
Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

99

UDC 519.718.7:681.3.069

S. S. Surkov,

O. N. Martynyuk, PhD.

IMPROVEMENT OF SECURITY FOR WEB SERVICES BY RESEARCH

AND DEVELOPMENT OF OAUTH SERVER

 Abstract. With the crucial growth of information-technologies is rapidly growing sociability. The clearest exam-

ple - there are many social networks. To solve the problem of authorization for third-party web services use OAuth

protocol, which asks user to enter his credentials in Web-browser or native application and as a result gives to applica-

tion access token is used for authorization with REST-API to identify user. All social networks such as Facebook, Twit-

ter, Google+, Foursquare, Evernote, VK provide REST-APIs protected by OAuth 1.0a or OAuth 2.0.

For implementation of web services developers use custom frameworks. In this work, we researched, developed

and analyzed OAuth library for creation of web-services built on JAX-RS 2.0 framework.

For verification and comparison our solution with others we plan test all the solutions by test suite which allows

to achieve high number of concurrent connections. To reduce workload on test server we are going to launch test suite

on a different PC. After achieving the results, we will compare them to existing solutions and analyze our solution for

weak points.

Keywords: Server, Java, OAuth, REST API, Load Testing

С. С. Сурков,

А. Н. Мартынюк, канд. техн. наук

ПОВЫШЕНИЕ ЗАЩИЩЕННОСТИ ВЕБ-СЕРВИСОВ ПУТЕМ ИССЛЕДОВАНИЯ

И РАЗРАБОТКИ OAUTH СЕРВЕРА

 Аннотация. Веб-сервисы без какой-либо защиты REST API очень уязвимы для многих видов сетевых

атак. Для того, чтобы надежно защитить веб-сервис от сетевых атак был создан протокол OAuth. Эта

статья описывает наше исследование и разработку серверной библиотеки OAuth, построенной на фреймворке

JAX-RS 2.0 и нагрузочное тестирование вновь созданной библиотеки и других существующих решений.

Ключевые слова: сервер, Java, OAuth, REST API, нагрузочное тестирование

C. С. Сурков,

О. М. Мартинюк, канд. техн. наук

ПІДВИЩЕННЯ ЗАХИЩЕНОСТІ ВЕБ-СЕРВІСІВ ШЛЯХОМ ДОСЛІДЖЕННЯ

І РОЗРОБКИ OAUTH СЕРВЕРА

Аннотація. Веб-сервіси без будь-якого захисту REST API дуже уразливі для багатьох видів мережевих

атак. Для того, щоб надійно захистити веб-сервіс від мережевих атак був створений протокол OAuth. Ця стаття

описує наше дослідження і розробку серверної бібліотеки OAuth, побудованої на фреймворку JAX-RS 2.0 і

навантажувальне тестування новоствореної бібліотеки та інших існуючих рішень.

Ключові слова: Сервер, Java, OAuth, REST API, Тестування навантаження

Introduction. With the crucial growth of
information-technologies is rapidly growing
sociability. To solve the problem of authoriza-
tion social networks OAuth protocol is used,
which is an open authorization protocol that
allows third party applications to provide lim-
ited access to protected resources without trans-
ferring to server username and password. For
example, a social network developer who wants
to provide an access to user’s friend list to third
party developer is not required to share with
third party developer email and password.

© Surkov S.S., Martynyuk O.N., 2016

Instead, user authorizes directly to the so-
cial network, which (with the permission of the
user or administrator of the web-service) pro-
vides permissions to the friend list. All social
networks such as Facebook, Twitter, Google+,
Foursquare, Evernote, and VK provide REST-
APIs protected by OAuth 1.0a or OAuth 2.0.

Analysis of existing solutions of OAuth
server implementations showed that for HTTP
POST request method request body is not used
in the calculation of OAuth signature. This vul-
nerability allows modifying the content of the
request during transmission. On the other hand,
many third party libraries are not open-source
and many have licensing problems for commer-

Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

100

cial use. Furthermore, there’s not much Java
libraries which wouldn’t require any specific
framework and bring a lot of dependencies and
have a good performance.

This paper is a further development of our
previous article [1] and fully implements pro-
posed in that work solution. In [2] we’ve pro-
posed a solution which would require browser
on smartphone side. As this library supports
XAuth communication smartphone approach
would be no longer required for developers who
would develop client and server side using pro-
posed library in this work. This library is fully
compatible for migration from single server to
server cluster [3 – 4] approach what we created.

