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Abstract. The purpose of this paper is the analysis of elliptic curve method, in particularly the probabil-
istic approach of method research, and also the research of subexponential complexity definition. This paper
describes the possibilities of the elliptic curves theory apparatus use. A comparative analysis of the existing
factorization methods is given. The choice of the method based on the elliptic curves theory is substantiated.
Special attention is paid to the method’s probabilistic and subexponential character. The method’s main di-
rections of development and optimization are described. Possible approaches for described problems solving
are given and analyzed. The possibility of creating a probabilistic model which applies the elliptic curves
theory in factorization is considered. On the basis of the carried out analysis, further research is performed
for all known subexponential factorization algorithms, taking into account the possibility of developing a

probabilistic approach.
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Introduction

Elliptic curves, which were originally a subdi-
vision of the functions theory, managed to find their
use in both “pure” mathematics and applied fields.
The elliptic curves theory is used in classical analy-
sis, in abstract and computational number theory and
occupies a fundamental position in these areas [1].
From an applied point of view, the elliptic curves
theory apparatus has many applications. Its signifi-
cance is difficult to assess. In particular, it has
proved to be extremely useful in cryptography, for
solving the problem of discrete logarithm and factor-
ization, for creating primality tests, and also for con-
structing cryptographic protocols [2, 3]. In addition,
it has good prospects for use in the construction of
complex dynamic systems. Elliptic curves played an
important role in the proving of the last Fermat theo-
rem. It was proved as a generalization of the Tani-
yama-Shimura theorem in the 1990s. Nevertheless,
this direction is relatively "young" and has many
gaps and unresolved problems.

1. Comparative analysis of factorization
methods

The one of works aims, is reasonable choice of
the factorization problem solution way. The factori-
zation universal algorithm developing problem is
that for different composite numbers classes the al-
gorithms behave differently. So therefore it is expe-
dient to create a method for their construction that is
resistant to natural numbers properties possible vari-
ations. As shown by the results of experimental

© Dermenzhy I., Vostrov G., 2019

modeling, it is possible to significantly reduce the
effect of such number classes on the computational
factorization algorithms efficiency with the help of
probabilistic processes. The use of such an approach
may allow the creation of algorithms whose compu-
tational speed can be similar to the speed of the most
advanced sub-exponential factorization methods.
That is, it is significantly lower than the average
time spent on the algorithms of the subexponential
class. The development of such an approach is abso-
lutely justified due to the fact that this number class
has not been studied theoretically. It is also not
known how to find these numbers, and it is also
completely unknown how they are distributed
among the whole set of natural numbers. In the liter-
ature, all assumptions in relation to them are built
only on the basis of empirical results, and different
authors have different views on this problem. In fact,
this moment partially reflects the probabilistic nature
of all subexponential methods principles. This ques-
tion remains open and under-researched. This prob-
lem is complex and intertwined with number theory.

Among the subexponential algorithms the fol-
lowing algorithms should be highlighted: Dixon's
factorization method, continued fraction factoriza-
tion method (CFRAC), the quadratic sieve method
(QS), elliptic curve factorization method (the
Lenstra’s method, or ECM) and the numerical field
sieve method (NFS). The NFS is considered the
most effective algorithm for factoring large numbers

(more than 10'°), as was shown by Crandall and

Pomerance [2]. There are two types of the numerical
field sieve method: general (GNFS) and special
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(SNFS). The special method is obviously more ef-
fective than the general, however it can be used only
to factorize the numbers of a special type: r®+s,
where reN, seZ, I and S are small. Table 1 be-
low shows the computational complexity of each
method in L-notation.

Table 1.
The computational complexity of subexponen-
tial factorization methods

Name of method Computational
complexity
Dixon's factoriza- 1,
tion method L, (5’2‘/5)
Continued fraction 1,
factorization method L, (E"/E)
Quadratic sieve 1,
method L, (E 1)
Elliptic curve 1.
method LP(E"/E)
General number 1 641
field sieve method L, (gi (3)3)

Where N — is a composite number that factor-
ized, and p — is smallest factor of this number.

Computational complexity is indicated in the L-
notation. L-notation, is an asymptotic notation, simi-
lar to O-notation, used for approximate estimation of
the algorithm computational complexity and is de-
termined by the formula:

L, [a,c]=elco@tmprinmel™ “ywhen p — o0, and

c=const, ¢e(0;00) and & = const, & € [01].

The numerical field sieve method (both special
and general) can be represented as the improvement
of a simpler method - the rational sieve method, or
the quadratic sieve method [6].

