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PREFACE  

 

Nowadays, mechanical engineering and economics are unthinkable without 

information technology. Moreover, it is impossible for a specialist in the field of 

automation and instrumentation to work successfully without the use of modern 

engineering packages for computer modeling. Great opportunities for computer 

modeling are provided by the freely distributed software environment SciLab 

As a result of studying the discipline are the acquisition of general competence 

mastery of research methodology and basic methods of scientific knowledge, 

software development of metrological support of various systems, methods of 

creating and analyzing process models and gaining knowledge of the theoretical 

foundations of mathematical modeling and basic techniques for creation 

mathematical programs and models using the SciLab software environment. 

Every year, the capabilities of the Scilab package grow and newer versions of 

the package appear. Scilab has a similar programming language to Matlab. Package a 

includes a utility that allows you to convert Matlab documents to Scilab. Scilab 

allows to work with elementary and a large number of special functions, has powerful 

tools for working with matrices, polynomials, perform numerical calculations (eg, 

numerical integration) and solve problems of linear algebra, perform optimizations 

and simulations using powerful statistical functions and the tools for work with 

graphs. 

This study manual is intended to facilitate study of the course “Modern 

engineering and mathematical packages of computer simulation” by the students that 

follow the Bachelor Degree Program of the specialty 152 – Metrology and 

information-measuring technology. 

Study manual will be useful for students that study basic concepts of 

standardization and metrology within the branches of knowledge: the automation and 

instrumentation. The material of the study manual can be useful in preparing 

graduation thesis. 

At the time of writing of the study manual, the latest version of Scilab was 

6.1.1. It was on this basis this study manual was compiled. The latest version of the 

package can always be downloaded from the official Scilab website: 

http://www.scilab.org.  

 

 

 

 

 

 

 

 

 

http://www.scilab.org/
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Lecture 1. The purpose of the lecture is to get acquainted with the sequence of 

obtaining and installing the Scilab package on a personal computer, with the layout 

of the interface windows, rearranging these windows and for what are these windows 

are needed? 

 

1 FAMILIARIZATION WITH SCILAB PACKAGE. 

 

1.1. Installing the Scilab package on a computer. 

 

A free redistributable version of the package, along with complete 

documentation in English, can be obtained from SciLab website at www.scilab.org.  

Before installing the Scilab 6.1.1 package for Windows operating system, go to 

the site http://www.scilab.org and download the file " scilab-6.1.1_x64" (fig. 1.1). 

 

Figure 1.1 – Downloading the file " scilab-6.1.1_x64". 

 

To install the package, run the "scilab-6.0.2.exe" executable file. When you 

start it, a request will appear about the language in which it is supposed to work (fig. 

1.2.). To do this, click by the right button of mouse (RBM) on the drop-down list of 

suggested languages and press the "OK" button. 

The package installation wizard will appear on the computer screen (fig. 1.3.) 

With the license agreement window, in which, to continue the installation, you need 

http://www.scilab.org/
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to click on the button next to the inscription: "I accept the agreement" and then click 

the "Next" button. The next window 

prompts you to select the "path" of the 

package location. Unless you have any 

special considerations about where to 

place the package, you can accept the 

suggested location for "C:\Program Files 

\scilab-6.1.1" in the "Program Files" 

folder on the "C: \" drive. If you want to 

put the package in a different location, 

select the previously created folder using 

the "Browse ..." button and click the "Next" button. 

 

 
 

Figure 1.3 – Scilab package installation wizard. 

 

The next window of the Installation Wizard (fig. 1.4) will offer one of three 

types of installation: 

- Full installation; 

- Custom installation (installation of the selected components); 

- Command Line Minimal Installation (minimal installation).  

If you are not an experienced user, you should choice the full installation and 

click the "Next" button. 

The next window of the Installation Wizard will inform you that after 

installation a shortcut will be created in the "Start" menu for starting Scilab. By 

default, it will be named "scilab-6.1.1 (64-bit) Desktop". Click the "Next" button and 

the Installation Wizard will offer a list of additional components available after 

Figure 1.2 – The choice of language for work. 



