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Mathematical Modeling of the Process
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Abstract. Cutting of solid construction materials during repair and restoration
work is carried out with diamond discs and CBN discs on a metal bond with
speeds up to 80 m/s. The cutting process is accompanied by significant heat
generation, as a result of which the cutting disc heats up intensively. When heated
to a temperature of 500–600 °C, the strength characteristics of the disk are
halved, which can lead to rupture and seizure of the disk and loss of the diamond
layer. Disk heating temperature should not exceed 600 °C. The operating time of
the diamond cutting disc is the time during which it is heated during continuous
operation to a temperature of 600 °C. The cooling media used in cutting are
intensively discarded by the air flows of the boundary layer of air that circulate
near the rotating circle. Knowing the speed and dimensional characteristics of
these flows, we can develop a rational cooling system. The purpose of the study is
to determine the conditions of transportation of cooling media, ensuring their
guaranteed entry into the cutting zone to create the maximum cooling effect. This
work defines the speeds of flowing air in the near-wall area and in the area
tangential to the disk with the help of mathematical modeling. The thickness of
the air layer, which rotates at a speed of up to 0.5 circle speed was determined,
taking this value as the “boundary layer thickness”. The change in air pressure in
the cutting zone between the cutting grains was determined, too. It is established
that air pressure can vary from 0.5–1.7 MPa. In this regard, the cooling medium
supplied under the circle, inevitably displaced from the cutting zone. In order for
the cooling medium to penetrate into the cutting zone, it must be fed under a
pressure that exceeds the air pressure in the cutting zone.

Keywords: Boundary layer � Air pressure � Boundary layer thickness � Cutting
zone �Mathematical modeling � Cooling media � Operating time � Diamond disc

1 Introduction

Cutting solid construction materials during repair and restoration work is carried out
with diamond discs and CBN discs on a metal bundle, the rotation speed of which, and,
consequently, the cutting speed, is 35–80 m/s. Due to the high intensity of the cutting
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process and intensive micro-formation, the cutting process is accompanied by a sig-
nificant heat release.

It should be noted that the base of the diamond discs on which the diamond
abrasive coating is applied is made of ordinary low-alloyed steel, such as Steel 9HFM
(0.9% carbon and up to 1% chromium, vanadium and molybdenum). These steels have
a sufficiently high tensile strength to withstand high centrifugal forces, but low heat
resistance. When heated to the temperature of 500–600 °C, the strength characteristics
of these steels are reduced by almost 2 times, which can cause jamming or even
breakage and rupture of the tool during operation.

In addition, graphitization of diamond cutting grains, that is, the conversion of
tetragonal carbon to hexagonal, also occurs at a temperature of about 600 °C. There-
fore, operation at this disc temperature may result in loss of the diamond layer [1, 2].

Thus, the disk heating temperature should not exceed 600 °C. Therefore, the
operating time of the diamond cutting disc is the time during which it is heated during
continuous operation to a temperature of 600 °C. The longer this time, the higher the
resistance of the diamond disc.

Mathematical modeling was carried out in [1], which allows determining the time
of safe operation up to a critical temperature taking into account the features of heat
exchange between a cutting metal disk and the environment.

This time could be increased by cooling the cutting zone; however, in practice, very
often cooling fluids are intensively discarded by air streams that circulate near the
rotating wheel. Knowing the speed and dimensional characteristics of these flows, we
can develop a rational cooling system.

2 Literature Review

Despite the significant amount of works, there is no description of the case that arises
during the rotation of the cutting diamond disk. The works fall into two groups,
experimental and theoretical. However, as a rule, studies are carried out for very large
Reynolds numbers (of the order of 2,000,000 and higher), while in our case the largest
value of Reynolds numbers is, respectively, for angular velocities:

XD ¼ 30m=s ! Re ¼ 190:5001905

XD ¼ 50m=s ! Re ¼ 245:9346884

XD ¼ 80m=s ! Re ¼ 311:0855085

In addition, experimental data require generalizations, which also require a large
amount of experimental work.