Algorithms of this class require to find smooth
numbers. A mathematically substantiated definition
of smooth numbers is absent in the literature, which
causes a free interpretation of this concept. Many
authors believe that these numbers value grows ex-
ponentially with increasing of n, such an assump-
tion is not always justified. The numerical field sieve
method, requires to find smooth subexponential

numbers with the size near of /n [6]. Due to the
fact that these numbers are smaller, the probability
that a number of such size turns out to be smooth is
higher. This moment is the reason of the numerical
field sieve method effectiveness [6]. To achieve ac-
celeration, calculations within the method perfor-
mance are carried out in numerical fields, which
complicates the algorithm, compared to a simpler
rational sieve method.

At the current stage of consideration, an im-
portant question arises about the concept of a num-
ber smoothness. The definition given in number the-
ory can have a very free interpretation, since it states
that a number is called smooth if all its divisors are
“small”. Because of such definition of this term,
many problems arise. In the case of the NTFS meth-
od, for simplicity, it is assumed that the term
“smooth” means the number divisors of which are

aroundv/n [6]. Nevertheless, such a definition does
not introduce the necessary accuracy, but only limits
the range of numbers that satisfy a given criterion.
Thus the question of the number "smoothness™ stays
open in this case as well. One of the number
smoothness determination is as follows: a number
can be called a smooth, if the distance between this
number ordered divisors is monotonic.

Crandall and Pomerance showed an important
feature: none of the considered subexponential
methods is strictly justified [2]. But precisely be-
cause of this methods class heuristic nature, the low-
er expected complexity of this type algorithms is
achieved. Although the use of such methods is
somewhat strange, nevertheless Crandall and Pom-
erance argue that in practice there is no need to con-
stantly follow any of them, it is only necessary that
the frequency of their implementation be sufficient
for such an algorithm to be effective [2].

So, from the analysis of current most effective
methods, due to perspective, complexity dependence
mostly on smallest factor value, ease of the method
parallelization, opportunity of using probabilistic
approach of method research and wide specter of
existing optimization, it seems that ECM is most
promising among the factorization algorithms.

2. Survey of the factorization method based
on the theory of elliptic curves.

First thing to do before starting complex analy-
sis is to describe in details the ideas of method, it’s
most important problems, and the possible ways of
their solutions.

The elliptic curve method is an algorithm of
stochastic nature, which first finds small factors.

The most important tasks when considering this
point are the following:

- Questions about the probabilistic nature of the
method and its determination.

- Features of the method, that allows to factor
large composite numbers, and which distinguish this
method from other existing ones.

- Questions about the concrete method compu-
tational complexity definition, in particular the prob-
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lem of the precise subexponential complexity defini-
tion.

- How to determine the parameters of the meth-
od (the parameters of the curve itself and the coordi-
nates of a point on it). Features of the curve random
selection, and possible ways to reduce this approach
randomization [7].

- In case of the method one full cycle unsuc-
cessful execution the with given parameters, how
these parameters should be changed for the subse-
quent run [7].

- How the execution time of the method and its
specific implementations depends on the size of the
already found factors of a given composite number
[7].

- When the elliptic curve method will be most
effective, and how should knowledge of this be used
when combining this method with other factoriza-
tion methods [7].

It’s seems that, the probabilistic nature of the
method is difficult to interpret unambiguously. On
the one hand, the stochastic character of the method
leads to the fact that in most cases the method finds
divisors faster than in the average search time by
using other exponential algorithms [8]. On the other
hand, it can even exceed this value. This also leads
to the need of estimating the algorithm time by using
probabilistic methods. Which show that, on average,
it is still faster than exponential algorithms perfor-
mance time [8].

Nevertheless, a more detailed analysis, make it
obvious that getting rid of accidents by moving to a
deterministic (or at least less randomized) choice of
curves and points on them that, in a given class of
numbers, will ensure that the divisor will be found
much earlier. So it will greatly optimize this method.
This approach has priority in the research of the
ECM, but its development and implementation is a
very time-consuming task, which still remains un-
solved and moreover poorly studied. However, the
importance of such research is quite obvious, from
the method description.

The question about probabilistic nature of ECM
is raised quite rarely. Nevertheless, in this paper, it
occupies the fundamental position. The fact of this
moment covering and approach of its consideration
and research differs this article among other works

that describes and research factorization problem,
and its solutions based on elliptic curves theory.