 6 

installation. It is recommended to use the components suggested by the Installation 

Wizard. To go to the next step, you need to click the "Next" button. 

 

 
 

Figure 1.4 – Choice of the package installation type. 

 

The installation wizard will inform you that the package and components are 

ready to be installed. After reading the report, press the "Install" button. 

The process of installing Scilab on a hard disk will be accompanied by a 

demonstration of the process flow using a bar 

indicator and may take some time, depending on 

the performance of your computer (sometimes 

more than 10 minutes). The installation process 

ends with the appearance of an information 

window. If you do not uncheck the box next to 

"Launch Scilab" in the window that appears, 

clicking the "Finish" button will start Scilab 

immediately after clicking this button. Otherwise, 

the launch can be made from the main menu by 

clicking on the shortcut on the desktop (fig. 1.5). 

 

1.2 Start Scilab. 

 

To start the Scilab package, click by LMB on the shortcut located on the 

desktop (Fig. 1.5) or launch from the drop-down menu of the [Start] button by 

clicking on the icon next to the inscription "scilab-6.1.1 (64-bit) Desktop" which is 

located in the folder "scilab-6.1.1 (64-bit)". The interface of the Scilab package 
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(further for simplicity called the program) will appear on the monitor. For version 

6.1.1 it will look like the one shown in figure 1.6. 

 

Figure 1.6 – User interface of Scilab-6.1.1. 

 

In figure 1.6 you can see that there are 5 internal windows (or frames) inside 

the window: 

- File Browser; 

- Scilab 6.1.1 Console; 

- Variable Browser; 

- Command History; 

- News feed. 

At any each time, only one of the visible inner windows can be active, and this 

is indicated by the highlighted title. In figure 1.6, the Scilab 6.1.1 Console window is 

active. All five of these inner windows are not rigidly tied to each other and can be 

excluded from the main window or rearranged again in it. 

Do not rush to close the inner windows until you know how to restore them. 

Let's conventionally call the view shown in Figure 1.6 a group of windows. At 

any time, each window can be excluded from the group by pressing the [Undock] 

button (fig. 1.6), which is represented as a button with an upward arrow. The [Close] 

button can be used to close the corresponding window. The [Help on component] 

button opens the Help Browser. Once detached, the window can be moved to any 

place on the desktop. 

Help on component  Undoc

k  

Close 



 8 

To rearrange the windows, you need to click LMB on the strip on which the 

title of the window which will be moved is located, and keeping the LMB pressed, 

drag the cursor to the desired position. The gray frame will tell you how the window 

will be positioned if you release the LMB, and here the following the variants are 

possible: 

- if you drag a any window in the group by the cursor, then the moved window 

will divide the area horizontally in half and take its position; 

- the same as in the previous point, but vertically; 

- the window will not break anything, but simply will be attached. In this case, 

tabs will appear at the bookmarks. 

A detached window can be included in any group. To do this, click LMB on its 

title and perform the same actions. It is very important that you need to grab not the 

external title of the window, which is generated by the operating system, but the 

internal title, which has the buttons: [Help on component], [Undock] and [Close]. 

 

Figure 1.7 – Rearranging Scilab interface windows 6.1.1. 

 

Rearranging takes practice, as one or the other will be suggested at a specific 

cursor position. Practice a little and do the following exercise. 

 

Make the active "Scilab 6.1.1 Console window" (further we will just call it 

Console window or command window); 

To the Console window, enter the command: 
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--> scinotes(); 

 

and push the [Enter] key (don't pay too much attention to its meaning yet). The 

SciNotes text editor window" (further we will just call it Text editor or SciNotes) 

should open in front of you; 

Press the [F1] key and Help Browser window will open in front of you; 

Using the current set of windows, rearrange them as shown in figure 1.7, and 

then return everything to its original view (as shown in figure 1.6). 