In [3], the boundary layer near a rotating disk is considered, but the work is based
on experiment. In addition, measurements do not take into account the nature of the
disk surface, which makes the model more preferable.

In [4], a mathematical simulation of air flow around a rotating disk was performed.
However, conditions for very large Reynolds numbers are considered and it is
impossible to attach results to our case.
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In [5], the case of a rotating disk in a liquid with very large Reynolds numbers is
considered. The results of this study cannot be used for our case, since the movement in
a liquid is considered.

In [6], the boundary layer of air near a rotating disk is investigated. The work is
experimental. It is difficult to relate to the process under study since generalizations are
needed for small Reynolds numbers.

In [7], a turbulent boundary layer near a rotating disk is considered. Studies are
conducted for very large Reynolds numbers. The results do not correlate with the case
under study.

An experimental study of changes in the boundary layer of a rotating disk was
performed in [8]. This is experimental work. The obtained patterns are difficult to
generalize for other cases.

In [9, 10], the boundary layer near the rotating disk is investigated. This is
experimental work. The obtained patterns are difficult to generalize for other cases.

3 Research Methodology

The purpose of this work is to determine the conditions of transportation of cooling
media, ensuring their guaranteed entry into the cutting zone to create the maximum
cooling effect using the patterns of interaction of the cutting wheel with the ambient air.

The tasks solved in this paper are as follows:

1. Mathematical modeling in order to determine the patterns of change in the velocity
of flowing air in the near-wall area and in the area tangential to the disk.

2. Mathematical modeling to determine the thickness of the air layer, which rotates at
a speed of up to 0.5 circle speed, taking this value as the “boundary layer
thickness”.

3. Mathematical modeling in order to determine the change in air pressure in the
cutting zone between cutting grains because of heating and some compression
during the cutting process.

Calculations are carried out in accordance with the scheme of Fig. 1 [11, 12].

Fig. 1. Design scheme.

Mathematical Modeling of the Process of the Interaction 5
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For this scheme, the Navier-Stokes equation in the moving coordinate system will
be:

@uq
dq

þ uq
q

þ 1
q
@tu
@u

þ @w
@z

¼ 0 ð1Þ

@uq
@t

þðu � rÞuq �
t2u
q
� 2tuXD ¼ � 1

q�

@p
@q

þ v½r2uq �
u2q
q2

� 2
q2

@tu
@u

� ð2Þ

@tu
@t

þðu � rÞtu þ uqtu
q

þ 2uqXD ¼ � 1
qq�

@p
@u

þ v½r2tu þ 2
q2

@uq
@u

� tu
q2
� ð3Þ

@w
@t

þðu � rÞw ¼ � 1
q�

@p
@z

þ vr2w ð4Þ

where, v� kinematic viscosity coefficient; q�� air density; p� excess pressure in the
boundary layer; XD� disk angular velocity; r и r2 gradient and Laplace operator in a
cylindrical coordinate system ðq;u; zÞ.

Instant radial, azimuth and axial speeds uq; tu;w
� �

and instant pressure p can be
decomposed into averaged (time independent) and fluctuation (time dependent) com-
ponents, i.e., Reynolds decomposition.

~uq ¼ U�ðzÞþ u�qðt; q;u; zÞ;~tu ¼ V�ðzÞþ t�uðt; q;u; zÞ;
~w ¼ W�ðzÞþw�ðt; q;u; zÞ ð5Þ

Based on the theory of the boundary layer and taking the axial symmetry (we
exclude all derivatives with respect to the variable u), and also taking into account the
linearity of the solution of system (1)–(4) taking into account decomposition (5), we
write the system of equations for fU�ðzÞ;V�ðzÞ;W�ðzÞg:

