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ABSTRACT  

The article analyzes and compares the architectures of generative adversarial networks. These networks are based on convolu-

tional neural networks that are widely used for classification problems. Convolutional networks require a lot of training data to 

achieve the desired accuracy. Generative adversarial networks are used for the synthesis of biomedical images in this work. Biomedi-

cal images are widely used in medicine, especially in oncology. For diagnosis in oncology biomedical images are divided into three 

classes: cytological, histological, and immunohistochemical. Initial samples of biomedical images are very small. Getting training 

images is a challenging and expensive process. A cytological training dataset was used for the experiments. The article considers the 

most common architectures of generative adversarial networks such as Deep Convolutional GAN (DCGAN), Wasserstein GAN 

(WGAN),Wasserstein GAN with gradient penalty (WGAN-GP), Boundary-seeking GAN (BGAN), Boundary equilibrium GAN 

(BEGAN). A typical GAN network architecture consists of a generator and discriminator. The generator and discriminator are based 

on the CNN network architecture. The algorithm of deep learning for image synthesis with the help of generative adversarial net-

works is analyzed in the work. During the experiments, the following problems were solved. To increase the initial number of train-

ing data to the dataset applied a set of affine transformations: mapping, parallel transfer, shift, scaling, etc. Each of the architectures 

was trained for a certain number of iterations. The selected architectures were compared by the training time and image quality based 

on FID (Freshet Inception Distance) metric. The experiments were implemented in Python language. Pytorch was used as a machine 

learning framework. Based on the used software a prototype software module for the synthesis of cytological images was developed. 

Synthesis of cytological images was performed on the basis of DCGAN, WGAN, WGAN-GP, BGAN, BEGAN architectures. Goog-

le's online environment called Collaboratory was used for the experiments using Nvidia Tesla K80 graphics processor. 
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INTRODUCTION 

Biomedical images are a wide class of images 

that are used for diagnosis. Among those images, 

there is a subclass of cytological, histological, and 

immunohistochemical images which are used for 

diagnosis in oncology. Obtaining those images is 

time consuming and quantitatively limited. As a 

result, modern classifiers, which are based on 

convolutional neural networks [1], face the problem 

of small datasets. One of the consequences of using 

a small dataset of training data is the relatively low 

accuracy of classification. That is why the expansion 

of datasets artificially for the training of modern 

classifiers is the actual task. Nowadays, generative 

adversarial networks are popular methods of image 

synthesis. Generative Adversarial Networks (GANs) 

are the type of neural network used to synthesize 

images, video, and audio. This type of network has 

appeared very recently. In 2014, researcher Ian 

Goodfellow demonstrated how new data can be 

synthesized using neural networks [2, 3]. For the 

first time, these networks were used to synthesize 

handwritten numbers (using MNIST dataset) and 

human faces (using CIFAR-10 dataset). 

© Berezsky O., Liashchynskyi P., 2021  

1. LITERATURE ANALYSIS 

For now, possibilities of generative adversarial 

networks are still studied by many researchers [4]. 

However, the most common application of GAN is 

image synthesis. Most of the research in this area is 

aimed at improving the quality of synthesized imag-

es. Researchers create new architects and improve 

already known algorithms [5, 6]. Generative adver-

sarial networks have also found their application in 

medicine.  

Recent studies have shown that artificial neural 

networks can achieve better results in segmentation 

and classification than humans [7]. However, 

modern classifiers require a lot of training data. 

Because the process of collecting medical data can 

be complicated due to the influence of many factors 

(time, price, availability, etc.), GAN-networks are 

primarily used to expand training datasets [8, 9]. In 

this case, it is also possible to increase the number of 

samples in dataset with the help of affine 

transformations [10]. But this method is not suitable 

if there is a need to generate a large amount of data, 

because the images created in this way are not 

completely new, but are only distorted versions of 

the existing ones. 

In [12] researchers use the GAN network to 
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synthesize images of cell nuclei and their masks for 

further segmentation. They divide training process 

into two different stages. In the first step, they train a 

generator to synthesize binary masks from a latent 

vector. In the second step, they use a conditional 

generative adversarial network to synthesize images 

based on the generated masks and the latent vector. 