Aim of the work: increase security of web
services. To achieve this aim we investigated
plenty of authorization protocols and found pro-
tocol OAuth 1.0a as the most secure. In work
for modification of OAuth protocol [2] we sig-
nificantly increased security of OAuth 1.0a pro-
tocol.

In this paper we improve security of OAuth
protocol by developing library which would be
easily implemented by web service developers.
To achieve this aim we develop a feasible li-
brary, which implements OAuth protocol for
JAX-RS 2.0 framework, which should be: easy
to be modified, easily to be integrated in project,
ensure compatibility with protocols OAuth 1.0a
XAuth. The library allows creating secured
REST API, which are used for creation of dy-
namic web sites and desktop or mobile applica-
tions.

The main advantage of OAuth [5 – 6] pro-
tocol is that username and password are sent to
server from web-browser window and are not
exposed to third party app. To enter username
and password web browser window or native
mobile application is used to ensure that third-
party developers would not have unauthorized
access to user’s credentials especially when web
service provides REST-API to public. For trust-
ed applications, web service developer could
allow using xAuth protocol to pass directly log-
in and password from user’s authentication and
this will significantly easier for application de-
veloper and still secure. But in this case there’s
a potential possibility that third party applica-
tion developer could collect user’s credentials.

This gives user more reasons to trust the

application, as user can be sure that his creden-
tials wouldn’t be stolen from web browser win-
dow by third party apps. In modern mobile apps
to get access token instead of browser window
could be used native mobile applications. In this
case application which use Facebook API first
try to use official Facebook app tries to open
native application first and then if there’s no
application then browser window is opened.

Responsibility to trust applications, which
use xAuth, depends on how much web service
developer trusts third party app developer. After
successful authentication in web browser third-
party app retrieves access token with is meant to
be used for REST API requests.

If user is already authorized in web-service,
he doesn’t need to enter his credentials the sec-
ond time in order to user the app. Necessity of
authorization depends on access token lifetime.
If access token is about to expire then applica-
tion refreshes this token to continue work with
REST service. In this case authorization will be
required if user didn’t use the app for access
lifetime.

For development of OAuth[5,6] protected
web-services, typically are used two or three
legged approach. The main difference between
them is that in two-legged implementation does
not involve user and only application is author-
ized. In this case, if the user wants to access the
data by Twitter, it uses a three-legged server as
access token needs to be requested for user in
third party application, instead of application
token for Twitter application. The library will
provide both two and three-legged server, since
it is more practical for everyday use [7].

The sequence of OAuth protocol includes
the following steps:

• consumer requests a token from the serv-
er;

• consumer then is redirected to authoriza-
tion page;

• consumer logs in and is redirected back to
the consumer with access token;

• consumer receives an access token, and
requests OAuth token, which will be used in
future to make secured REST API requests [8].

General structure. We created OAuth
server library for wide used JAX-RS frame-
work. To integrate the library with third applica-
tion interface OAuthProvider which describes

Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

101

work with database needs to be implemented.
In test application, we use Grizzly applica-

tion server, MySQL and JDBC in implementa-
tion of each API and OAuthProvider interface.
To work with MySQL server library Apache
DBCP is used, which manages a pool of con-
nections MySQL and manages release of the
connection.

The library supports plain text, HMAC-
SHA1 and RSA-SHA1 signatures of request. To
sign, verify or generate OAuth request class
OAuthSignature is used.

The class diagram of implementation of
OAuth signatures is shown in Fig. 1.

This web container accepts HTTP[9] con-
nections and processes them in its own thread
pool. After registered method according to its
annotation by JAX-RS is called.

To register a method annotation should be
added which describe HTTP method such as
GET, POST, PUT, etc. After this annotation for
API PATH, should be also added e.g.
@Path(“/path/to/api”).

To access the database for test application
software design pattern DAO (Data Access Ob-
ject) is used. To use this software design pattern
in JAX-RS there are DAO factory instances.

DAP is injected into class when annotation
is present. After JAX-RS finds annotation in
class then DAO factory matches class type and

provides DAO object.
To make the library truly easily used with

JAX-RS framework annotation
@OAuthImplementationRequired was imple-
mented and registered in JAX-RS.