@U�

dq
þ U�

q
þ @W�

@z
¼ 0 ð6Þ

U� @U
�

@q
þW� @U

�

@z
� V�2

q
� 2V�XD ¼ � 1

q�

@p
@q

þ v
@2U�

@q2
þ @

@q
U�

q

� �
þ @2U�

@z2

� �

ð7Þ

U� @V
�

@q
þW� @V

�

@z
þ U�V�

q
þ 2U�XD ¼ v

@2V�

@q2
þ @

@q
V�

q

� �
þ @2V�

@z2

� �
ð8Þ

U� @W
�

@q
þW� @W

�

@z
¼ � 1

q�

@p
@z

þ v
@2W�

@q2
þ W�

q
þ @2W�

@z2

� �
ð9Þ

We introduce new functions moving to the dimensionless form
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UðzÞ ¼ U�

qXRo
;VðzÞ ¼ V�

qXRo
;WðzÞ ¼ W�

LXRo
;Pðq; zÞ ¼ p

q�L2vX
2Ro2

ð10Þ

and for vertical and radial directions n ¼ z=L; L ¼ ðv=XÞ1=2; r ¼ q=L
We obtain the following system of differential equations:
Options Ro and Co ¼ 2� Ro� Ro2 were studied in [12].

Bödewadt flow: Ro ¼ 1 Co ¼ 0 X ¼ XF

Ekman flow: Ro ¼ 0 Co ¼ 2 X ¼ XF ¼ XD

Von Kármán: Ro ¼ �1 Co ¼ 2 X ¼ XD

The boundary conditions are written as follows:

Uð0Þ ¼ kU0ð0Þ; Vð0Þ ¼ gV 0ð0Þ; Wð0Þ ¼ 0; lim
z!1fUðzÞ;VðzÞg ¼ f0; 1g

where, k; g� experimental coefficients of the surface roughness of the circle in the
radial and angular directions, respectively.

The boundary conditions for a smooth disk are set at k ¼ g ¼ 0. Special cases
g[ 0; k ¼ 0� (concentric grooves, Fig. 3) and g ¼ 0; k[ 0� (radial grooves Fig. 2)
correspond to anisotropic roughness of the radial and azimuth, the case when
k ¼ g 6¼ 0� corresponds to isotropic roughness Fig. 4. Initial values for U0ð0Þи V 0ð0Þ
for different roughness parameters k and g when Ro ¼ �1и Co ¼ 2 presented in the
tables of sources [1, 2].

Introducing new functions,
/1ðzÞ ¼ UðzÞ; /2ðzÞ ¼ U0ðzÞ; /3ðzÞ ¼ VðzÞ; /4ðzÞ ¼ V 0ðzÞ; /5ðzÞ ¼ WðzÞ, trans-

form the system of Eqs. (6)–(10) into the corresponding system the first order differ-
ential equations:

/0
1ðzÞ ¼ /2ðzÞ; /0

2ðzÞ ¼ Ro /2
1ðzÞþ/5ðzÞ/2ðzÞ � ð/2

3ðzÞ � 1Þ� �� Coð/3ðzÞ � 1Þ
/0
3ðzÞ ¼ /4ðzÞ; /0

4ðzÞ ¼ Ro 2/1ðzÞ/3ðzÞþ/4ðzÞ/5ðzÞð ÞþCo/1ðzÞ; /0
5ðzÞ ¼ �2/1ðzÞ

ð11Þ

/1ð0Þ ¼ k/0
1ð0Þ; /3ð0Þ ¼ g/4ð0Þ; /5ð0Þ ¼ 0; lim

z!1f/1ðzÞ;/3ðzÞg ¼ f0; 1g ð12Þ

Fig. 2. Radial grooves. Fig. 3. Concentric grooves. Fig. 4. Isotropic roughness.

Mathematical Modeling of the Process of the Interaction 7
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Figures 5a, b, c present studies of the dependence of the averaged radial U(z),
tangential V(z) and axial W(z) components of the velocity field of the roughness
parameters. Considered cases of radial g[ 0; k ¼ 0 (Fig. 5a) and isotropic roughness
k ¼ g 6¼ 0 (Fig. 5b, c).