In the end, the authors get two generators. One for 

mask synthesis, the other for mask-based image 

synthesis. 

The authors of [13] use the GAN to synthesize 

images of affected liver tissues that have a resolution 

of 64 by 64 pixels. Experimental results of the 

classification showed that the accuracy increased 

from 77 % to 85 % when using a training dataset, 

which was expanded with synthesized images. 

A typical GAN network architecture consists of 

two different neural networks that play against each 

other. The first network is called a discriminator 

(denoted by the letter D). Its task is to verify the 

plausibility of images – distinguish real images from 

artificially synthesized. Real images are data from 

the training samples. The discriminator accepts the 

image as the input, and as the output produces the 

probability that the image is real. Usually the 

discriminator is a simple binary classifier. The 

second network is called a generator (denoted by the 

letter G). The task of the generative network is to 

synthesize new data. The generator picks up a 

random vector of a certain dimension from a certain 

latent space (usually from a normal distribution) and 

tries to convert it into a real image [6, 13]. 

The basic work principle of any GAN can be 

described as follows. The discriminator must 

distinguish between real and synthesized data. Based 

on a certain loss function the discriminative model 

should maximize the probability of real data and 

minimize the probability of synthesized. Similarly, 

the generator must synthesize images that are as 

close as possible to the real ones, so that the 

discriminator classifies them as real data. As the 

conclusion, the generative model tries to maximize 

the probability of the synthesized images. 

Training algorithm of any GAN network 

performs parameter optimization for both 

disciminator and generator.  

The purpose of the training is to minimize the 

next loss function ( , )V G D , where E is the expected 

value.  

~ ( )

~ ( )

min max ( , ) [log ( )]

[log(1 ( ( )))].

data

z

G D x p x

z p z

V G D E D x

E D G z

 

 

In the perfect scenario, the discriminator is trained 

until it achieves its optimal value depends on the 

concrete generator, the generator is trained after the 

discriminator. But in practice the discriminator could 

be trained for the specific number of iterations, then 

the generator is updated along with the 

discriminator. Also, as a good alternative for the 

generator the next equation is used 

max log ( ( ))G D G z  instead of the 

min log(1 ( ( )))G D G z  [6].  

The generalized GAN algorithm could be 

descibed as follows. In the first step the generator 

takes a complete random sample from noise prior 

(Gaussian, for example) and tries to generate an 

image. This image is passed through the 

discriminator which task is to classify if the passed 

image is either the real one or generated. 

Algorithm. Minibatch stochastic gradient 

descent algorithm of GANs. The number of steps to 

apply to the discriminator, 𝑘, is a hyperparameter 

[2].  

 

for number of training iterations do 

 for 𝑘 steps do 

1) Sample minibatch of 𝑚 noise samples 

(1) ( ){ ,..., }mz z from noise prior ( )gp z  

2) Sample minibatch of 𝑚 samples 

(1) ( ){ ,..., }mx x  from real data distribution 

( )datap x . 

3) Update the disciminator by ascending its 

gradient: 

( ) ( )

1

[log ( ) log(1 ( ( )))].
d

m
i i

i

D x D G z


  

end for 

1) Sample minibatch of 𝑚 noise samples

(1) ( ){ ,..., }mz z  from noise prior ( )gp z . 

2) Update the generator by descending its gra-

dient: 

( )

1

1
[log(1 ( ( )))].

g

m
i

i

D G z
m




   

end for 

 

Training of GAN networks is a quite 

complicated process because of so-called zero-sum 

game. When the discriminator starts better 

distinguish generated images from the real ones, the 

generator also needs to perform better. It works back 

and forth. When the generator is better, the 

discriminator must catch up. 

Model training consists of two steps: training of 

the discriminator and updating parameters of the 

generator with concerning the discriminator. On the 
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first step of training only disciminator’s parameters 

are updated. On the second step discriminator’s 

parameters are kept frozen, instead only generator’s 

parameters are updated. 