The general form of the elliptical curve equa-
tion is as follows:

y?+axy+ay =x+a,x’ +a,x+a,, (1)

where a,,a,,a,,d,,a5,a, - Some constants be-

longing to the field over which this elliptic curve is
being considered. On the basis of these coefficients
specific values and the choice of the field with spe-
cific characteristic over which elliptic curve is con-
structed, a classification of elliptic curves is consid-
ered. Also a frequently-used criterion for the classi-
fication of elliptic curves is the curve "singularity".
Those curves whose discriminant is different from 0
are not singular. Whereas curves with a discriminant
equal to 0 are called singular. Thus, the classifica-
tion of the entire set of curves is unusually rich, and
at the same time it is far from concrete systematiza-
tion due to the large number of criteria on the basis
of which it can be carried out.

In the case of the Lenstra’s method, curves in
the form y® =x>+ax+b, constructed over the
field modulo n, where n is the factorized compo-
site number. Curves of this type, built over a finite
field, are called Weierstrass curves.

The method is based on the fact that, according
to the arithmetic of elliptic curves, if n - is a prime
number, the point at infinity means an unique addi-
tional projective point on an elliptic curve, which
does not correspond to any affine point [2]. If num-
ber n - is composite, then there are other projective
points to which no affine points correspond. Howev-
er, only one additional point is allowed, it corre-
sponds to the projective solution. [0,1,0] [2]. Due to
such a restriction in the definition of the elliptic
curve group, the pseudo-elliptic curve no longer
forms a group with a composite n [2]. There will be
always such pair of points P and Q, for which
sum P +Q - is undefined. This is due to the angular

coefficient structure:

u,if =X %X,
m=1, .2 @
X2+ 20k, + A4 .
————if 5 x =X,
2y,

where P:(xi,yl), QZ(X21y2)'
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These results are transferred to the elements of
the set E,,(Z,), which differs from elliptic curves

in the case when n - is composite number. In this
case, the concept of an elliptic pseudo-curve is used,
which is determined by the conditions:

1.a,beZ,

2. GC.D(ab)=1

3. G.C.D.(4a +27b%,n)=1

4. anb(Zn):{(x,y)eZnxZn:yZ:x3+ax+b}v{O},

where O - point at infinity, and E,,(Z,) - is
an Weierstrass elliptic curve, constructed over the
field modulo n which is determined by coefficients
a and b, that belongs to this field.

In strict mathematical formulation, this curve is
not considered as an elliptic curve (such a curve is

also called a pseudo-curve), since F is not a field,

and, based on this, it does not always able to per-
form the operations of finding the reverse element,
which is necessary to find the sum curve points sum.
It is due to the inability to calculate the sum of two

points P(x,, yl) and Q(X,, Y, ), it turns out that the

difference of the first coordinates X, —X,; should be
equal 0 by modulo of n some divisor. So by com-
puting the greatest common divisor of (n,xz—xl),
the divisor of composite n is found. Lenstra's algo-
rithm is based on the choice of elliptic pseudo-curve
E.p (Fp), random base point on it P,, and its sub-

sequent multiplication by various prime numbers
and their degrees until we get:
kP, = oo(mod p), 3)
where p —isone of n divisors.

Since none of n divisors it is not known be-
forehand, then there is no possibility of checking
whether condition (3) is being fulfilled, on this basis,
a sign of the algorithm successful completion is the
fulfillment of the G.C.D.(n,c¢)=d >1 in the opera-
tion of doubling or adding points when calculating
the next multiple ¢ of the point P, when calculat-

ing the angular coefficient.

From the above methods, ECM is closest to a
strict justification [2]. This is due to the Lenstra’s
hypothesis [9] on the smooth numbers distribution in
short intervals. By adopting this hypothesis, he
showed that the expected number of arithmetic oper-
ations with integers of the order n, required to find
the smallest divisor p of composite n by using el-

liptic curve method is equals:

where

exp((2+0(@))/InpIninp),
when P — o [9].

At this point, the question of the number
“smoothness” definition, considered at the begin-
ning, arises again; in this case, the definition is simi-
lar to the definition for the NTFS method, with the
following of the formulation inaccuracy.

Thus, there is only one heuristic gap in ECM,
while QS and NFS have several similar gaps in their
justification, as Crandall and Pomerance showed [2].

Also the concept b -smooth number is a fun-
damental in the elliptic curve theory. In the theory of
elliptic curves, the term b -smooth number, is in
some way a child in relation to the definition of a
smooth number, but it has a concrete definition. Ac-
cording to Leonard Adleman’s definition, an integer
number is called smooth if it consists of small sim-
ple factors. At this stage it is assumed that b -
smooth number if none of the composite number n
prime divisors does not exceed b [9]. Parameter b,
in the case of the elliptic curve method, is the so-
called method boundary and is determined directly
by the researcher empirically.