With it web service developer indicates
REST APIs which are meant to be secured with
OAuth protocol.

Implementation of signature of request

for OAuth server. A particularly important part
of OAuth 1.0a implementation is signature of
request. We implemented OAuth signature by
specification in three algorithms: RSA SHA1,
HMAC SHA1 and plain text. The last option is
not safe as an attacker might capture keys.

However, when using SSL 2.0 encryption
and certificate validation on client side, from
performance point of view this option is the best
because it takes less computing resources.

The main class OAuthSignature allows to
third party developer to sign and verify the
OAuth requests. It can work with any signature
classes, which that implement OAuthSigna-
tureMethod interface that requires the imple-
mentation of three methods: name, sign, verify.

Objects of these classes are created in the
factory Methods, which guarantees they will be
created only once.

PLAINTEXT()

Stringname()

Stringsign(String, OAuthSecrets)

booleanverify(String, OAuthSecrets, St

PLAINTEXT

Stringname()

Stringsign(String, OAuthSecrets)

booleanverify(String, OAuthSecrets,

OAuthSignatureMethod

UnsupportedSignatureMethodException()

UnsupportedSignatureMethodException(String)

UnsupportedSignatureMethodException

RSA_SHA1()

Stringname()

Stringsign(String, OAuthSecrets)

booleanverify(String, OAuthSecrets,

RSA_SHA1

InvalidSecretException()

InvalidSecretException(String)

InvalidSecretException

OAuthSignatureException()

OAuthSignatureException(String)

OAuthSignatureException(Throwable)

OAuthSignatureException

HMAC_SHA1()

Stringname()

Stringsign(String, OAuthSecrets)

booleanverify(String, OAuthSecrets, Stri

HMAC_SHA1

Stringgenerate(OAuthRequest, OAuthParameters, OAuthSecrets)

voidsign(OAuthRequest, OAuthParameters, OAuthSecrets)

booleanverify(OAuthRequest, OAuthParameters, OAuthSecrets)

StringnormalizeParameters(OAuthRequest, OAuthParameters)

URIconstructRequestURL(OAuthRequest)

Stringelements(OAuthRequest, OAuthParameters)

OAuthSignatureMethodgetSignatureMethod(OAuthParameters)

voidaddParam(String, String, List<String[]>)

OAuthSignature

OAuthSignatureMethodgetInstance(String)

HashMap<String, OAuthSignatureMethod>loadMethods()

Methods

«create»

«create»

*

1

«create»

«create»

«create»«create»

Fig. 1. Test Server UML diagram

Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

102

Generation of Request Token. The first
step of authorization is retrieving valid request
token, which authorizes client application. To
do this we developed API, which generates re-
quest token.

To get request token application validation
is required the same way as in registration API
except in this API no OAuth token is issued.

After successful verification, new request
token is returned to user and kept in temporal
database in server.

Third party application should open login
page after receive request token. In case of suc-
cessful authorization parameter oauth verifier
will be received.

The difference between request token and
oauth token is that request token authorizes ap-
plication and oauth token authorizes user.

After OAuth verifier is received it’s needs
to be exchanged to oauth token and oauth token
secret. After successful response is received
user can make requests to web service.

On server side in database entry which as-
sociates user and OAuth token and OAuth token
secret is created.

To exchange request token and OAuth veri-
fier we created API which checks request token
and verifier and issues oauth token.

The retrieved OAuth token and OAuth to-
ken secret user's application must store and use
for future requests.

Implementation details of the validation

request. Once the user OAuth token, every re-
quest which is protected by OAuth needs to be
validated on server side.

The difference for verifying request token
and access token is access token authorizes user
and is taken from different database.

From the algorithm there are three im-
portant steps: verify that oauth token is valid,
calculate signature string and hash of it and ver-
ify the request. Algorithm validation of request
shown in Fig. 2.

On the first step the library simply looks in-
to oauth tokens database and finds if this token
is valid.

On the second step, if the token is valid
then it constructs signature string with oauth
token secret part from database.

In the third step hash of signature string
with database token is compared to hash in re-

quest and if it doesn’t match then not successful
response is sent to client.

