108 ISSN 2076-2429 (print)
IMpaui Oxecbkoro nomitexHiuHoro yHiBepcurery, 2020. Burm. 2(61) ISSN 2223-3814 (online)

UDC 004.942

P. Shvahirev, Assoc. Prof.,
O. Lopakov,
V. Kosmachevskiy,

V. Salii
Odessa National Polytechnic University, 1 Shevchenko Ave., Odessa, Ukraine, 65044; e-mail: kedrodess9@gmail.com

METHOD FOR ASSESSING OF RELIABILITY
CHARACTERISTICS IN DESIGNING OF FAILURE-
RESISTANT REAL-TIME OPERATING SYSTEMS

I1.A. llsacipes, O.C. Jlonakos, B.B. Kocmauescokuii, B.1. Caniti. MeTOAMKAa OUMIHKH XapaKTePUCTUK HAXIIHOCTI B IPOEKTYBAHHI
ABTOMATHYHHX CHCTEM peasibHOro 4acy. [Iporsarom 6araTbox pokis noaaTku Ha ocHoBi OC y pexHMi peabHOroO 4acy BUKOPHCTOBYFOTHCS
y BOYJIOBaHMX CHCTEMaX CIICLiaJbHOTrO NPU3HAYEHHS, a OCTAHHIM YacoM iX 3aCTOCOBYIOTH ITOBCIOIHO - BiJl OOPTOBHX CHCTEM YIPaBIiHHS
miTakoM, 10 moOyroBux mpumaxaiB. PospoOka 6araromponecoprux obuucmoBansHux cucteM (BIIC) 3a3Buuail Mae Ha MeTi HiJBHUIUTH
piBeHb HaxiiiHOCTI ab0 piBEeHb HPOXYKTHBHOCTI CHCTEMH [0 3HAa4YeHb, HEAOCTYNMHHX a00 BaKKUX IS BIPOBA/DKCHHS B TPAIULIHHHX
KOMII'IOTepHUX CHCTeMax. Y IepLIOMYy BUIAJKy BHHHKAE MMUTaHHS PO HAsBHICTH CHELiaIbHUX 3ac00iB 3a0e3MeYeHHs] BiIMOBOCTIHKOCTI
KOMIT'FOTEpHHX CHCTEM, OCHOBHOI OCOOJHBICTIO (I mEpeBarow) siKUX € BiACYTHICTb OyIb-SIKOTO €IMHOTO PEcypcy, BUXiA 3 Jaiay SKOTO
NPU3BOIUTH 10 (aTaJbHOrO BUXOAY 3 Jady Bciel cucTeMH. BHKOpUCTaHHS OnepaiiiiHOl CHCTEMHM B PEXHMI PeaJbHOro 4acy 3aBiKIu
0B’ s13aHe 3 001/ IHAHHAM, 00’ €KTOM, a TaKOX 3 TOAIsAMH, 10 BinOyBaloThCs Ha 00 ekTi. CHcTeMa B PEKMMI PEasIbHOTO 4acy, sIK anapaTHo-
MIPOTrPAaMHUI KOMIUIEKC, BKIIIOYAE TATYHUKH, 110 3aIHMCYIOTh MOJIT Ha 00 €KTi, MOAY/I BBE/ICHHS / BUBEACHHS, SIKi IEPETBOPIOIOTH MTOKA3aHHS
JaTyrKiB y nudpoBy opMy, MpugaTHY Ut 0OpPOOKH IUX TOKa3aHb Ha KOMIT'IOTEpI, 1, HAPEIITi, KOMIT'IOTep 3 MPOrpaMoro, sKa pearye Ha
noxii, mo BinOyBatoThest Ha 00’ekti. RTOS opieHTOBaHAa Ha 00pOOKY 30BHImHIX mojid. Came me NPU3BOAWTH JO HPHUHIMIIOBHX
BigMiHHOCTeH (mopiBHsHO i3 OC 3araipHOr0 NMPU3HAYEHHS) y CTPYKTYpi CHUCTeMH, Y (QYHKLISX sapa, y MOOYIOBI CHCTEMH BBEICHHS-
BuBeneHHs. RTOS moxe Oyt cxorka 3a CBOIM KOPHCTYBAJIBHUIBKHM iHTepdelicoM Ha omnepauiiiHi CHCTeMH 3arajJbHOr0 NpU3HAYCHHS, aje
3a CBOEIO CTPYKTYPOIO BOHa 30BciM iHma. Kpim toro, Bukopucranus RTOS 3asxnu € cnemudivanm. Sxmo OC 3aranbHOro npH3HaYeHHS
3a3BUYall CIPUHMAETHCSI KOPUCTYBauyaMu (a He pO3pOOHMKAMHU) K roToBuid Hadip mporpam, To RTOS cnykuth Juiie iHCTPYMEHTOM st
CTBOPEHHS! KOHKPETHOTO allapaTHO-IIPOIPAMHOI0 KOMIUIEKCY B PEXKUMI PEalIbHOTO 4Yacy. A oTke, HalmmpIuuid kiac kopuctysadiB RTOS -
i PO3POOHUKH KOMIUIEKCIB PEabHOrO 4Yacy, JIIOAH, IO MPOSKTYITh CUCTEMH KOHTPOIMIO Ta 300py AaHuX. Po3polisioun ta nmpoexTyrodn
KOHKPETHY CHCTEMY B PEXHMi PEalbHOTO Yacy, IPOTPaMicT 3aBXIHM TOYHO 3HAE, SIKi MOMIl MOXYTh BimOyTHCS Ha 00 €KTi, i BiH 3Ha€
KPUTHYHI YMOBH OOCIyroByBaHHS KOJKHOTO 3 LHMX MOAi#H. Mu HasuBaeMo cucreMy peansHOro dacy (SRV) amaparHo-nmporpamuum
KOMILIGKCOM, SIKMil pearye B Iepen0adyBaHi 4YacH Ha HeMepeadauyBaHWH IOTIK 30BHiIIHIX mopiif. CHcTeMa IIOBHHHA BCTHTHYTH
BipearyBaTd Ha MOJil0, LIO CTajacs Ha 00 €KTi, MPOTATOM KPUTHYHOTO ii wmiel moxii wacy. Kputuunuid 9ac aist KOXKHOI mOAii
BHU3HAYAETHCSA O0’€KTOM 1 CaMOK MOAI€I0, i, 3BMYaHO, BiH MOXKe OyTH pI3HHM, aje 4Yac peakuii CUCTeMH HEOOXiqHO MependavyuTH
(o6umcIMTH) P CTBOPEHHI cucTeMU. BifcyTHICTB peakiii B mependauyBaHUii Yac BBAKAETHCS OMHIIKOIO UL CUCTEM Y PEXKHMI PeabHOro
yacy. CucremMa MOBMHHA BCTHTHYTH pearyBaTé Ha MOJii, 110 BinOyBarThcs ogHOouYacHO. HaBiTh siKiio 1Bi a00 Oinbliie 30BHIMIHIX MOJiH
BiZOYyBAIOTHCSl OJJHOYACHO, CHCTEMa ITOBHHHA BCTUTHYTH PEAryBaTH HA KOXKHY 3 HHMX NPOTATOM YacOBHX IHTEPBANIB, KPUTHYHUX IS LHX
nozif. Y 1bOMy JIOCHIJDKSHHi, pO3ILIIAEThCS K 4YacTHHAa MepexeBol BiamoBocTilikoi TexHonorii, RTOS crae ocobnuBuM THIIOM
MIPOrpaMHOTO 3a0e3MeueHHs sl YIIPABIiHHS, K€ BUKOPUCTOBYETHCS JUIsl OpraHizanii poOoTH BOYIOBaHHX NOAATKIB, SIKi XapaKTePU3yIOThCS
00MEXEHHUMH pecypcaMy Iam’siTi, HU3bKOK MPOJYKTHBHICTIO Ta BUMOTaMU TapaHTOBAaHOTO 4acy BiAryky (T<4 MKc), BUCOKHM piBHEM
JIOCTYITHOCTI Ta HasBHICTIO 3aC00iB MOHITOPHHTY.