When comparing these three most effective
subexponential methods: ECM, QS and NFS, the
size of the composite number smallest divisor is the
main criterion.

Crandall and Pomerance showed that in the
case when the factoring number has a size greater
than the record value for these methods, the only
way to find a divisor is factorization by using elliptic
curves [2]. This is justified by the dependence of its
computational complexity in the first place on the
size of the smallest divisor. However, it is obvious
that such an approach to factorization cannot be con-
sidered as universal due to the fact that a certain part
of the numbers (despite that this part is a statistically
small) will not contain “small” divisors. In this case
their factorization by using ECM is an extremely
time-consuming task. Also the method itself cannot
be considered as the most effective. Moreover, its
effectiveness is much lower, for example, than the
NTFS method effectiveness in this case.

ECM does an excellent job of finding divisors
of 10 to 15 digits, divisors of 20 to 25 digits with
complications, sometimes taking about ten hours to
successfully complete the algorithm. And for divi-
sors up to 35-digits with considerable difficulty [8].

ECM has properties that make it ideal for paral-
lelization. Parallelization of the method is the con-
current attempt to decompose a single composite
number with the help of many different curves. Such

O(1) -0,
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concept is very clear, and its implementation isn’t
great problem too.

An important feature of the ECM, which has
already been mentioned, is the dependence of the
method primarily computational complexity on the
value of the factorized number smallest divisor. And
although this method is considered only the third in
terms of efficiency among the factorization methods
for large numbers in general (it takes a position after
the general numerical field sieve and the quadratic
sieve method) [2], in the future, due to a wide range
of possibilities for optimization described more de-
tailed in article [10] and effective parallelization
which was mentioned above, this method looks the
most perspective [10]. Consequently, this causes its
further consideration and analysis.

3. The problem “sub-exponential” computa-
tional complexity definition

The main criterion in the problem of one con-
crete method choice from a set of methods, is the
computational complexity of the method. That is, the
number of operations performed as a function of the
task size. At the current stage, it is this factor that
determines the speed of performance and, according-
ly, the effectiveness of a particular approach. So it is
required to accurately assessment the computational
complexity of the method. If it is impossible to de-
termine an exact estimate, then usually proceeds to
the estimates of the method upper and lower bounds
computational complexity, i.e. to computational
complexity in the best and worst possible cases for
this method, as well as to averaged and heuristic es-
timates. Thus, the analysis and research of any
method should be justified, including its computa-
tional complexity. So, the research and analysis of
subexponential complexity of ECM are very im-
portant goals of this paper.

The author of the elliptic curve method, showed
that the expected number of arithmetic operations
with integers that are around the order of N, re-
quired to find smallest divisor p of composite N

by using ECM is equal:
exp((2+0@)./In pInin p), where O(1) —0, when
p - [9]. In his asymptotical analysis Lenstra gives

+0()
estimation B(p) = L( p)yﬁ 0 , for optimal choice

of boundary B,, for one-step version of method [9].

Brent’s analysis suggests that this value can be re-
duced to log p for two-step method version [11].

The complexity of the EC method is defined as
subexponential [2]. A large number of questions are
connected with this moment, and before proceeding
to their consideration it is necessary to find out from
the beginning what the exponential computation
complexity represents.

Exponential complexity - in the case of consid-
eration from the algorithms complexity theory, is a
complexity of the problem that is limited by a poly-
nomial degree of the problem size, that is, it is lim-
ited by the function exp(P(n)), where P — some

polynomial, and n — is size of the task [12].

There are algorithms among the class of expo-
nential, the execution time of which is still higher
than the polynomial (“superpolynomial”), but is on
average the smallest among this class (“sub-
exponential”). Thus, algorithms with subexponential
complexity in some way are the most effective
among the exponential. The question about this type
complexity the exact definition is still open [13].
There are currently two main definitions.

The first definition: the complexity of the prob-
lem is defined as subexponential, in the case when it
is solved by an algorithm, which logarithm of the
operation time grows less than any given polynomi-
al. This definition is given at Complexity Zoo [14].

The second definition: the running time of the
sub-exponential algorithm is determined by the val-

ue 2°™ . This definition implies a larger computa-
tional complexity for this type of algorithm. It is
given by Oded Regev [15]. An example of an algo-
rithm with subexponential time that fits this defini-
tion is the generalized numeric field sieve algorithm
for integer factorization.

The inaccuracy of the definition that the subex-
ponential computational complexity is intermediate
between polynomial and exponential, is not accessi-
ble. There is a fundamental need for a clear measure
of the difference between this complexity and the
exponential. Which will show how much faster the
algorithms of this class are.