Classical GAN networks have their cons. The 

first problem is gradient vanishing [14]. Because the 

generator is in feedback with the discriminator, it 

can only update its parameters through it. The 

gradients become so small that they have almost no 

effect on the parameters of the generator and the 

learning process stops. This problem occurs when 

the discriminator error quickly converges to zero. 

This also could occur when the discriminator model 

is much more powerful than the generator. When 

building an architecture, it is important to balance 

the complexity of the discriminator and generator 

models [14]. 

2. THE PURPOSE OF THE ARTICLE 

The purpose of this paper is to analyze and 

compare generative adversarial networks 

architectures for biomedical images synthesis 

that will help us choose which network 

generates the best visual quality images. To 

achieve this goal, the following main objectives 

of the study were solved:  

1) analyzing known architectures of 

generative adversarial networks; 

2) perfoming experiments on real data 

using known architectures;  

3) analyzing the results of the experiments. 

3. GAN ARCHITECTURES OVERVIEW 

All GAN architectures could be divided into 3 

main types – fully connected, convolutional, and 

conditional GANs. By combining them and using 

various optimizations, researchers obtain new 

architectures that outperform each other very well. 

For now, there are many different architectures, 

using which researchers can achieve very good 

results. 

DCGAN. Deep Convolutional Generative 

Adversarial Network was first used and proposed in 

2014 [2]. The authors used convolutional neural 

network (CNN) for both generator and 

discriminator.  

The main advantage of using CNN over fully-

connected architecture is that CNN takes images as 

input. Also, the architecture itself is built in a more 

optimal way. This approach has significantly 

reduced the number of parameters, training time and 

increase the accuracy of such networks [1].  

Modern GAN architecture may consist of 

convolution, pooling and ReLU layers. The most 

important part of any neural network is activation 

function. The most popular one which is often used 

with CNN and GAN network is called ReLU (Recti-

fier Linear Unit). The working principle is very 

straight: if the input value is less than 0 it outputs 0, 

otherwise the input value becomes new output

( ) max( ,0)f x x . The generator and discriminator 

use different final activation function: tangent and 

sigmoid respectively. General example of DCGAN 

is shown in Fig. 1. 

WGAN and WGAN-GP. A common problem in 

the training of GANs is the so-called mode collapse 

[15]. When it happens, the generator begins to 

synthesize the same images regardless of the input 

data. The WGAN architecture allows to get rid of 

this problem partially [16]. An innovation in this 

architecture is the application of a new loss function 

based on the Wasserstein distance. The advantage of 

this architecture is that the discriminator is replaced 

by the critic (Fig. 2).  

 
Fig. 1. Simple DCGAN generator and discriminator 

Source: https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-

Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC 
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Fig. 2. WGAN and WGAN-GP structure 
Source: compiled by the authors 

Thus, it does not try to classify the image as 

real or synthesized anymore, but shows a certain 

error of how different the synthesized image is from 

the real one. The trainig process is about to 

minimize this value. But this architecture also has its 

drawbacks (quite a long learning time, even for low-

resolution images). Therefore, the authors proposed 

a new model WGAN-GP, which is an improved 

version of the WGAN and uses gradient penalty as 

the method of preventing overfitting [10]. Despite 

this advantages, WGAN leads to a slow optimization 

process in practice. 

BGAN. It is known that for each fixed generator 

there is a unique and optimal discriminator [10]. It 

follows that the generator is also optimal when the 

discriminator outputs the probability of 0.5 for all 

examples created from the latent space. However, in 

practice, it is almost impossible to get an ideal 

discriminator [2]. Therefore, the authors propose to 

make changes to the original loss function of the 

generator so that the discriminator outputs the 

probability of 0.5 for all generated data [18]. This 

method significantly improves the stability of 

learning. This network is the same as the original 

DCGAN (Fig. 3) but with a bit rearranged loss 

function. 

 

Fig. 3. BGAN structure (same as DCGAN) 
Source: compiled by the authors 

BEGAN. In this network, the discriminator is an 

autoencoder, which encodes the input images into 

latent vectors, and then decodes them back into 

images. Thus, the discriminator returns a 

reconstruction error between the input and the 

restored image instead of the probability value [19]. 