Create Signature String and

calculate SHA-1 hash of base

signature string

Start

Verify if oauth token

exists in database

Verify Signature String

Hash, nonce, timestamp

Finish

Successful authorization

response

Not successful authorization

response

No

No

Fig. 2. The algorithm of validation
OAuth request

Testing OAuth library. To test perfor-
mance and workload of the library we used
Apache JMeter for REST API with OAuth
authorization and without it.

To separate server and test application
workload and get more precise results we ran
Apache JMeter on different PC in the same
local network. For test we used 50 concurrent
threads.

Configuration of Test PC and Server PC is
shown in Table below.

Configuration of Test PC and Server PC

Parameter Server PC Test PC

CPU Core i7-

3770K

(4C/8T)

Core i5-3570K

(4C/4T)

RAM 16Gb 16Gb

Main Storage SSD 256G SSD 256G

OS OS X 10.11

El Capitan

OpenSuse

Linux 42.1

As client software we used Apache JMeter
with OAuth 1.0a authentification plugin and
during the each test get a table with processing
time for every request request.

After the results are retrieved we analyze
them by calculating averare processing and after
that we create plot, In Fig. 3 configuration for
API secured OAuth is shown.

Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

103

Fig. 3. Configuration for OAuth request

As optimal amount of requests we choose
100000 requests based on average test time to
show us full picture.

For OAuth protected API and not protected
API we analyzed results and created plots.

For API which is not protected by OAuth
average execution time are 2.391 milliseconds.

Plot that shows execution time for every re-
quest for not-protected API is shown in Fig. 4.

For protected API by OAuth average pro-
cessing time is 4.946 milliseconds. This increas-

ing of processing time is because of calculation
of base signature string and comparing hashes.
But security of REST API in this case is signifi-
cantly improved.

Plot that shows execution time for every re-
quest for OAuth-protected API is shown in
Fig. 5.

Analyzing the results, we created plot,
which shows requests per minute for OAuth-
protected request and not OAuth-protected plain
request.

Fig. 4. Execution time for non-protected API

Fig. 5. Execution time for protected API

Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

104

For OAuth-protected API average request
per minute (rpm) is 8323 and for non-protected
API is 11393 rpm.

The plot which shown requests per minute
for protected and not-protected API in Fig. 6.

Fig. 6. Requests per minute for OAuth and
plain request

Results tell us that to protect REST API by
OAuth protocol requires more processing pow-
er. But in exchange web service developer guar-
antees high security of his REST API.

In comparison with other solutions which
give us a bit worse result 7998RPM for protect-
ed API we achieved extra security, solved li-
censing problems. And we achieved a small
speed boost because of the difference in imple-
mentation of the libraries which is 3,86 %.

Requests per minute are heavily depend on
PC configuration as we changed roles of test PC
and server and we got 6370RPM for Core i5
3570K at the same frequency 3.5GHz but it has
4 cores and 4 threads and does not support Hy-
per Threading as Core i7 3770K does, which
has 4 cores and 8 threads (8 virtual cores). In
our case having CPU with Hyper Threading
technology with additional 4 virtual cores gave
us 20 % boost for RPM.

To confirm that Hyper Threading gave us
such boost we tested again with 3770K and with
disabled hyper threading and results are identi-
cal to 3570K with the same frequency.

Analyzing the result, we can conclude that
to choose the hardware to use our OAuth server
library you need to clarify first how many re-
quests per minute you need to achieve. Then
you need to run the same tests as we did on your
server and make sure it satisfies your require-
ment. In case you want to upgrade your server
our recommendation is to choose CPU with

many cores as possible to handle as many as
possible concurrent requests.

If upgraded server still doesn’t satisfy your
expectations, then we recommend following our
method of migration from single server to server
cluster [3;10 –11].

Conclusion. The result of our research and
development is convenient and easily integrated
OAuth server library, which uses JAX-RS
framework and fully implements OAuth proto-
col server side.

To integrate library to existing project de-
veloper only needs to implement OAuthProvid-
er interface to work with database.

The library meets the aims set in the work:
easily modifiable, easily integrable and supports
protocols OAuth 1.0a and xAuth.

Testing showed that library can survive
very high workloads but requires more pro-
cessing power in comparison with plain non-
protected request.

Comparing our library to existing solutions
we achieved extra security, solved licensing
problems and a speed boost of 3,86 %. Other
than this the library showed pretty good optimi-
zation for multi core CPUs and gave 20 % boost
for CPU with enabled Hyper-Threading.