In the case of factoring algorithms, the sub-
exponential nature is expressed in the L-notation of
the computations complexity. In this case, the algo-
rithm complexity is an exponent of a certain con-
stant product by the natural logarithm of the task
size for a degree less than one multiplied by the
double natural logarithm of the size of the problem
to a degree less than one. That is, it is determined by

a 1-a
the formula: L, [ar,C]=glcrO@Mmm = - pere
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n—o0, a=const, a < (0], according to statements
of Oded Regev [15].

The analysis of given problem leads to the fol-
lowing, as can be seen, complexity is no longer an
exponent of a polynomial function (as with the clas-
sical representation of exponential complexity). But
it is a product of a double logarithmic function of the
task size and a logarithmic function. In this case, due
to the restriction on the constant, both of these func-
tions have a degree less than 1 (that is, a fractional
degree). Thus, the growth rate of the function repre-
senting the degree in a given formula is significantly
less than the polynomial function and even than the
linear function. Because of this difference the sub-
exponential complexity is a function whose com-
plexity is significantly lower than a polynomial
function, it stands out in a separate subclass that dif-
fers from the traditional representation of the expo-
nential complexity class. So
(c+0o@)(Inn)*(Inlnn)** << Poly(n) when
N — o0, based on this statement, it follows that:
exp((c + O))(Inn)* (InInn)**) << exp(Poly(n))
when N —00. Thus, the features of subexponential
computational complexity becoming clear. The dif-
ference between more general exponential algo-
rithm’s class and more specific subexponential algo-
rithm’s class is shown.

4. Ways to solve probabilistic nature prob-
lem of the method

Due to probabilistic character of method it
seems that using probabilistic number theory ap-
proach is very promising in this case. The main pur-
pose of paper is finding the cases when this ap-
proach can be implemented, and the ways how to
implement it.

The Dickman’s function p(«) - it is the possi-

bility that greatest prime divisor of integer number
X — 00 has value less than X%’. For each interval
[n—1,n] with integer n exists an analytical func-
tion p, , such that p,(u) = p(u). When 0<u <1,
pu)=1. When 1<u<2, p(u)=1-logu.

When 2<u<3,
2

p(u) =1— (1—log(u —1)) logu + Li, (1 - u) +’1”—2,

where Li, - dilogarithm. Rest of p, can be com-

puted by using the infinite series [16]. Silverman and
Wagstaff in their work designate through wu(«, )

the probability, that X has the second largest prime

divisor less than X%’, and its greatest prime multi-

B
plier is less than XA, where o > £ >1 [7]. Then
the functional equations for o and u are the fol-

lows and

pla) =1 Tp(t)dt

1 a-1
e, B) = ﬁaj ﬂp(t)dt [7]

For successful execution of the ECM algorithm,
the order of the group formed by the points of a

curve must be B, -smooth, except for one additional
prime divisor between B, and B,, where B, and
B, are the first and second boundaries of the ECM
respectively. B,-smoothness means b -smoothness
of Adleman, definition of which was made earlier,
but in this case the divisors should not exceed B,
respectively. Designating P(B,, B,) as the proba-
bility of successful method execution when choosing
B, and B, as a boundaries , where B, >B,. In this

case: P(B,,B,) = u(a,B), when a= log p :
logB,
logB,
= 7].
£=Togs

The important point is to determine the belong-
ing of a prime divisor p, of composite n, to the

specific interval. The probability that at least one
divisor p, belongs to interval y* < p<y*™" ap-

proximately equals 1— || (1—3) [7].
J <payit p
The primary task is to estimate the order of the
generated curve, for an effective curves iteration
from a set of Weierstrass curves, those actually brute
force pairs of parameters a and b that belongs to
the field modulo n, of the elliptic curve until, we

get a curve of B,-smooth order. Such algorithm

with the use of an effective curve order estimating
method will lead to a significant increase in its effec-
tiveness.

Since the generation of a curve is a computa-
tionally non-expensive operation, the entire com-
plexity of the calculations is associated with finding
primes in a given interval, and then multiplying the
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curve points by the given prime numbers and their
degrees.

The problem is that there is no algorithm to
pseudo-curves order calculation. The existing
Schoof’s curves order calculating algorithm, in addi-
tion to its complexity and complexity of its imple-
mentation, is intended for curves constructed over
finite fields modulo prime number [2]. Knowing the
divisor of a composite number n, it is possible to
calculate the order of pseudo-curve by using
Schoof’s algorithm [2]. However, none of the divi-
sors is known, moreover, the search of divisors is the
Lenstra’s method main goal.