The basic idea is that the same reconstruction error 

values for real and generated images ultimately lead 

to the same distribution of real and generated data. 

As the author says [19] the discriminator of this 

architecture is deep convolutional neural network as 

autoencoder. The generator uses the same 

architecture as the decoder of the disciminator but 

with different weights. Basic structure of BEGAN is 

shown in Fig. 4.  

 

Fig. 4. BEGAN structure 
Source: compiled by the authors 

BigGAN. This architecture is used in class-

conditional image generation. It was designed to 

unite the best approaches from the previous 

researches [20]. The BigGAN architecture is focused 

on scaling the GAN model to generate better quality 

and larger images. This is done by using more model 

parameters (more convolutional layers with large 

number of hyper-parameters), larger batch size, 

architectural changes. As a result, BigGAN is 

capable of generating higher-quality and larger 

images such as 256 by 256 and 512 by 512. Despite 

all of the improvements to the training process 

which have focused on some changes to the 

objective, the main disadvantage is still the training 

time and large computing resources. 

StyleGAN. This architecture proposes large 

changes to the generator model rather than the 

discriminator. Some changes are the following: 

mapping network to map points from latent space to 

an intermediate latent space, use of the intermediate 

latent space to control image style in the generator 

[21]. As a result, the model is capable not only of 

generating high-quality images (resolution of 1024 

pixels) but also offers control over the image style 

on the different levels (from the details to more 

general features). This model was used for 

generating human faces so far. 

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
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Table 1. GAN-architectures characteristics  

Architecture Charachteristic Resolutio

n 

DCGAN Low image quality, but 

relatively small training 

time. No need of large 

computing resources. 

64 

WGAN Better image quality 

compared to DCGAN. 

Very slow training 

process. 

64 

WGAN-GP High image quality, no 

mode-collapse because 

of gradient penalty. 

Very slow training time 

(up to several days). 

any 

BGAN Better training stability 

compared to DCGAN, 

but low-quality images. 

64 

BEGAN Higher image quality 

compared to DCGAN 

but very slow training. 

any 

 

BigGAN High image quality, 

several image 

resolutions. Slow 

training time. Large 

computing resources. 

128, 256, 

512 

StyleGAN Very high image 

quality and size. Ability 

to control over 

generated image style 

from details to more 

general features. Very 

slow training time (up 

to several days). Huge 

computing resources. 

1024 

Source: compiled by the authors 

4. EXPERIMENTAL RESULTS 

4.1. Dataset 

For the experiments the training dataset of 64 

by 64 pixel cytological images was used [22, 23]. At 

the initial stage, the total number of images in the 

dataset was 78, which is a rather small value. 

The used images are subset of biomedical 

images which are the structural and functional 

images of human and animal organs and is designed 

to diagnose diseases and determine the anatomical 

and physiological image of the body [24, 25], [26, 

27], [28, 29]. Usually, these images are obtained as a 

result of the use of technical means of visualization 

in medicine and biology. Among biomedical images, 

the following subclasses can be distinguished: 

cytological, histological and immunohistochemical 

images. 

Therefore, the dataset was expanded to 800 

images using Python library called Rudi which uses 

some of the affine transformations (random flip, 

rotation, distortion, skewing, zooming). The library 

parameters were set to default [30]. 

Cytological images are images of cells of the 

body, histological – images of tissues, and 

immunohistochemical – images of cells and their 

reactions to certain markers. Examples of these 

images are shown in Fig. 5, Fig. 6 and Fig. 7 

respectively. 

