses is shown in Fig. 1. For the 

diagnosis, unknown researchers guarantee that it is 

not malignant [13].  

 
Fig. 1. Distribution of diagnoses in the dataset. 

Notice the log scale  
 

Additionally, there are differences between 

train and test distributions of variables in meta-data. 

Melanoma is found more frequently in older men. 

Some images of the same patient are spread in time, 

and others are not.   

Depending on the cancer stage, the outlook of 

malignant and benign lesions can be similar and 

different. Early-stage melanoma tends to be almost 

indistinguishable from benign lesions.  

Image samples for benign and malignant 

classes are shown in Fig. 2 and Fig. 3 respectively. 

Due to different sources of images and different 

imaging standards, they have structured noise in 

form of linear bars, regions marked with a pen, 

centering lines, etc. Depending on a site of neoplasm 

and gender, hairline could be also be observed. All 

of these additions could make a significant influence 

on the training process and may lead to overfitting, 

so it became an additional challenge to make models 

robust to it. 

Train-validation data splitting 

In this dataset, there are multiple factors, which 

can lead to the leakage of the diagnosis from the 

training subset to the validation subset while 

training. It can lead to overoptimistic results, along 

with the poor ability to generalize to the unseen data.  
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Fig. 2. Samples of benign lesions 

 

 
Fig. 3. Samples of malignant lesions 

Here, under leakage we understand factors, 

which are spuriously correlated with diagnosis but 

have no causal relationship to it. E.g. images from 

the same patient can have similar visual features 

(hair type, skin color, etc.), or the number of images 

per patient can reveal information about the 

diagnosis process, that will not be available at the 

testing time. 

We use a triple-stratified leak-free K-Fold 

cross-validation scheme [14]: 

1. remove duplicate images; 

2. isolate images from the same patient within 

a single fold; 
3. balance folds to have the same distribution 

of malignant to benign images (1.8 %); 

4. balance folds by the number of images per 

patient. 

This method provides a more reliable cross-

validation scheme, which is especially important 

when using models ensemble.  

Evaluation metric 

In this research, we used the area under the 

ROC curve [15] as our main metric. This metric is 

widely used by many researchers for binary 

classifiers. Also, in medicine, ROC analysis has 

been extensively used in the evaluation of diagnostic 

tests. The output of a binary classifier is interpreted 

as a probability distribution over the classes. Objects 

with an output value greater than 0.5 are assigned to 

the positive class in a binary classifier and objects 

with an output value less than 0.5 are assigned to the 

negative class. But according the ROC-AUC 

approach, the threshold used for classification 

systematically varies between 0 and 1, and the 

sensitivity and specificity are determined for each 

selected threshold. The ROC curve is calculated by 

plotting the sensitivity against 1-specificity and can 

be used to evaluate the classifier. The further the 

ROC curve deviates from the diagonal, the better the 

classifier. As a single value of classifiers quality, 

area under curve is calculated. 
 

MULTI-TASK LEARNING 

Multi-task learning is an approach to inductive 

transfer that improves generalization by using the 

domain information contained in the training signals 

of related tasks as an inductive bias. It does this by 

learning tasks in parallel while using a shared 

representation; what is learned for each task can help 

other tasks be learned better [16]. 
Here, we research multi-task learning for two 

tasks – classification and segmentation of the lesion.  

Network architecture 

In this research, we focus on the lesion 

classification. Presented neural networks are based on 

the conventional deep CNN architecture. As training 

deep CNNs from scratch is computationally 

expensive, we utilize inductive transfer from 

Imagenet-trained convolutional neural networks [17].   

To concentrate the attention of CNN on the 

lesion itself, we use two branches: for classification 

and segmentation. We use same two-branch 

classification CNN structure as [18] (Fig. 4), 

replacing attention gating with the separate 

segmentation branch. 
During training and inference time, we use the 

segmentation branch both as an attention mask for 

classification [19], and as a separate segmentation 

output. We utilize ImageNet-trained encoder as is, 

connecting segmentation decoder and the classifier 

to its last convolutional layer.  
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Fig. 4. General two-branch CNN structure  

 

Meta-data usage 

To incorporate meta-data into the model, we 

add separate encoder for meta-data along with the 

image encoder and concatenate representations from 

both encoders. Binary and string parameters are 

encoded as one-hot vectors, while numerical 

parameters are left as is. Then, all representations 

are concatenated into a single vector  𝑀𝑖𝑛.  
For the meta-data encoder, we use a single  

linear layer with ReLU activation.  