Kniouosi cnosea: omnepariiiHa cHCTeMa PEalbHOrO 4Yacy, BiIMOBOCTIHKICTh, KPHTEpili HagiHHOCTI oOmepamiifHOI CHCTEMH, paHT
BiIMOBOCTIHKOCTI, OIepaliifHa cCcTeMa 3 MOHOJIITHAM SJpOM, CAMOBIJTHOBJICHHS OIEpaliifHOI CHCTEMH, areHT BiJHOBJICHHS

P. Shvahirev, O. Lopakov, V. Kosmachevskiy, V. Salii. Method for assessing of reliability characteristics in designing of failure-
resistant real-time operating systems. For many years, real-time OS-based applications have been used in embedded special-purpose sys-
tems. Recently they have been used everywhere, from on-board control systems for aircraft, to household appliances. The development of
multiprocessor computing systems usually aims to increase either the level of reliability or the level of system performance to values that are
inaccessible or difficult to implement in traditional computer systems. In the first case, the question of the availability of special means of
ensuring the fault tolerance of computer systems arises, the main feature (and advantage) of which is the absence of any single resource,
failure of which leads to a fatal failure of the entire system. The use of a real-time operating system is always associated with equipment,
with an object and with events occurring at an object. A real-time system, as a hardware-software complex, includes sensors that record
events at an object, input / output modules that convert sensor readings into a digital form suitable for processing these readings on a com-
puter, and finally, a computer with a program that responds to events occurring at the facility. The RTOS is focused on processing external
events. It is this that leads to fundamental differences (compared with general-purpose OS) in the structure of the system as well as in the
functions of the kernel and in the construction of the input-output system. The RTOS can be similar in its user interface to general-purpose
operating systems, but it is completely different in its structure. In addition, the use of RTOS is always specific. If users (not developers)

DOI: 10.15276/0pu.2.61.2020.13

© 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[HOOPMALIIMHI TEXHOJIOT'Ii. ABTOMATH3ALILI