 

Fig. 5. Cytological images 
Source: compiled by the autors 

 

Fig. 6. Histological images 
Source: compiled by the autors 

 

Fig. 7. Immunohistochemical images 
Source: compiled by the autors 

4.2. Comparison of GAN architectures 

For the experiments the next architectures were 

chosen: DCGAN, WGAN, WGAN-GP, BGAN, 

BEGAN. The reason for not including BigGAN and 

StyleGAN is that these models require huge 

computing resources and more importantly, large 

training dataset which we do not have. So the chosen 

architectures and the training parameters are given in 

Table. 2. The table shows the name of the 

architecture, the optimizer used (variation of the 

gradient descent method), the number of iterations, 

the size of the batch and the training time. The size 

of the batch is used in the mini-batch gradient 

descent algorithm, and determines the number of 

training examples in one batch, which is selected 

randomly at each iteration. The network error 

calculation is based on that batch. The most popular 

optimization algorithm today is Adaptive 

Momentum Optimization (Adam). Comparison of 

synthesized images is shown on the figures below.  
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Table 2. Training parameters of GAN architectures 

No. Architecture Optimizer N. of iterations Batch size 
Training 

time 

Average time 

per iteration 

1 DCGAN Adam 15 000 64 41 mins 0,16 sec 

2 WGAN RMSProp 15 000 32 1 h 52 mins 0,44 sec 

3 WGAN-GP Adam 15 000 64 5 h 43 mins 1,37 sec 

4 BGAN Adam 15 000 64 3 h 44 mins 0,89 sec 

5 BEGAN Adam 15 000 64 6 h 25 mins 1,54 sec 
Source: compiled by the autors 

 

   

 a b c 

Fig. 8. DCGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations 
Source: compiled by the authors 

   

 a b c 

Fig. 9. WGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations 
Source: compiled by the authors 

   

 a b c 

Fig. 10. WGAN-GP results after 1000 (a), 7000 (b), and 15000 (c) iterations 
Source: compiled by the authors 
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Fig. 11. BGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations 
Source: compiled by the authors 

 

   

 a b c 

Fig. 12. BEGAN results after 1000 (a), 7000 (b), and 15000 (c) iterations 
Source: compiled by the authors

Each of the GANs were built on the next 

structure. In the discriminator we used input 

convolution layer forwarded by LeakyReLU 

activation function, three conv blocks (convolution 

layer, batch normalization and LeakyReLU 

activation), and convolution layer as the output. In 

the generator we used four transposed convolutional 

blocks (transposed convolution layer, batch 

normalization and ReLU activation) and transposed 

convolution as the output. Kernel size, stride and 

padding were set to 4, 2 and 1 respectively in all 

convolutional blocks. Hyperparameters of 

convolution such as input and output features in the 

discriminator were doubled in each next block. 

Initial value was 64. For the generator initial value 

was 1024. This value was reduced by half in each 

next block. 

Each of the selected networks were trained for 

15,000 iterations. Network parameters such as 

learning rate, optimizer and batch size (also final 

activation function) were set according to the values 

given by the authors in the articles. The experiments 

were performed using the Nvidia Tesla K80 graphics 

processor using Google Colaboratory. The Python 

programming language and the PyTorch library 

were used to write the code. 

To analyze the quality of the synthesized 

images, the FID (Frechet Inception Distance) metric 

was calculated. It’s given in Table 3. The 

comparative chart is shown in Fig. 13. 

The FID metric calculates difference between 

feature vectors of real and synthesized images. This 

metric is based on Google Inception 3 model and is 

the improved version of Inception Score (IS) [13]. 

The metric is calculated on the basis of the 

average values of , wm m  feature vectors (obtained 

from the penultimate layer of the Inception model) 

of real and synthesized images respectively, as well 

as their covariance matrices. If compared vectors are 

identical FID values is equal to zero. The metric is 

described by the next formula: 

22(( , ),( , ))
2

1 / 2( 2( ) ),

d m C m C m mw w w

Tr C C CCw w

  

  

 

where: m  ‒ average value; C  ‒ covariance; Tr  ‒ 

trace of the matrix.  
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Table 3. Comparison of the FID metrics of the given architectures 