       Let 𝑀𝑖𝑛 be normalized onehot-encoded meta-

data, 𝐹 – features from image encoder, 𝑊and 𝑏are 

the weight and bias of the linear layer, respectively, 

and ⊕is the vector concatenation. Then, 

𝑀𝑜𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝑀𝑖𝑛 + 𝑏), (1) 

𝑉 = 𝑀𝑜𝑢𝑡 ⊕ 𝐹. (2) 

Here, 𝑉 is a result vector which is passed to the 

decoder and classifier. The structure of the 

multimodal model is shown in Fig. 5. 
 

 

Fig. 5. CNN structure with meta-data encoder 

Incorporation of meta-data into the model, 

allows it to learn discriminative image features 

better, than without meta-data. As meta-data is 

correlated with diagnosis (e.g. sex and age), we 

observe, that learning is improved, because the 

image encoder does not use its capacity to infer 

patient-level features from images. Thus, meta-data 

creates a prior, which is then refined using image 

features in decoders.  

Unsupervised lesion region segmentation 

During training, we use the segmentation 

branch to refine classification. 

We define classifier function as 𝑓𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, and 

mask decoder function as 𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛. Let C and 

M be the classification and segmentation result 

tensors, respectively, and V is the encoder result 

vector: 

𝐶 = 𝑓𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑉), 

𝑀 = 𝑓𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑉). 
(3) 

We define refined segmentation mask as: 

𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑 = 𝜎(𝑀) ∘ 𝐶. (4) 

Where ∘is the element-wise matrix 

multiplication,𝜎is the element-wise sigmoid 

activation function: 

𝜎 =
1

1 + 𝑒𝑥𝑝(−𝑀)
. (5) 

Where 𝑒𝑥𝑝(−𝑀)is the element-wise matrix 

exponential function. 

For a single image, classifier output C is a 

single number, and the segmentation mask M and 

refined segmentation mask 𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑 are matrices of  

the shape [H, W], where H and W are height and 

width of the decoder output. 

To get refined classifier logits, we sum refined 

mask matrix 𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑 and divide by the sum of 

sigmoid of the segmentation mask M elements: 

𝐶𝑟𝑒𝑓𝑖𝑛𝑒𝑑 =
∑ ∑ 𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑(ℎ𝑤)

𝑊
𝑤

𝐻
ℎ

∑ ∑ 𝜎𝑊
𝑤

𝐻
ℎ (𝑀ℎ𝑤)

. (6) 

Then, 𝐶𝑟𝑒𝑓𝑖𝑛𝑒𝑑 is a single number. 

For a batch of images, the same calculations are  

performed for every image in the batch. Graphical 

representation is show in the Fig. 6.  

The detailed architecture of decoders is shown 

in Fig. 7. Here, encoders are image and meta-data 

encoder. For image encoder, any pretrained CNN 

can be used. In our experiments, we found, that 

EfficientNet [20] models achieve the best 

performance.  
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Fig. 6. Network structure during training 

Naturally, CNN learns to assign high values 

(close to 1 after sigmoid activation) to regions with 

lesions in order to propagate gradients for the 

classification branch, while down-weighting regions 

without lesions. This way, we can use this attention 

map at the inference stage as a segmentation mask.  

Additionally, samples with inconsistent 

attention maps tend to be classified wrong, so it can 

be a warning sign for doctors checking predictions 

manually. 

Preprocessing 

Both model training and inference are done 

with preprocessed versions of original images.  

Because skin lesions are mostly in the center of 

the image, we crop the central square of the original 

image, and then resize it to the desired resolution, 

depending on the receptive field of the encoder part 

of the neural network.  

To increase the contrast of lesions, we utilize 

CLAHE [21] processing on cropped and resized 

images.  

Because skin lesions can be found in every 

person, with different lighting, or on different skin 

conditions, we apply data augmentation to increase 

the variability of the dataset.  

 
 

Fig. 7. The detailed architecture of decoders 

Data augmentation 

We used online augmentations, at least one 

augmentation was applied to the training image 

before inputting to the CNN.  We used 

augmentations from Albumentations [22] library: 

horizontal and vertical flips; shift, scale, rotation; 

shift of RGB channels; random changes of 

brightness, contrast, and gamma. 

Due to the way the dataset was collected, there 

is a spurious correlation of diagnosis and zoom level 

on the dermatoscope. To alleviate this correlation, 

we use the Microscope [23] augmentation, which 

adds a random black circle outline to the image of 

the lesion. The example of the true and the 

augmented images are shown in Fig. 8. 