Based on the theory of the boundary layer and taking the axial symmetry (ex-
cluding all derivatives with respect to the variable u), as well as considering the
temperature, relatively fu�q; t�u;w�g we can write the following dynamic system of
equations:

@u�q
dq

þ u�q
q

þ @w�

@z
¼ 0 ð13Þ

@u�q
@t

þ u�q
@u�q
@q

� t�2u
q

þw� @w
�

@z
¼ � 1

q�

@p
@q

þ v½@
2u�q
@q2

þ @

@q
ðu

�
q

q
Þþ @2u�q

@z2
� ð14Þ

@t�u
@t

þ u�q
@t�u
@q

þ uqt�u
q

þw
@t�u
@z

¼ v½@
2t�u
@q2

þ @

@q
ðt

�
u

q
Þþ @2t�u

@z2
� ð15Þ

@w�

@t
þ u�q

@w�

@q
þw� @w

�

@z
¼ � 1

q�

@p
@z

þ v½@
2w�

@q2
þ 1

q
@w�

@q
þ @2w�

@z2
� ð16Þ

q�Cp
@T
@t

þ u�
@T
@q

þw� @T
@z

� �
¼ k

@2T
@q2

þ 1
q
@T
@q

þ @2T
@z2

� �
ð17Þ

where Cp � specific heat; k� coefficient of thermal conductivity.

Fig. 5. Dependencies in dimensionless form of averaged radial U(z), tangential V(z) and axial
W(z) components of the velocity field of the roughness parameters. a – radial roughness, b, c –

isotropic roughness.
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The boundary conditions for speeds and temperatures are

u� t; q; zð Þjz¼0¼ 0; t�u t; q; zð Þ
���
z¼0

¼ qX0 1� atð Þ�1;w� t; q; zð Þjz¼0 ¼ 0; T t; q; zð Þjz¼0 ¼ TD

u� t; q; zð Þ ¼ 0; t�uðt; q; zÞ ¼ 0; pðt; q; zÞ ¼ 0; T ¼ T1 npu z ! 0

9=
;

where X0ð1� atÞ�1� disk angular velocity; a� determines the rate of change of the
angular velocity of the disk; TD� disk temperature a� disk acceleration.

Using the transformations proposed in [1, 2] we have:

u�ðt; q; zÞ ¼ qX0ð1� atÞ�1FðgÞ; t�uðt; q; zÞ ¼ qX0ð1� atÞ�1GðgÞ
w�ðt; q; zÞ ¼ �2

ffiffiffiffiffiffiffiffi
vX0

p ð1� atÞ�1=2HðgÞ; pðt; q; zÞ ¼ �qvX0ð1� atÞ�1PðgÞ
Tðt; q; zÞ ¼ T1 þ ðTd � T1ÞHðgÞ

ð18Þ

Where g ¼ z
ffiffiffiffiffiffiffiffiffiffi
X0=v

p ð1� atÞ�1=2� new variable.
Instead of system (13)–(17), we obtain the following system of differential equa-

tions for new functions:

H0ðgÞ � FðgÞ ¼ 0 ð19Þ

F
00 ðgÞþ 2HðgÞF 0 ðgÞ � F2ðgÞþG2ðgÞ � ~aðFðgÞþ g2�1F

0 ðgÞÞ ¼ 0 ð20Þ

G
0 ðgÞþ 2HðgÞG0 ðgÞ � 2FðgÞGðgÞ � ~aðGðgÞþ g2�1G

0 ðgÞÞ ¼ 0 ð21Þ

P
0 ðgÞ � 4HðgÞFðgÞ � 2F

0 ðgÞþ ~aðHðgÞþ gFðgÞÞ ¼ 0 ð22Þ

H
00 ðgÞþ 2PrHðgÞH0 ðgÞ � g

2
~aPrHðgÞ ¼ 0 ð23Þ

where ~a ¼ a=X0� dimensionless parameter; Pr ¼ Cpl


k� Prandtl number.