ISSN 2076-2429 (print) 109

ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 2(61), 2020

usually perceive a general-purpose OS as a ready-made set of applications, then the RTOS serves only as a tool for creating a specific hard-
ware-software complex in real time. Therefore, the widest class of users of RTOS is the developers of real-time complexes, people designing
control and data collection systems. When designing and developing a specific real-time system, the programmer always knows exactly what
events can occur at the facility, and he knows the critical terms for servicing each of these events. We call a real-time system (SRV) a hard-
ware-software complex that responds in predictable times to an unpredictable stream of external events. The system must have time to re-
spond to the event that occurred at the facility, during the time critical for this event. The critical time for each event is determined by the
object and by the event itself, and, of course, it can be different, but the response time of the system must be predicted (calculated) when
creating the system. Lack of response at the predicted time is considered an error for real-time systems. The system must have time to re-
spond to simultaneously occurring events. Even if two or more external events occur simultaneously, the system must have time to respond
to each of them during time intervals critical for these events. In this study, as part of a network fault-tolerant technology, the RTOS be-
comes a special type of control software that is used to organize the operation of embedded applications, which are characterized by limited
memory resources, low productivity and the requirements of a guaranteed response time (T<4 ps), high level availability and availability of
auto-monitoring facilities.

Keywords: Real-time operating system, fault tolerance, operating system reliability criterion, fault tolerance grade, operating system
with a monolithic kernel, operating system self-healing, recovery agent

Introduction

Basically modern operating systems are still described on architectural principles and solutions,
as at the beginning of their development. At that time, their choice was justified by the state of devel-
opment, the development of computers and their cost, in favor of maximizing efficiency and density
implementation, reduction of any overhead computational expenses [1, 2]. Currently, the situation has
changed significantly. Still use principles that are no longer adequate in relation to the current state of
development. First of all, we are talking about general approach to the design and implementation of
operating systems in favor of ensuring reliability and fault tolerance [3, 4].

Analysis of publications

The design of a fault-tolerant architecture is based on a multi-layer modularity. It allows all sys-
tem components to be split into independent software components that are dynamically linked at initial
initialization. Based on the experience gained, the concept of a single fault-tolerant runtime environ-
ment was developed.

Studies reported at international symposia on software reliability show that the bulk of OS errors
(more than 70 %) are concentrated in drivers. The error rate in them is 3...7 times higher than in ordi-
nary codes. Renowned expert Andrew Tanenbaum estimated [1, 2] the number of bugs per 1000 lines
of code in the Linux kernel from 6 to 16. According to the most conservative estimates, the Linux ker-
nel has about 15.000 bugs [15].

Unsolved problem area is that when creating a specialized RTOS, the principle was not consid-
ered system failure prevention (fault tolerance), since recovery in a number of cases may be associated
with significant processor time or interruption of the computing process. In addition, the mechanisms
remained unresolved ensuring fault tolerance, the main of which are the protocols of voting and col-
lective decision-making. The effect of increasing the number of processor elements (PE) for the total
uptime of the system.

Purpose of the article is devoted to the study of reliability criteria for a specialized distributed
real-time operating system for fault-tolerant systems with a fault tolerance rank of N (N-1), which
means the ability of the system to function even if all elements of the system fail, except for one. The
following tasks were set in order to cover the selected topic fully:

1. Analyzing existing real-time operating systems, highlighting the main functional requirements
for them and giving a comparative description.

2. Conducting reliability analysis of fault-tolerant system and giving recommendations on the or-
ganization of system.

In the article necessary to consider the approaches that underlie the design of guaranteeing sys-
tems and that have found practical applications for critical applications. These approaches are embod-
ied at following various hierarchical levels of system representation:

1. The level of architecture of the computing environment.

2. The level of the operating system or its equivalent monitor that implements system methods of
fault tolerance.

INFORMACION TECHNOLOGY. AUTOMATION

110

IMpaui Oxecbkoro nomitexHiuHoro yHiBepcurery, 2020. Burm. 2(61)

ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

3. The level of hardware or control memory,
which remains “transparent” not only for the user Monolithic modular core
but also for the OS. System mteropt ||| Hardware
Let analyze some of the modern approaches to shutdown handler exception
improve the resiliency of operating systems. Tocalization of e
Operating system architecture and method- the driver that manager
ology for calculating reliability characteristics caused the crash Error
Swift and Bershad [1] propose to use the ap- Recovery Driver
proach of driver isolation. They created a prototype manager .
subsystem called Nooks. Nooks [6] is a monolithic L User
kernel subsystem that allows kernel extensions, 1 .' space
. . . . y ’
such as dynamic device drivers and file system agent [
drivers, to run in isolation in the kernel of the oper-

ating system. In a traditional monolithic kernel, any
error in the driver can damage important kernel
structures. To reduce the risk of the consequences
of errors, Nooks allows drivers to run in specific
areas for which restrictions on recordings are set in the kernel address space. Nooks tracks all access
attempts or failures and provide the ability to recover automatically. In their approach, the authors do
not propose developing new system architecture, but rather improve the reliability of existing systems,
mainly reducing the likelihood of fatal failures associated with system drivers. The authors highlight
three key principles that Nooks complies. The first principle is compatibility. The architecture must be
compatible with existing systems and extensions or with minimal changes (see Fig. 1).

Modern operating systems need to solve a large number of complex tasks. Their unreliability to-
gether with the complexity and size of the system increases sharply due to increasing factors that can
lead the system to failure.

According to studies of software reliability, for every 1000 lines of code there are from 6 to 16
errors, while the size of a modern OS is more than 10 million lines of code.