 

 

Fig. 8. Microscope augmentation [23]: original 

and augmented images 

Additionally, we use Cutout regularization [24] 

to improve the robustness of CNN to partially 
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covered or obscured with hair lesions. In order not to 

accidentally obscure big parts of the lesion in the 

image, we mask several small patches at random 

instead of the single big one.  

Training process 

We utilize a single-stage training process, 

which includes transfer learning and multi-task 

learning. 
Training is performed in a 3-fold cross-

validation scheme. The feature extractor is 

initialized with noisy-student [25] trained weights. 

In our experiments, we observed that this 

initialization leads to consistently better results, than 

Imagenet initialization. 
We randomly resample the dataset at each 

epoch to better capture the minority class and to 

reduce training time. We downsample the majority 

class (benign lesions) to match the number of 

minority class (malignant). To match the source 

distribution, we initialize the bias term of the last 

layer of the model according to class imbalance 

ratio. 
During our experiments, CNNs were trained up 

to 50 epochs with early stopping [26].  Training 

stopped automatically in a range from 20 to 40 

epochs. In this task, we used a Radam optimizer, 

consistently better, than Adam [27] and SGD [28] 

baselines.  
We use cosine annealing learning rate schedule 

to achieve a better any-time performance of our 

CNNs [29]. 

During training, we monitor the distribution of 

the classifier predictions for both classes separately.  

To stabilize training, we use an exponential 

moving average (EMA) for weights of the CNN 

[30]. The validation curve for the ROC-AUC [15] 

metric on a holdout test set for a single model is 

shown in Fig. 9. We notice a similar improvement in 

all experiments. 

Loss functions 

To train our models we used different loss 

functions and their combinations. As we resample 

the dataset to mitigate class imbalance, binary cross-

entropy loss is enough to achieve good classification 

for the majority of samples.  

However, we observed the situation when 

benign and malignant melanomas looked quite 

similar (e.g. amelanotic melanoma, where the 

malignant cells have very little or no pigment at all), 

so we opted to down-weight the influence of well-

classified examples and concentrate the optimization 

process on hard examples. 

 
Fig. 9. Validation curve with (orange) and 

without (blue) EMA. Best viewed in color 
 

Focal loss [31] 

This loss focuses on training on hard examples 

and prevents the vast number of easy negatives from  

overwhelming the classifier during training. Focal 

loss reduces the weight (or impact) the values CNN 

predicted correctly, which often happens with the 

majority class. 

The focal loss could be calculated as follows: 

𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡). (7) 

Where 

𝑝𝑡 = 𝑝 ⟺ 𝑦 = 1,otherwise 𝑝𝑡 = 1 − 𝑝. 

In our experiments we found that 𝛼 =
0.25, 𝛾 = 2 worked the best. 

Online Hard Example Mining (OHEM) [32] 

This loss back propagates only on hard examples, 

which are drawn from the current state of the network. 

Simply, we set the threshold for the per-sample loss 

value and calculate the reduction function on samples, 

which have greater loss than a defined threshold. We 

also set a minimum number of examples to be selected 

(in our experiments, the minimal number is half the 

size of the batch). As a loss function here we used 

binary cross-entropy with mean reduction.  

Experimentally, we found that with small 

batches (64 images), OHEM outperforms Focal loss; 

however, with batches larger than 100 elements, 

Focal loss outperforms OHEM. 

Flood loss [33] 

As deep neural networks overfit fast to the large 

number of negative samples the training dataset, we 

have to add regularization. Along with weight decay 

and dropout, we use a direct solution called flooding 

that intentionally prevents further reduction of the 

training loss when it reaches a reasonably small 

value, which we call the flooding level. This 

approach makes the loss float around the flooding 
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level by doing mini-batched gradient descent as 

usual but gradient ascent if the training loss is below 

the flooding level.  

If the original learning objective is 𝐽, the 

proposed modified learning objective 𝐽𝑓𝑙𝑜𝑜𝑑 with 

flooding: 

𝐽𝑓𝑙𝑜𝑜𝑑 = |𝐽(𝜃) − 𝑏| + 𝑏, (8) 

where 𝑏 > 0 is the flooding level specified by the 

user, and 𝜃 is the model parameter. 

With flooding, the model continues to random 

walk with the same non-zero training loss, and we 

expect it to drift into an area with a flat loss 

landscape that leads to better generalization, which 

is crucial in the melanoma classification task. 