In future, this library will be optimized for
performance and memory. Other than this we’ll
add built-in support for migration of single
server to server cluster and analyze the depend-
ency of requests per minute to number of server
in cluster.

References

1. Surkov S.S., Martynyuk O.M., and
Mileiko I.G., (2015), Modification of Open Au-
thorization Protocol for Verification of Request,
Electronic and Computer System, Special Edi-

tion, No. 19 (95), Odessa, Ukraine, pp. 178 –
181.

2. Surkov S.S., and Martynyuk O.N.
Avtomatizatsiya avtomobilnogo kompyutera
bez podderjki brausera posredstvom Bluetooth
[Authorization for Automobile Headunit with-
out Browser Support with Mobile Devices
through Bbluetooth], (2015), Holodilnaya

Tehnika I Tehnologiya, No. 2, Kviten, Odessa,
Ukraine, pp. 65 – 71 (In Russian).

3. Surkov S.S., and Martynyuk O.M.,
(2015), Method of Migration from Single Server

Surkov S.S. Published in the Journal Electrotechnic and Computer Systems, No. 23 (99), 2016 99 – 105

Information Systems and Technologies

105

System to Server Cluster, Proceedings of the

2015 IEEE 8th International Conference on

Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applica-

tions (IDAACS’2015), 24-26 September 2015,
Warsaw, Poland, pp. 808 – 811.

4. Surkov S.S., and O.N. Martynyuk,
Avtomatizatsiya avtomobilnogo kompyutera
bez podderjki brausera posredstvom Bluetooth
[Authorization for Automobile Headunit with-
out Browser Support with Mobile Devices
through Bbluetooth], (2015), Holodilnaya

Tehnika I Tehnologiya, No. 2, Kviten, 2015.
Odessa, Ukraine, pp. 65 – 71 (In Russian).

5. Hammer-Lahav E. (ed.), (2010), The
OAuth 1.0 Protocol, IETF RFC 5849 (Informa-

tional), April 2010, (In English) [Electronic
resource], Available at: URL:
http://tools.ietf.org/html/rfc5849 (accessed
23.06.2016).

6. Basney Jim, and Gaynor Jeff, (2016),
An OAuth Service for Issuing Certificates to
Science Gateways for TeraGrid Users, National

Center for Supercomputing Applications Uni-

versity of Illinois at Urbana-Champaign 1205

West Clark Street, Urbana, Illinois 61801, Arti-
cle No. 32, (In English) [Electronic resource],
Available at: URL:
http://dl.acm.org/citation.cfm?id=2016776 (ac-
cessed 23.06.2016).

7. Richardson Leonard, and Ruby Sam,
(2011), RESTfull Web Services Web services
for the real world, O'Reilly Media, May 2011,
pp. 188 – 205.

8. Mark Masse, (2013), REST API Design
Rulebook, O'Reilly Media, pp.23 – 35.

9. Fielding R., and Reschke J. (2014), Hy-
pertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing, IETF RFC 7230, June
2014, (In English) [Electronic resource], Avail-
able at: URL:
https://tools.ietf.org/html/rfc7230 (accessed
23.06.2016).

10. Siewert Sam B., (2013), Cloud Scaling,
Part 1: Build a Compute node or Small Cluster
Application and Scale with HPC, University of

Alaska Anchorage, (In English) [Electronic re-
source], Available at: URL:
http://www.ibm.com/developerworks/cloud/libr
ary/cl-cloudscaling1-hpcondemand/ (accessed
23.06.2016).

11. Webber Jim, Parastatidis Savas,
Robinson Ian, (2012), REST in Practice
Hypermedia and Systems Architecture, O'Reilly

Media, September 2012, pp. 285 – 351.

Received 08.06.2016

Surkov

Sergey Sergeevich,
Post-graduate student
Computer Intellectual sys-
tems and networks
Odessa National Polytech-
nical University,
tel .: +38 (091) 916-40-91.
E-mail:
k1x0r@ukr.net

Martynyuk

Oleksandr Nikolaevich,
PhD., Associate Professor
Computer Intellectual sys-
tems and networks
Odessa national Polytech-
nic. University,
tel .: +38 (067) 489-81-69.
E-mail:
anmartynyuk@ukr.net