Thus, the only way to solve this problem is a
theoretical research of the elliptical curves structures
and of their various classes. Also, according to em-
pirical results, there is a relationship between the
curve parameters values, for which the total required
boundaries of the first and second stages value
reaches its minimum, in the case where optimization
in the form of having the second stage is used.
Ishmukhametov in his textbook displays this empiri-
cal result. [8].

Since the theoretical apparatus for choosing
these parameters is not currently developed, the only
way out is to randomly generate an elliptic curve by
randomly selecting its parameters, and the most ef-
fective way of optimization is to use several curves
concurrently. Since the value of the divisor p is

unknown, then the boundary selection is carried out
empirically, which reduces the method practical as-
sessment convergence reliability.

In this work we suggest that in this case the use
of effective pseudo-random number generators
(PRNG) is highly promising approach of ECM op-
timization. Efficiency in this case is primarily de-
termined by the compliance of these generators dis-
tribution laws with the smooth order curves distribu-
tion laws. Since the choice of b -smooth order curve
is a sufficient condition for successful completion of
the algorithm. Thus the perspective of proposed ap-
proach becoming justified.

By default, PRNG software implementations
use a uniform distribution law, sometimes a normal
distribution law. As for the case of the ECM method,
none of the authors gave either clear instructions or
specific recommendations on the choice of the
PRNG distribution law. It is obvious that this law
must correspond to the smooth elliptic curves distri-
bution law among the set of all curves. This question
has a very clear wording, but it is rarely raised, and
its significance is fundamental. Thus, one of the
main issues, the solution of which can lead to signif-
icant success and a breakthrough in the development

of the ECM is the determination of the distribution
law for smooth elliptic curves.

We offer that the way to this problem solution,
is the analysis of empirical results set for the differ-
ent number structures factorization. It may provide
direction for further theoretical study of this issue.
The possible approach in this case is humber analy-
sis of smooth order curves parameters distribution
among curves parameters in general for all integer
composite numbers from 4 to as high values, as it be
required to the patterns of such distribution. Howev-
er, details should have been clarified, since these
ideas are the first steps in this direction.

Significant results were obtained by Kowalski
are described in his article [17]. He advanced in
solving the elliptic curves distribution law problem
by using the analytic number theory apparatus. Au-
thor considered this problem as an analogy to the
classical the primes distribution problem. Also he
involves the equidistribution of Frobenius elements
to uniform and large moduli, especially on totally
split primes in such extensions [17]. In particular,
the author gives the definition of the "elliptic twins"
[17], which in their essence resemble prime twins.
This leads to some local results on the elliptic curves
group structures distribution defined over a prime
finite field, demonstrating an interesting dichotomy
for the possible groups appearing [17]. Author ana-
lyze this problem on generalized Riemann hypothe-
sis and discuss the new difficulties which arise in
comparison with the case of primes inarithmetic
progressions [17]. Kowalski says that many of the
questions raised in this article [17] seem to be very
complex. On the other hand, they seem very interest-
ing from the analytical number theory point of view.
Since the problems are amenable to experimentation,
Kowalski present some numerical data and further
remarks. Despite the fact that the author himself
claims that the results obtained in his article [17] are
modest. Nevertheless, these results undoubtedly are
the foundation for the whole set of elliptic curves
research by means of analytic number theory.

In addition, the important point is the possibil-
ity of obtaining a divider as G.C.D. of curve discri-
minant and a factorized number [2]. Such cases for

large n, are quite rare. However for n<10", their
frequency is sufficient to occur by a simple curves
iterating. Such an approach for numbers of small
size is often a much more effective way of factoriza-
tion, as evidenced by the empirical results described
in the article [18].

However, also almost nothing is known about
the elliptic curve discriminant properties. In particu-
lar, the authors do not give clear estimates of the
divisor obtaining probability by this method, and the
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justification for this approach is not given. Neverthe-
less, the empirical results [18] suggests that for small
n, this approach is more efficient in terms of com-
putational complexity. This is partly due to a signifi-
cant increase in the algorithm computational com-
plexity with an increase of the boundary b. The
main difficulties in this case are associated with an
increase in the number of considered primes and,
accordingly, the operations number during each cy-
cle curve generation and the point on it generation
with further point multiplication. This empirical re-
sults have great importance for that research, and
probably are fundamental to understand the nature of
elliptic curve discriminant. However, this problem
does not seem such important and perspective as
other problems described in this paper.