Inference 

During inference, we resize testing images to 

the size, on which models were trained. We trained 

models with following image sizes: 256x256, 

384x384 and 512x512.  
Predicted masks are resized from their native 

resolution, which can be from 16x16 to 64x64 

depending on the encoder, to the resolution of the 

input image using bilinear interpolation.  

We utilize mask post-processing, test-time 

augmentations and ensembling to achieve more 

stable results. 

Mask post-processing 

Mask output from CNN is continuous. As we 

train the mask segmentation branch in an 

unsupervised fashion, we cannot directly predict the 

range of the segmentation output. To alleviate the 

calibration of the model predictions, we binarize the 

mask using the Otsu threshold [34].  
After the mask has been binarized, we apply a 

morphological opening to reduce the number of 

small false-positive regions.  

Examples of the unsupervised segmentation for 

malignant and benign lesions are shown in Fig. 10 

and Fig. 11 respectively. 

However, sometimes CNN fails to capture all 

pixels to the consistent mask, especially with big or 

uneven lesions. Such examples are shown in the  

Fig. 12; Fig. 13 and Fig. 14. 

We are going to address this issue in future 

research. 

Test-time augmentations 

To reduce the variance of predictions, we 

utilize test-time augmentations (TTA) [35]: we make 

predictions on different changed versions of the 

original images, and then average prediction results. 

 

 

 

 
 

Fig. 10. Examples of segmentation for malign 

lesions  
Red – outline of the binarized mask, green – 

bounding box around the mask. Best viewed in color 
 

As pictures of lesions can be viewed from any 

angle and with different illumination, we utilize the 

following changes to each original image: 
1. Original image; 

2. Horizontal flip; 

3. Vertical flip; 

4. Transpose. 

Which in total gives us an average of 16 

predictions per single image. We use ttach – an 

efficient implementation of TTA [36]. 

Ensemble 

For the Kaggle competition [11], we used 

predictions from models and setups from each fold 

of cross-validation in the ensemble.  

Additionally, we experimented with different 

random seeds to get a more robust ensemble of 

models [37]. For the final ensemble, we selected raw 

predictions of low pairwise correlation from best 

models according to ROC-AUC and applied sigmoid 

activation to raw outputs. We merged all predictions 

into one by taking the mean of sigmoid outputs. 
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Fig. 11. Examples of segmentation for benign 

lesions 

 

 
 

Fig. 12. Incomplete segmentation of the 

malignant lesion 

 

 
 

Fig. 13. Complete failure to capture the region 

 
 

Fig. 14. Failure case with inconsistent  

 regions in the mask 

Our best ensemble consisted of the following 

encoder architectures:  

1. EfficientNet-B4 [20]. 

2. EfficientNet-B5 [20]. 
3. EfficientNet-B6 [20]. 
4. SE-ResNext 101 [38]. 

Additionally, selected models have different 

training setups and head classifiers for output 

features, which increases the accuracy and 

robustness of the ensemble. 

We used the Catalyst framework [39] based on 

PyTorch [40] with GPU support. Evaluation of the 

whole ensemble was performed on Nvidia V100 

GPU in about 100 minutes, processing 4.5 seconds 

per image with test time augmentation. 
 

RESULTS 

Our test stage was split into two parts: holdout 

testing and final testing, which contained 10982 

unseen images. For final test reliability, it was split 

on 30 % of the public test, and rest 70 % was blind. 

Such an approach helped us to check whether the 

model works stable on unseen data.  

Our best single model (EfficientNet-B5, OHEM 

loss) scored 0.9304/0.9402 of ROC-AUC points. 

The same model, trained without segmentation 

branch reaches ROC-AUC scores of 0.9286/0.9372. 

The same model, trained without meta-data input 

reaches ROC-AUC scores of 0.9104/0.9253. 

For comparison, ensembling with test time 

augmentation performed better on the public and 

blind test sets, as it has a better ability to generalize 

on unseen images.  

We tried several types of ensembling:  

1) mean ensemble of raw outputs of the model, 

which scored 0.9347/0.9497 of ROC-AUC points 

blind/public test sets; 

2) mean the ensemble of sigmoid outputs of the 

model, which scored 0.9353/0.9511 of ROC-AUC 

points blind/public test sets; 

3) log-mean ensemble, which scored 

0.9392/0.9492 of ROC-AUC points blind/public test 

sets. 
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In the Kaggle competition [11], our method was 

ranked 420/1148 on blind/public test sets. The 

method with rank 1/1148 in this competition scored 

0.9490/0.9586 ROC-AUC.  