The corresponding boundary conditions for the velocity and temperature fields (23)
transform into:

F gð Þjg¼0 ¼ 0;G gð Þjg¼0 ¼ 1;H gð Þjg¼0 ¼ 0;H gð Þjg¼0 ¼ 1;

F gð Þ ¼ 0;G gð Þ ¼ 0;P gð Þ ¼ 1;H gð Þ ¼ 0 npu g ! 0

�
ð24Þ

Introducing new functions,

/1ðgÞ ¼ FðgÞ; /2ðgÞ ¼ F
0 ðgÞ; /3ðgÞ ¼ GðgÞ; /4ðgÞ ¼ G0ðgÞ;

/5ðgÞ ¼ HðgÞ; /6ðgÞ ¼ HðgÞ; /8ðgÞ ¼ H
0 ðgÞ;

transform the system of Eqs. (19)–(23) into the corresponding system of differential
equations of the first order:

Mathematical Modeling of the Process of the Interaction 9
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/0
1ðgÞ ¼ /2ðgÞ; /0

2ðgÞ ¼ /2
1ðgÞ � /2

3ðgÞ � 2/2ðgÞ/5ðgÞþ ~að/1ðgÞþ g2�1/2ðgÞÞ
/0
3ðgÞ ¼ /4ðgÞ; /0

4ðgÞ ¼ 2/1ðgÞ/3ðgÞ � /4ðgÞ/5ðgÞþ ~að/3ðgÞþ g2�1/4ðgÞÞ
/0
5ðgÞ ¼ /1ðgÞ; /0

6ðgÞ ¼ 4/1ðgÞ/5ðgÞþ 2/2ðgÞ
ð25Þ

/1 gð Þjg¼0 ¼ 0;/3 gð Þjg¼0 ¼ 1;/5 gð Þjg¼0 ¼ 0/6 gð Þjg¼0¼ 1;

/1 gð Þ ¼ 0;/3 gð Þ ¼ 0;/6 gð Þ ¼ 0 npu g ! 0

�
ð26Þ

Initial values for F′(0), G′(0) and H(∞) for various parameters ~a are shown in
Table 4 [12].

The results of numerical studies of the dependence of the radial F(η), tangential G
(η) and axial H(η) velocity field components for various parameter values ~a are pre-
sented in Fig. 6a, b, c. From the above figures it can be seen: the change in the radial
component F(η) (Fig. 6a) indicates that the boundary layer becomes thinner and more
pronounced with increasing ~a; the boundary layer becomes thinner G(η) (Fig. 6b), it
shows that the speed of rotation of the boundary layer is less than the speed of the disk
at small values of the parameter ~a; characteristic decrease in the thickness of the
boundary layer with increasing ~a can be seen on the graph for the axial component H(η)
(Fig. 6c).

The expression for estimating the thickness of the boundary layer is:

dT ¼ gd
ffiffiffiffiffiffiffiffiffiffi
v=X0

p
ð1� atÞ1=2 ¼ gd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=XðtÞ

p
ð27Þ

Where, ηd measure of the dimensionless thickness of the thermal boundary layer,
defined as the value η, at which the dimensionless temperature has dropped to one
percent of its value on the disk, i.e. HðgdÞ ¼ 0:01.

Fig. 6. The results of numerical studies of the dependence in dimensionless form of the radial F
(η), tangential G(η) and axial H(η) velocity field components for various parameter values ᾶ. a, b
graphs are given for a fixed value of the Prandtl number - and various values of the dimensionless
parameter ᾶ, 6 b with fixed parameter ᾶ = −1 and different values of the Prandtl number.
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To go from dimensionless to dimensional values, it is necessary to solve Eq. 24
with respect to X0.

It can be argued that near the cutting wheel there is always a boundary layer of air
2–3 mm thick rotating with it (if we assume the thickness of the boundary layer to a
speed of 0.5 disk speed), which penetrates into the zone of contact of the cutting circle
with the part. The interaction of this air with the components of the cutting zone is
discussed below (Fig. 7).

The interaction of air with the wheel and with the detail in the contact zone can be
considered on the basis of the following considerations.