The current situation is such that inefficient architectural solutions are used in the most advanced
operating systems, which are unable to provide fully a high level of fault tolerance due to their specifics.
The simultaneous combination and satisfaction of all requirements with a high level of ensuring fault
tolerance as well as information security and speed is a complex research and practical problem [7]. The
problem of improving the efficiency of fault tolerance mechanisms is the subject of many studies. As is
well known, the most common OS architectures are monolithic and microkernel. The advantages of
monolithic architecture are widespread use in the OS environment, as well as high speed. The main dis-
advantage is the lack of a breakdown of functionality that meets the requirements of fault tolerance. Al-
most any error in the core of the system leads to the failure of the entire system. One of the advantages of
microkernel architecture is a higher fault tolerance in comparison with monolithic, which is provided by
transferring the basic subsystem to the level of system processes. The main disadvantage of microkernel
architecture [8] is significantly slower performance compared to monolithic, due to the expensive wait-
ing time for switching protection and execution contexts, as well as the processing time of requests be-
tween processes. The problem of the mechanism of ensuring fault tolerance in microkernel and mono-
lithic architecture is that the process of failure processing is reduced to a simple restart. As a rule, a failed
process loses its current state and current data [9]. Formally, the problem of increasing fault tolerance
can be expressed as an increase in the dimension of the sets of localized failures L and recoverable fail-
ures R, which are included in the set of all possible failures E.

The calculation of system fault tolerance indicators can be performed in two stages:

At the first stage, the calculation of the set of probable errors E is carried out with the dynamics
of the growth of system volumes [10]. The increase in errors N is explained by the assumption that
with an increase in the size of the system, the number of errors increases, D is the number of isolation
areas of system failures [11]:

Fig. 1. Organization of an operating system with
isolated drivers

[HOOPMALIIMHI TEXHOJIOT'Ii. ABTOMATH3ALILI

ISSN 2076-2429 (print) 111

ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 2(61), 2020

N
E=—
Kernel 0 J
R= ,
Rrecovered
_________ L: L E '
localized
(Agent) (Module) . ica;e
L .

At the second stage, the fault tolerance index
F is calculated. To calculate the set of localizable
failures L, the coefficient of the degree of localiza-
tion of errors was used Li,izeq. TO calculate the set of recoverable faults R, the coefficient of the de-
gree of recoverability of localized faults Ryecovered Was used. The indicators Licalized @Nd Ryecovered t€Nd t0
unity [10], depending on the volume of the isolated area. In other words, the indicators correspond to
the approximate volume of the system and the degree of ability to determine and localize possible er-
rors and determine the recoverable. That is, the simpler and smaller the functional area, the less errors
should be contained in it. The main difference between domain architecture from monolithic and mi-
crokernel is that the traditional organization of the OS kernel is significantly modified in favor of a
deeper decomposition. At the same time, the analogy of the system core as an application request han-
dler is transferred to the so-called domain objects [12]. Any set of domain objects can be defined in
the system, each of which is responsible for processing requests to child objects, including domain
ones. In accordance with the need to increase the failure rate OS stability and based on the analysis
and identified shortcomings, as well as received by us previous experience in the design and imple-
mentation of OS, was developed the “domain” architecture of the OS has been worked out (see Fig. 2).

For a preliminary assessment of indicators fault tolerance of system architectures was carried out
experimental modeling. Initial data and the simulation results are presented in Table 1.

Fig. 2. Domain model of fault tolerant operating
system

Table 1
The source data and the results of the simulation of fault tolerance
Failure Recovery
Domain Error rate, | Localization rate_ of
System ' - localized L R F
levels E Ratio, .
failures,
I-Iocalized R
recoverad
monolithic 10000 24 1.55 357.14 106.60 0.29
micronuclear 2500 7 1.35 357.14 264.55 0.74
domain 1 2500 7 1.35 357.14 264.55 0.74
domain 2 1250 6 1.3 208.33 160.25 0.76
domain 4 625 5 1.25 125 100 0.8
domain 8 312.50 4 1.2 78.12 65.10 0.83
domain 16 156.25 3 1.15 52.08 45.28 0.86
domain 32 78.12 2 1.1 39.06 35.50 0.9
domain 64 39.06 1 1.05 39.06 37.20 0.95

Assessment of the reliability characteristics of fail-safe OS

The chosen concept of constructing a specialized distributed real-time operating system will al-
low a homogeneous system to function when there is an N-1 failure of processor elements in the sys-
tem. If the probability of disconnecting workable processor modules is not taken into account, an op-
timistic estimate of the probability of failure of the entire system for a certain period of operation and
average operating time system failure [11] can be conducted. Suggesting that the failure flow at each

INFORMACION TECHNOLOGY. AUTOMATION

112 ISSN 2076-2429 (print)
IMpaui Oxecbkoro nomitexHiuHoro yHiBepcurery, 2020. Burm. 2(61) ISSN 2223-3814 (online)

node of the system is the simplest, i.e. stationary, ordinary and without consequences, with the expo-
nential law of the distribution of the length of the interval between adjacent events (failures) [13]:

o] — (t)K =
K (t) e(t),

1
TO:I' PO:e(*t)'

where Py(t) — the probability that exactly “K” events (failures) will occur during time t;

A — flow parameter, failure flow rate;

To — the mathematical expectation of the length of the interval between adjacent events — the
mean time between failures;

Po(t) — the probability that not a single event (failure) will occur during time t, the probability of
failure-free operation.