Also the research of the base ECM relationship
between the number of curves generated and the re-
quired boundary problem is important. Since the
computational costs for the algorithm performance
depend significantly on the selected boundary, the
more it is, the more calculations are performed (in
the case of a complete cycle pass). But this way in-
creases the probability of divisor obtaining in fewer
passes (due to the requirement b - smoothness for
the successful completion of the method is less strict
with a larger value of the selected boundary). A
more detailed statement of the problem and the first
steps of its resolving with the corresponding experi-
ment results, are described in the article [18].

Conclusions

In this paper, the place of elliptic curves in the
applied mathematics fields was described, in particu-
lar, when solving the factorization problem. A com-
parative characterization of the factorization meth-
ods is given, the importance of the analysis and re-
search of the method based on the elliptic curves
theory is substantiated. It is necessary to direct as
much effort as possible to the development of the
Lenstra method for the reasons that the factorization
problem is one of the fundamental in modern math-
ematics and number theory. It is important both in
their theoretical aspects and in the applied sense. A
brief description of the method is given. The concept
of computational complexity of the method is ana-
lyzed. Special attention is paid to the definition of
subexponential complexity, since it is directly relat-
ed to the evaluation of the computational complexity
of the ECM. Fundamental questions are posed in the
study of the Lenstra’s method, and approaches for
their solution are described. Analyzed the probabilis-
tic nature of the method, given the prospects and
ways to determine it, in particular by using the "ef-
fective™ in this case, pseudo-random number genera-

tors to generate a curve and a point on it. Probabilis-
tic algorithm’s class based on random elliptic curve
choice is built. Proved that computational complexi-
ty of such algorithm’s class is highest among exist-
ing exponential algorithms. Also the problem of
smooth numbers is considered and researched.

It seems that ECM has a great field for research,
and a great approaches number for this researches.
This paper gives some of such approaches. Perspec-
tive and expediency of them is justified. In some
sense this paper has a survey character. It shows new
approaches of factorization problem solving by us-
ing probabilistic number theory, in particularly. Part
of suggestions are obvious enough, and don’t need
detailed and strict justification. However, great part
of ideas described in this paper are brave enough,
and should be considered more in future. Their con-
sideration should include the results of empirical
researches and deep theoretical analysis.
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:S#subexp
AHAJII3 METOY fI)AKTOPI/I?,AIIIi HA OCHOBI TEOPIi EJIIITUYHUX KPUBUX

Hepmen:ku 1. 1., Boctpos I'. M.
OO0ecovruii HayioHAILHULL NOIMEXHIYHUL YHIBepcumem

Anomauia. Y oaniti cmammi onucami MOXCIUBOCMI UKOPUCMANHI anapamy meopii eninmudnux
KpUBUx, 30Kpema, npu supiwenui 3adayi paxmopusayii cknadenoeo wucia. /lana saoaua 3aumae ynoa-
MeHmanvHe NON0JCEHHs cepeo K YUCMO MAMEeMAMUYHUX, MaK i NPUKIAOHUX Hayk. Posenanymo npobaemy
IMOGIDHICHO20 NpUHYUNY pobomu CyOeKCNOHeHYIUHUX Memooie Gakmopusayii. /lan ROPIGHANbHUL AHANI3
icHytouux cybexcnoneHyitinux memoois gaxmopuzayii. Onucani ocHO8HI i0ei, nepegacu ma HeOOIKU Me-
mooa pewema Yuci08020 NOJs, OKpeMa y8aza yoiisicmobcs npodiemi U3HAYEHHS 21A0K020 Yucia 0sl 0d-
Hoeo knacy aneopummie. OOIPYHMOBAHO 8UOIP Memoody, 3ACHOBAHO20 HA MeOpii eliNMUYHUX KPUBUX. .
10ess memody tpynmyemucs Ha noHY008i NCe8OOKPUBOT HAO KilbyeM MUWKIE CKIA0eH020 yucid. 3a60sKu
YbOMY 80AEMbCA OMPUMYBAMU CUMYAYIT, KOIU HEMONCIUBO 3HAUMU 360POMHUL eeMeHMN 8 3A0aHOMY Ki-
JbYL NPU CKIAOAHHI 080X MOYOK KPUBOL, WO CUSHANIZYE NPO 3HAX0O0NCEeHHS OiibHuKA. 1 0106100 0cObIUBI-
CMI0 Memody € 3aneAHCHICMb 1020 0OUUCTIOBANBHOI CKIAOHOCHI 610 HAUMEHWI020 OLIbHUKA Yucld, wo @a-
KMopu3yemscs, a He 8i0 be3nocepednHvbo Hbo2o camozo. OOIpyHmMOBana nepcnekmusHicmb 00CAI0NCEeHHS.
ma po3sumky yvoeo memooa. Onucaui 20108Hi 3a0aui, Wo BUHUKAIOMb NPU OOKIAOHOMY AHANI3I Memoody
exinmuunux kpugux. Ocobausa ysaza Npuoiiaemvcs IMOBIPHICHOMY i CYOEKCNOHEHYIATbHOMY Xapakmepy
memody. Onucana ma npoananizoeana npodiema GU3HA4eHHs MepMiHy CyOeKCnoHeHYiliHa CKAAOHICb al-
20pummy, 30Kpema aHanizyeEmuvesi CyOeKCnoHeHyiuna CKIaoHicmy 06e3nocepedubo Memooy eninmuiHux
Kpusux. Onucano 0CHO8HI HANPAMKU PO3GUMKY MA ONMUMI3ayii Memooa. /[ano ma npoananizoeaso mModxic-
JUBI Ni0X00u 00 supiwieHHs: onucanux npodaem. Poszensdana mosciugicme cmeopeHts iMOBIPHICHOI MOOe-
JIi, WO BUKOPUCMOBYE MEOPIIO eNNMUYHUX Kpusux npu gaxmopusayii. B ocrosi 3a0anoeo piwienns nos-
2a€ GUKOPUCMAHHS eheKMUBHUX 2eHepamopis ncegdo sunadkosux uucei. Ha ocnosi npogsedenozo ananizy
NPOBOOAMBCA NOOANbUL OOCTIONCEHHS 05 8CIX 8I0OMUX AN2OpUMMIE hakmopu3zayii cyOeKCcnOHeHYidNbHO-
20 K1ACY 3 YPAXYBAHHIM MOICIUBOCME PO3POOKU IMOBIpHICHO20 nioxody. Taxooc yeaea npudiiiemovcs nu-
MAHHAM WOO00 OUCKPUMIHAHMY KPUBOI, MA 1020 6AACMUBOCHAM WO 00360A10Mb HA 1020 OCHOBI OMPUMY-
samu OINbHUKU CKIAOEHO20 YUCd.