If we consider the space enclosed between the conditional outer surface and the
conditional surface of the ligament, then we can see that this space is filled with grains
protruding from the ligament, between which there is air. Thus, between the grains, the
grinding wheel and its conventional surfaces there are some amounts of air. During the
cutting of material around, the grains of the latter will partially go deep into the
material, and partly into the bundle. This will lead to the fact that the distance between
the conditioned surfaces will decrease, and, consequently, the volume of air will also
decrease, i.e. the air will shrink.

In addition, when cutting metal grains of a circle, a high temperature occurs, a large
heat release occurs, as a result of which the temperature of the air enclosed between the
grains of the circle should increase.

Thus, when grinding, the air that has penetrated into the zone of contact of the
wheel with the part is subjected to simultaneous compression and heating, and there-
fore the Clayperon equation can be applied in the first approximation. In accordance
with this equation, the air pressure will be:

Pair ¼ RT=V ð28Þ

where, R - universal gas constant; V - the volume of air in the zone of contact of the
circle with the sample between the grains, the bundle and the workpiece; T - tem-
perature in °K in the contact zone.

The increase in pressure due to compression and increase in air temperature can be
calculated by the expression

Fig. 7. Vw-speed of the circle, Vs-speed of the sample.

Mathematical Modeling of the Process of the Interaction 11
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Pair ¼
Tgr þ 273
� �

D

293 D� f � f1ð Þ � 0; 1MPa ð29Þ

where, Tgr - grain cutting temperature D - the center of the distribution curve grouping
describing the removal of the vertices of the grains from the conditional surface of the
ligament, f, f1 - the deepening of grain in the bundle and in the material under the action
of force Py.

All these values are taken by source [13]. The results of the calculation of air
pressure in the zone of contact of the circle with the part are shown in Fig. 8.

4 Results

As a result of the research conducted, it has been established that around a rotating
cutting wheel there is always a boundary layer of air 2–3 mm thick, regardless of the
roughness of the circle surfaces.

The air flow of the boundary layer discards cooling media from the cutting zone.
In addition, despite the fact that the speed of the air flow is somewhat less than the

speed of rotation of the circle, this layer penetrates into the zone of contact of the circle
with the part where it undergoes some compression and considerable heating.

As a result, the air pressure in the zone of contact of the circle with the part
increases to 0.5–1.5 MPa. This prevents the penetration of cooling media into the
cutting area, so cutting is almost always carried out “dry”.

Fig. 8. The calculated dependences of the air pressure in the zone of contact of the cutting wheel
with the part. 1, 2, 3-curves for grains 25, 16, 12. Curve 4 - Pair air pressure dependence on wheel
speed f(Vw), 5 - Pair - air pressure dependence on speed of specimen f(Vsp). 6 - Pair - air pressure
dependence on size of grain. Mode of grinding- Vsp speed of specimen = 0.15 m/s; Vw speed of
wheel = 30 m/s; S cross feed = 2 mm per stroke. Material – ZrO2 HRC = 62, machine-tool
3G71.
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5 Conclusions

Mathematical modeling in order to determine the patterns of change in the velocities of
the flowing air in the near-wall region and in the area tangential to the disc made it
possible to determine these values for specific cutting conditions of stone materials.

Mathematical modeling to determine the thickness of the air layer, which rotates at
a speed of up to 0.5-wheel speed, taking this value as the “thickness of the boundary
layer” made it possible to determine the thickness of the air boundary layer near the
rotating cutting wheel, determine the velocity distribution over the thickness of this
layer and prove that the air is always in the contact zone of the circle and the part.

Mathematical modeling to determine the change in air pressure in the cutting zone
between cutting grains during heating and some compression during the cutting process
made it possible to determine that air pressure can vary from 0.5 to 1.5 MPa. In this
regard, the cooling medium supplied under the circle, inevitably displaced from the
cutting zone.

In order for the cooling medium to penetrate the cutting zone, it must be fed under a
pressure that exceeds the air pressure in the cutting zone.
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