Denote by Ty — mean time between failures of one system node. For fault-tolerant systems, the

failure state will be understood as the state of fatal failure, i.e. for OS — N(m), this is the state in which
more than “m” system nodes (m+1, m+2, ...) failed. At an arbitrary instant of time t, we can find the
system in one of two states:

— workable with probability R(t),

— in a state of fatal failure, with probability P(t).

If we look at the system, taking into account the health states of each of its N elements (nodes),
then at an arbitrary instant of time t we can find the system in one of 2N states (see Fig. 3).

If we match each node of the system with a discharge of a binary N bit number (0 — the node is
working, 1 — the node has failed), then each such state of the system can be associated with its own
number equal to the value of the entered binary N bit number. To each such state, there is some proba-
bility the system is at time t in this state [13].

All 2N states of the system can be divided into several groups of states, each of which differs
from the others in the number of failed nodes. The zero group (group number Q) contains one state
(CQ =1), in which all nodes of the system are in a healthy state, i.e. There are exactly O failed ele-

ments. The first group includes all states that exactly one node failed (the binary numbers of these
states contain only one unit in the N bit binary code). The number of states included in the first group
is C} =N —the number of combinations of N by 1 (C).

The second group consists of states in which there are two failed elements in the system. These
states are exactly CJ etc.

The i-th group includes all states in which exactly i nodes failed in the system, such states C,L .
The penultimate (N-1) — th group includes C[-* states, i.e. N states.
The last Nth group contains one state (C}} =1), in which all N nodes of the system have failed.

Because at any time, the system can only be in one of all 2N states, then these events are incompat-
ible [14]. Therefore, the probability of finding a system in any of the states belonging to one of the
groups mentioned above can be obtained as the sum of the probabilities of finding the system in all states
of this group. If we take into account that inside each i-th group all states are characterized by the pres-
ence of exactly i failed nodes, then the probabilities for all states of one group are equal, therefore:

R=C\-Pt,)
where P; — the probability of finding the system (at an arbitrary time t) in any of the states assigned to
the i-th group;

P! — the probability of the system being in one specific state, assigned to the i-th group.

All states assigned to the i-th group are characterized by the presence in the system (at an arbi-
trary instant of time t) of exactly i failed nodes and exactly (N-i) serviceable nodes.

[HOOPMALIIMHI TEXHOJIOT'Ii. ABTOMATH3ALILI

ISSN 2076-2429 (print) . . L 113
ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 2(61), 2020

N "
() cg=1 - PO=POL

R O O - O O

RO ® O - O O 2 S
PO OO ~ O X a-n

PR ® O - O O 1
"®O0® - 002 |

6
O
O
®
&

X
® ? - Py =Ci% R,
O

O X X R X1

® O ® - ® ®2 |, o
L ® @ ® - & Oa-N

TR R ® - ® @ ot ncw

Fig. 3. N-node system states

In accordance with the assumption introduced above about the simplest flow of failures (1), the
probability P! can be estimated as follows [14]:

¢ \(N-i) R\
P (t)=[eToy] -[1—eToyJ, 3)

INFORMACION TECHNOLOGY. AUTOMATION

114 ISSN 2076-2429 (print)
IMpaui Oxecbkoro nomitexHiuHoro yHiBepcurery, 2020. Burm. 2(61) ISSN 2223-3814 (online)

where the first bracket corresponds to the fact that (N-i) elements are in a healthy state, and the second
to the fact that i elements have failed. Substituting (3) into (2), we can obtain an expression for calcu-
lating the probabilities P;.

Obviously, for the OS — N (m) system (N node system with a fault tolerance rank m, all system
states included in the groups 0, 1, 2, ..., m belong to those states in which the system functions normal-
ly [15]. In this regard, the probability R(t) can be estimated as follows [15]:

RO=3P. @

The probability of a fatal failure of the OS — N (m) system can be estimated as the sum of the
probabilities of the system being in the states assigned to the groups m+1, m+2, ..., N-1, N [16]:

N
R()= R (5)
i=m+1
The criterion for the correctness of the proposed method [17] is the fulfillment of the condition
R(t)+P(t)=1 for any systems and any values of t.
Combining expressions (2), (3), (42 and (5), we obtain the final formulas for calculating the prob-
abilities of failure-free operation — R¥™(t) and fatal failure — PN™(t) OS — N (m) systems for an arbi-

trary time t:
. ,L N-i t i
RN(m)(t):ZCiNLe Toy} -[1—e Toy} ,
i=0

N—i
N -t -t
RNM () =" c,;[e Toy] -[1—e Toy].
i=m+1

For practical calculations [18], it is advisable to use one of these formulas. Namely, one that has
(depending on the values of N and m) fewer summable terms, i.e. at:

N-1
mz——

2
it is advisable to use the formula PN(m)st) otherwise, the formula R™™(t). In this case, the second pa-
rameter is obtained from the relation RM™(t)+P"™(t)=1.
Thus, for systems of type N (N-1), expressions (6) take the form:

RNM (t)=1— PN®™ (1),
PN (t)=[1—e_ToyJ . @

Let us now consider the determination of the mean time between failures T,N™ of fault-tolerant
OS — N(m) systems.