Future work can extend our method with 

modifications of segmentation head and more 

accurate augmentations to decrease the influence of 

noisy additional info (such as hair). Additionally, the 

method can be extended with explicit filtering of 

image features with meta-data features. 
 

CONCLUSIONS 

In this paper, we proposed an end-to-end 

method for the classification of melanoma 

malignancy using convolutional neural networks 

from an RGB photo and persons’ meta-data. We 

provided a method of semi-supervised segmentation 

of the region of melanoma appearance, which also 

improves results of classification by concentrating 

attention of the lesion instead of its surroundings. 
Segmented regions with melanomas could be 

used as a preprocessing step, as cleaning 

augmentation, or as an additional informative part 

for classification. 
The main advantage of this method is that it 

provides solutions for the task of segmentation, even 

if segmented training data is not provided. This 

method can provide guidance to doctors and to 

inform them, when the diagnosis should be clarified 

manually. Besides, this method benefits from using 

an ensemble of the networks, pretrained on a large 

dataset, and finetuned on the target dataset 

increasing generalization and reducing variance. 
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АНОТАЦІЯ 

 
Рак шкіри є найбільш поширеним видом онкологічних захворювань. Більшість випадків смерті від раку шкіри спричинені 

меланомою, хоча це найменш поширений рак шкіри. Раннє та точне виявлення та лікування є найкращим зціленням, однак 

виявлення цього виду злоякісної пухлини на ранніх стадіях не є легким. Рішення, засновані на даних для виявлення 

злоякісних меланом можуть зробити лікування більш ефективним. Згорткові нейронні мережі успішно застосовуються в 

різних областях комп'ютерного зору, а також у класифікації типів та стадій раку. Але в більшості випадків зображень 

недостатньо для досягнення надійної та точної класифікації. Такі метадані, як стать, вік, національність тощо, також можуть 

бути застосовані всередині моделей. У цій роботі ми пропонуємо end-to-end метод класифікації стадії меланоми за 

допомогою згорткових нейронних мереж із фотографії RGB та метаданих пацієнтів. Також ми пропонуємо метод 

напівавтоматичного навчання сегментації області новоутворення. На основі експериментальних результатів 

запропонований метод демонструє стабільні результати та вивчає ознаки, що добре описують новоутворення. Головною 

перевагою цього методу є те, що він збільшує узагальнення та зменшує дисперсію, використовуючи ансамбль мереж, 

попередньо навчений на великому наборі даних та донавчений на цільовому наборі даних. Цей метод досягає ROC-AUC 

0.93 на 10982 унікальних нових зображеннях. 
Ключові слова:  комп'ютерний зір; згорткові нейронні мережі; багатозадачне навчання; рак шкіри; класифікація 

зображень; сегментація зображень 
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Рак кожи – наиболее распространенный вид онкологических заболеваний. Большинство смертей от рака кожи вызваны 

меланомой, несмотря на то, что это наименее распространенный вид рака кожи. Раннее и точное обнаружение и лечение - 

лучшее лечение, однако обнаружение этого типа злокачественного новообразования на ранних стадиях затруднено. 
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Решения на основе данных для обнаружения злокачественной меланомы могут сделать лечение более эффективным. 

Сверточные нейронные сети успешно применяются в различных областях компьютерного зрения, а также при 

классификации типов и стадий рака. Но в большинстве случаев изображений недостаточно для надежной и точной 

классификации. Такие метаданные, как пол, возраст, национальность и т.д., также могут применяться внутри моделей. В 

этой статье мы предлагаем end-to-end метод классификации стадии меланомы с использованием сверточных нейронных 

сетей на основе RGB-фотографии и метаданных пациентов. Также мы предлагаем метод полуконтролируемой сегментации 

области появления меланомы. По результатам экспериментов предлагаемый метод демонстрирует стабильные результаты и 

изучает хорошие признаки на изображениях. Основное преимущество этого метода заключается в том, что он уменьшает 

дисперсию за счет использования ансамбля сетей, предварительно обученных на большом наборе данных и дообученных на 

целевом наборе данных. Этот метод достигает ROC-AUC 0.93 на 10982 уникальных изображениях. 
Ключевые слова:  компьютерное зрение, сверточные нейронные сети, многозадачное обучение, рак кожи, 

классификация изображений, сегментация изображений 
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