Knrouoei cnosa: erinmuuna kpusa, memoo erinmuyHoi Kpueoi, ghaxmopusayis, enadki yucia, ooyuc-
JII0BANBHA CKAAOHICb, CYOEKCNOHEHYIAIbHA CKIAOHICMb.
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AHAJIN3 METOJA ®AKTOPU3ALINU HA OCHOBE TEOPUH DJIVIMIITUYECKHUX
KPUBbBIX

Hepmenku U. /1., Bocrpos I'. H.
Ooecckuil HAYUOHATbHBIN NOIUMEXHUYECKUL YHUBSepCUmen,

Annomayus. B 0annoii cmamve onucanbl 603MONCHOCHU UCNOIL30GAHUSL ARNAPAMA MEOPULU IILTUN-
MUYECKUX KPUBLLX, 8 YACMHOCINU, NPU PeuleHul 3a0a4u Qakmopuzayuy cocmasHo2o wucaid. /lan cpasHu-
MEAbHBLIL AHATU3 CYUECmBYIouUX Memooos gaxkmopusayuu. ObOCHO8aH 8b100pP MemoOd, OCHOBAHHO20 HA
meopuu danunmuyeckux kpugvix. Ocoboe HuMaHue yoensiemcs 6epPOSIMHOCIMHOMY U CYOIKCROHEHYUATb-
HOMY xapaxmepy memood. Onucanvl OCHOGHbIE HANPAGICHUS PA3GUMUsL U OnmuMusayuu memooa. /lanul u
NPOAHATUZUPOBAHBL B03MOICHBLE NOOX0ObL K PEULEHUIO ONUCAHHBIX nPoOaeM. Paccmompena 603ModicHocmb
C030anUsl 6ePOSIMHOCIMHOU MOOEIU, UCIOAL3YIOUel MEOPUIO IITUNMUYECKUX KPUBBIX NPU BAKMOPU3ayuu.
Ha ocnose nposedennoeo ananuza npoeooamcs oanbHeluue UCCIe008aHUs OJis1 8CeX U3BECHbIX AN20-
pummos haxmopuzayuu cyO3KCHOHEHYUATbHO20 KAACCA C YHemOM B03MONCHOCMU pA3pabomKu 6eposim-
HOCMHO020 NOOX00d.

Knroueewie cnoesa: sniunmuyeckas kpusas, Memoo 3AUNMUYECKOU KPUBOU, (hakxmopuzayusi, 2naoxue
YUCIA, GBIYUCTUMENbHASL CLONCHOCTD, CYOIKCHOHEHYUANbHAS CTLIONCHOCHb.
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