The non-recoverable N-node fault-tolerant system of the m-th rank (OS — N(m)) can be represent-
ed by a Markov model with the number of states (N+1) (see Fig. 4).

(6)

N (N-1) (N=2)r (N-m)r A
0 1 2 P> “..— m m+lpb—> .- —> N

Fig. 4. Unrecoverable N-node fault-tolerant system of rank m (OS-N (m)): O — a state in which no node in the
system has failed; 1 — condition (uniting a group of system states C% —, in which exactly 1 node

failed; 2 — a state (uniting a group of system states C?), in which exactly 2 nodes failed; m — a state
(uniting a group of system states C[), in which exactly m nodes failed, etc

[HOOPMALIIMHI TEXHOJIOT'Ii. ABTOMATH3ALILI

ISSN 2076-2429 (print) . . L 115
ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 2(61), 2020

The transition from one state to another (with the gradual degradation of the system) is deter-
mined by the intensity of the flow of failures affecting the system in the corresponding state 8. The
intensity of the flow of failures affecting the system in the i-th state is determined by the number of
workable nodes (N-i). The average time the system is in the i-th state is determined as follows:

, 1 1

°T(N-1) (N-1)’ ®)

where A = Tiy — failure rate of one system node [19].
0
A fatal failure of the OS — N(m) system will occur only when the system transitions from state m
to state m+1, therefore, the average time between failures of the OS — N(m) system is equal to the av-
erage time the system was sequentially in states 0, 1, 2 ..., m:

m o o1
ToN():ZTOI :Toy'Toy'ZN i)
i=0 i=0 N —

Expression (8) was obtained on the basis of following fundamental property of the exponential
distribution law: “if the period of time distributed according to the exponential law has already lasted
some time t, then this does not affect the distribution law of the remaining part of the interval: it will
be the same as the law distribution of the entire gap” [20]. This property of the exponential law is es-
sentially one of the formulations for the “absence of aftereffect”, which is the main property of the
simplest flow that we have adopted as a model of the failure flow.

If you enter the designation:

y_ 1

S N-1

then this “reliability coefficient” in accordance with (8) is the ratio of T,"™ to T":
T N (m)

0
T
and shows how many times compared to Ty’ — the average time between failures of one node, the aver-

age time between failures of the OS — N(m) system as a whole has changed [20].

Use formulas (7) and (10), it is possible to evaluate the reliability characteristics of fault-tolerant
systems of type N (N-1).

We take the average time between failures of the node T =10° hours. We calculate the values
of the characteristics according to the formulas (7) and (10).
To simplify the data analysis, we will construct two graphs reflecting the increase in the system relia-
bility with the increase in the hardware part (see Fig. 5 and Fig. 6).

3.75

KN (my = (10)

KN(m) =

3 —
2.25

15 -
/

0.75

Safety factor

0 3 5 8 10
The number of processor elements

Fig. 5. Reliability coefficient

INFORMACION TECHNOLOGY. AUTOMATION

116 ISSN 2076-2429 (print)
IMpaui Oxecbkoro nomitexHiuHoro yHiBepcurery, 2020. Burm. 2(61) ISSN 2223-3814 (online)

o 0.6

=2 o

w £ 045

2 \

=< 03

2w

-80015

= (@©

O Y)

é [S) \\
0 3 5 8 10

The number of processor elements

Fig. 6. The probability of failure of an aircraft of type N (N-1) for 10 years

Results of methodology for calculating reliability characteristics

Domain system when number of domain levels:

1. D =1, corresponds to the fail-safe micronuclear system.

2. D> 1 is able to reduce by about N times the same probable errors in comparison with
micro kernel system and, accordingly, get the value of the resiliency body that will strive for unit (to
full coverage of failures). What makes it possible ness significantly increase fault tolerance in compar-
ison with other architectural approaches.

The analysis of the curves shows that the average uptime is 2...3 times higher than the average
uptime of one processor element while building up computing resources 5...7 times and then stabilizes
and increases slightly. The probability of failure of systems with a fault tolerance rank of N (N-1) de-
creases sharply when considering aircraft, and then its decrease is insignificant. The probability of a
system failure over 10 years with the uptime of one processor element (PE) of 10,000 hours was
0.068, which is 8.5 times less than the probability of a single PE failure over the same period.

Conclusions

A full-scale experiment to determine the reliability of operating systems of various architectures
is practically impossible due to unacceptable time and financial costs. Simulation does not simplify the
task also. Therefore, the only way to solve this problem is to develop simple and adequate models.

We propose approach to the construction of models of operating system architectures under the
adoption of restrictions on the absolute reliability of the equipment, the random nature and independ-
ence of failures in programs without taking into account their recovery and the absence of parallel pro-
cesses in the operation of OS modules. Approach can be used for an initial study of the reliability of
the operation of specific operating system architectures.

Improving the accuracy of modeling results in such models is related to the refinement of the initial
data, which determine the mean time between failures of the modules of the operating system under study
and the intensity of transitions of the system under study from one state to another. To clarify the reliability
characteristics of system modules, it is necessary to build models of reliability changes in identifying and
eliminating software errors and the corresponding statistics of the operating system developer.