Architecture 

Number of trainig iterations in thousands 

1 2 3 4 5 10 11 12 13 14 15 

FID 

DCGAN 24,58 24,16 22,33 21,12 20,66 16,34 15,97 15,56 13,47 12,86 12,67 

WGAN 26,89 25,95 23,14 22,36 20,18 16,02 15,11 14,33 13,01 12,96 12,72 

WGAN-GP 34,17 33,86 32,12 31,02 29,35 25,01 24,39 23,11 21,58 20,03 19,09 

BGAN 16,89 16,56 16,02 15,76 15,21 13,41 13,05 12,78 12,34 11,24 10,03 

BEGAN 21,90 21,45 21,12 20,46 20,04 18,23 17,88 17,03 16,64 15,77 15,32 
Source: compiled by the authors 

 

Fig. 13. Comparison of the FID metrics during training process 
Source: compiled by the authors

CONCLUSIONS 

The results of this research are following: 

1. The article analyzes and compares on the ba-

sis of the criteria (training time, FID metric) GAN 

architecture: DCGAN, WGAN, WGAN-GP, BGAN, 

BEGAN. 

2. Software prototype of the computer module 

in experiments for the synthesis of cytological imag-

es using the analyzed GAN architectures has been 

developed. 

3. After the first thousand training iterations, it 

can be seen that the WGAN-GP architecture has the 

greatest error for the FID metric – about 37. This 

architecture will not be used in further researches. 

4. The architectures DCGAN, WGAN, BEGAN 

have insignificant initial spread (about 4). The 

interval of error for these architectures remains vir-

tually unchanged over the training time. 

5. The BGAN architecture has the best result. 

The learning error curve varied smoothly from 17 to 

10. 

6. For the synthesis of cytological images, it is 

advisable to use the architecture DCGAN, WGAN, 

BEGAN BGAN and with a smaller number of itera-

tions (about 7000) with training time is approximate-

ly 1.5 hours. 

7. Direction for further research - improvement 

of GAN architectures: DCGAN, WGAN, BEGAN 

BGAN.
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АНОТАЦІЯ 
 

У статті проаналізовано та здійснено порівняння архітектур генеративно-змагальних мереж. Ці мережі будуються на 

основі згорткових нейронних мереж, що широко застосовуються для задач класифікації. Згорткові мережі вимагають вели-

кої кількості навчальних даних, щоб досягнути потрібної точності. У роботі генеративно-змагальні мережі використано для 

синтезу біомедичних зображень. Біомедичні зображення широко застосовуються в медицині, особливо в онкології. Для пос-

тановки діагнозу в онкології біомедичні зображення поділяються на три класи: цитологічні, гістологічні та імуногістохіміч-

ні. Начальні вибірки біомедичних зображень є дуже малими. Отримання навчальних зображень є складним і дорогим про-

цесом. Для експериментів використано навчальну вибірку цитологічних зображень. В статті розглянуто найбільш розпо-

всюджені архітектури генеративно-змагальних мереж, такі як DCGAN, WGAN, WGAN-GP, BGAN, BEGAN. Типова архіте-

ктура GAN мережі складається із генератора та дискримінатора. В основі генератора та дискримінатора лежить архітектура 

CNN мережі. . У роботі проаналізовано алгоритм глибокого навчання для синтезу зображень за допомогою генеративно-

змагальних мереж. Під час експериментів розв’язано такі задачі. Для збільшення початкової кількості навчальних даних у 

вибірці застосовано множину афінних перетворень: відображення, паралельний перенос, зсув, масштабування тощо. Кожна 

з архітектур навчалася протягом визначеної кількості ітерації. Обрані архітектури були порівняні за часом навчання та якіс-

тю зображень на основі FID (Frechet Inception Distance) метрики. Для експериментів використано мову програмування 

Python і фреймворк для машинного навчання Pytorch. На основі використаних технологій розроблено прототип програмного 

модуля для синтезу цитологічних зображень. Синтез цитологічних зображень проведено на основі DCGAN, WGAN, 

WGAN-GP, BGAN, BEGAN архітектур. Для проведення експериментів було використано онлайн середовище Google 

Colaboratory із використанням графічного процесора Nvidia Tesla K80.  
Ключові слова: глибоке навчання; генеративна змагальна мережа; біомедичні зображення; синтез зображень 
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