The work considered the so-called “domain” approach, which is designed to increase the fault
tolerance of execution systems. The essence of the approach is a mechanism that allows you to organ-
ize reflexive processing of system requests for the controlled space of delegated objects. Based on the
experience gained, the concept of a single fault-tolerant runtime was developed.

A probabilistic model of fault-tolerant aircraft was proposed in the article, its reliability charac-
teristics were calculated, which showed an increase in the average time between failures of the aircraft
by 2.5...3.5 times with expansion of the aircraft to 5...7 nodes, recommendations are given for choos-
ing the type of aircraft during its design.

Jlitepatypa

1. Swift M., Bershad B., Levy H. Improving the Reliability of Commodity Operating Systems. ACM
Transactions on Computer Systems. 2005. Vol. 23, No. 1. P. 77-110.

[HOOPMALIIMHI TEXHOJIOT'Ii. ABTOMATH3ALILI

ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

Proceedings of Odessa Polytechnic University, Issue 2(61), 2020 117

OB wiN

(2]

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

. Cordy J., Shukla M. Practical metaprogramming. IBM Centre for Advanced Studies. 1992. P. 2-9.

. Reekie H., Hylands C., Lee E. Tcl and Java Performance. University of California at Berkley. 1998.

. Krall A. Efficient JavaVM Just-in-Time Compilation. PACT, 1998, 205 p.

. Muller G., Moura B., Bellard F., Consel C. JIT vs Offline Compilers: Limits and Benefits of Bytecode

Compilation. IRISA. 1997. P1 1063.

. Leroy X. Java Bytecode Verification: Algorithms and Formalizations. JOAR. 2005. Vol. 30. P. 3-9.
. An experimental Study of Soft Errors in Microprocessors / G.P. Saggese, N.J. Wang, Z.T. Kalbarczyk

et al. IEEE Micro. 2005. V. 25. Ne6. P.30-39. DOI: 10.1109/MM.2005.104.

. Basili V.R., Perricone B.T. Software errors and complexity: an empirical investigation. ACM 27. 1984.

P. 42-52.

. Suri N., Valter C.J., Hugu M.M. Advances in Ultra Dependable Distributed Systems. Computer Society

Press. 1995. P. 56-61.

Tanenbaym 3., Byaxamn A. Onepanuonssie cucteMbl. Pa3paboTka u peanusanus. 3-¢ uzg. CII6 : Iu-
tep, 2007. C. 254-256.

Tanenbaym 3., boc . CoBpeMeHHBIE orepaniioHHbIe crcTeMBl. 4-¢ m3a. CII6 : [Tutep, 2015. 457 c.
Hazapos C.B., IllupokoB A.M. TexHOJIOTHH MHOTOMOJB30BATEIbCKUX OINEPAIMOHHBIX CHUCTEM. M. !
Wzn. Jlom MUCuC, 2012. C. 98-101.

Haszapos C.B., Bunkxosa H.H. CtpykTypHbIii pe)akTOpUHI MHOTOCJIOHHBIX HPOIPAMMHBIX CUCTEM. HH-
Gopmayuonnvie mexnorocuu u eviuuciumenvuvle cucmemsi. 2016, Ne 4. C. 13-23. URL:
https://elibrary.ru/item.asp?id=27656660 (nata 3Bepuenns: 05.01.2020).

Kensbept M.A., CyxoB KO.M. BeposTHOCTs U CTaTUCTHKA B IpUMeEpax U 3amadax. Tom 2. MapkoBckue
LIeNN KaK OTIpaBHAs TOYKa TEOPUH CIIyYalHBIX MPOIECCOB U UX npmwiokeHus. M. : MITHMO. 2009. C.
145-147.

Hazapos C.B. D¢ ekTHBHOCTh COBPEMEHHBIX ONCPAIMOHHBIX crcTeM. Cogpementble UHPOpMayuon-
Hole mexnonocuuu UT-obpazosanue. 2017. T.13, Ne2. C. 9-24. DOI:
https://doi.org/10.25559/SITITO.2017.2.229

Bacunenko H.B., MakapoB B.A. Mojenu onieHKH HaJIeKHOCTH MPOTPAMMHOTO oOecrieueHus. Becmuux
Hoszopoockoeo eocyoapemeennoco ynusepcumema. Cepusi: Texuuueckue nayxu. 2004, Ne 28. C. 126—
132. URL: https://elibrary.ru/item.asp?id=18184720 (nara 3seprenns: 05.01.2020).

Taxa X. Benenue B uccnenoBanue onepaunii. 7-euszn. M. : Bunbsimc, 2005. C. 34-67.

Mapteimkusa A.M. MaTtemarnueckast MoJIesb TUCTIeTYepa 3a/1ayu ¢ 00IIei ouepeblo A1l CUCTEM Tapajl-
nenpHOU 00paboTku. CogpemenHble Memoodbl U cpedcmea 0opabomKu npoCmpanCmeeHHO-8PEMEHHbIX
cuenanog: coopuuk crareii XI Bceepoccuiickoit HaywuHO-TexHWYeckoil koHpepennuu. I[lemsa : 113,
2013. C. 87-91.

Anpapee A.M., Moxapos I'.I1., Cro3zeB B.B. MHoronpoueccopHble BHIYUCIUTENBHBIE CUCTEMBL: TEOPE-
TUYECKUH aHalu3, MaTeMaTU4yeckue Mojenu U npumeHenue. Mocksa, M3n-so MI'TY um. H.O. bayma-
Ha, 2011, C. 124-156.

Boesomua B.B. ITapamiensasie Berancinenus. CI16. : BXB — [TerepOypr, 2002. C. 145-152.

References

1.

w N

Swift, M., Bershad, B., & Levy, H. (2005). Improving the Reliability of Commodity Operating Sys-
tems. ACM Transactions on Computer Systems, 23, 1, 77-110.

. Cordy, J., & Shukla, M. (1992). Practical metaprogramming. IBM Centre for Advanced Studies, 2-9.
. Reekie, H., Hylands, C., & Lee, E. (1998). Tcl and Java Performance. University of California at Berk-

ley.

. Krall, A. (1998). Efficient JavaVM Just-in-Time Compilation. PACT.
. Muller, G., Moura, B., Bellard, F., & Consel, C. (1997). JIT vs Offline Compilers: Limits and Benefits

of Bytecode Compilation. IRISA, Pl 1063.

. Leroy, X. (2005). Java Bytecode Verification: Algorithms and Formalizations. JOAR, 30, 3-9.
. Saggese, G.P., Wang, N.J. & Kalbarczyk, Z.T. et al. (2005). An experimental Study of Soft Errors in

Microprocessors. IEEE Micro, 25, 6, 30-39.

. Basili, V.R., & Perricone, B.T. (1984). Software errors and complexity: an empirical investigation.

ACM 27, 42-52.

. Suri, N., Valter, CJ., & Hugu, M.M., (1995). Advances in Ultra Dependable Distributed Systems.

Computer Society Press, 56-61.

INFORMACION TECHNOLOGY. AUTOMATION

https://doi.org/10.1109/MM.2005.104
https://doi.org/10.25559/SITITO.2017.2.229

118

ISSN 2076-2429 (print)

IMpaui Oxecbkoro nomitexHiuHoro yHiBepcurery, 2020. Burm. 2(61) ISSN 2223-3814 (online)

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Tanenbaum, E., & Vudkhall, A. (2007) Operating systems. Development and implementation. 3rd ed.
SPb: Piter, 254-256.

Tanenbaum, E., & Bos, E. (2015). Modern operating systems. 4th ed. SPb: Piter.

Nazarov, S.V., & Shirokov, A.l. (2012). Multiuser operating system technologies. Moscow: Ed. House
of MISIS, 98-101.

Nazarov, S.V., & Vilkova, N.N. (2016). Structural refactoring of multilayer software systems. Infor-
mation technologies and computing systems, 4, 13-23. Retrieved from:
https://elibrary.ru/item.asp?id=27656660. (Last access: 5.01.2020).

Kelbert, M.Ya., & Sukhov, Yu.M. (2009). Probability and statistics in examples and problems. Vol. 2.
Markov chains as a starting point of the theory of random processes and their applications. M.:
MCNMO, 145-147.

Nazarov, S.V. (2017). The effectiveness of modern operating systems. Modern information technolo-
gies and IT education, 13, 2, 9-24. DOI: https://doi.org/10.25559/SIT1TO.2017.2.229.

Vasilenko, N.V., & Makarov, V.A. (2004). Models for assessing the reliability of software. Bulletin of
the Novgorod State University. Series: Engineering Sciences, 28, 126-132. Retrieved from:
https://elibrary.ru/item.asp?id=18184720. ((Last access: 5.01.2020).

Taha, H. (2005). Introduction to Operations Research. 7th edition, M.: Williams, 34-67.

Martyshkin, A.l. (2013). Mathematical model of a task manager with a common queue for parallel pro-
cessing systems. Modern methods and means of processing space-time signals: collection of articles of
the X1 All-Russian scientific and technical conference. Penza: PDZ, 87-91.

Andreev, A.M., Mozharov, G.P., & Syuzev, V.V. (2011). Multiprocessor computing systems: theoreti-
cal analysis, mathematical models and applications. Moscow, Publishing house of MSTU im. N.E.
Baumana, 124-156.

Voevodin, V.V. (2002). Parallel computing. SPb.: BHV Petersburg, 145-152.

IIBaripes ITaBao AnaroJiiioBu4; Shvahirev Pavlo, ORCID: https://orcid.org/0000-0003-3913-4412

JlonaxoB Ouekciii CepriiioBuu; Lopakov Oleksii, ORCID: https://orcid.org/0000-0001-6307-8946
Kocmauescskuii Bosiomnvup Botorumuposuy; Kosmachevskiy Volodymir, ORCID: https://orcid.org/0000-0002-3234-2297
Cauiii Bipa IBaniBua; Salii Vira, ORCID: https://orcid.org/0000-0003-2426-5241

Received May 21, 2020
Accepted July 12, 2020

[HOOPMALIIMHI TEXHOJIOT'Ii. ABTOMATH3ALILI

https://doi.org/10.25559/SITITO.2017.2.229
https://orcid.org/0000-0002-8059-6507