During the exercise, you can verify that the software environment has an 

intuitive interface. Switching to a specific inner window, you will notice that the 

menu bar and toolbar change according to the purpose of each window. We will get 

acquainted with the purpose of each button on the toolbar during further work with 

the Scilab. It is advisable to view all the settings that are provided to the user in 

graphical mode. For this: 

- make the Console window active; 

- then select the "Edit" option at the top; 

- in the drop-down menu click on "Preferences". 

It is strongly discouraged to change the settings unnecessarily. 

 

1.3 The destination of the program windows. 

 

1.3.1 Command window or Console window (Scilab 6.1.1 Console). 

 

The command window (Scilab 6.1.1 Console) is the most important window 

through which communication with the software environment Scilab takes place. In 

this window, the user put in commands and receives its results. 

Look at the figure 1.6. In the command window, you can observe technical 

information about loading the environment, after which the system prompts the user 

to pit in a command. The beginning of a line is accompanied by an arrow pointing to 

the right (-->), which is called a prompt or command prompt. Try to put in the 

following code: 
-->2*2+69/25 

 

and press the [Enter] key. In response from the Scilab language interpreter, you will 

receive the following: 
 
ans  = 
6.76 

 
In other words, you passed the algebraic expression that it calculated to the 

package environment, and the result was placed in the automatically generated 

variable ans, which we will get acquainted with later. After entering this command, 

there have been changes in the Command History and Variable Browser windows. 

Before we move on to the next window, we will enter the second command. 
 
--> myVariable=26; 
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With this command, we give order to the Scilab interpreter to allocate memory 

for a new variable named myVariable and assign it the value 26. Notice the 

semicolon at the end of the command. By entering this symbol, we give order the 

interpreter not to display the results of program work in the console window. 

Note: Please pay attention, that the Scilab interpreter distinguishes between 

uppercase and lowercase letters in variable names, therefore myVariable and 

myvariable are different variables. 

 

Next, try entering the command into the Console window: 

 
--> anotherVariable=31 

 

and you will get the answer that the assignment was happened 
 

anotherVariable= 

     31. 

 

Blocking the output of the result is done in order not to overload the listing of 

the program code with unnecessary intermediate information. This is especially often 

used when you are writing large programs. 

 

1.3.2 Variable Browser. 

 

This window is 

intended for working 

with variables which are 

created by the user. If 

you have entered the 

previous commands, you 

can see the result which 

is shown in figure 1.8. 

This window 

displays all the necessary 

information about the 

created variables, in 

particular: 

- variable name (Name); 

- the size of the variable (Value); 

- the type of the variable, or in other words, the type of data that this variable 

currently stores (Type); 

- the visibility of the variable (Visibility); 

- the size of the reserved memory (Memory) . 

 

1.3.3 Variable Editor. 

Figure 1.8 – Window of the Variable Browser. 
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Double-clicking by LMB on a variable in the Variables Browser opens the 

Variables Editor window, which is shown in figure 1.9. 

The Variable Editor is 

another handy tool for working 

with variables. In the Variable 

Editor, the variable is 

represented by a table, because 

all objects in the Scilab 

environment, as well as in 

Matlab, are two-dimensional 

arrays.  

The variables which we 

have created earlier are simply 

a degenerate case - an array 

with one element. We will 

come back to this question 

more than once, but for now 

take a close look at the 

Variable Editor. 

Figure 1.9 shows the variable anotherVariable, which has been assigned 

the value 31. Change the value of the variable by double-clicking by LMB the value 

31 and entering, for example, 62, and then press the [Enter] key or click by the LMB 

in any place of the Variables Editor window. 

You can learn again about the fact that the value of the variable has changed 

from the command line. Make active the Console window  and enter the name of our 

variable, that is:  

 
-->anotherVariable 

anotherVariable = 

      62. 

 

Of course, the shown way of editing a variable is not the most rational, since it 

is easiest to edit an array with one element in the command line of the Console 

window. The Variables Editor is used in cases when it is necessary to edit two-

dimensional data arrays. 

In addition to user-defined variables, Scilab has a number of default system 

variables defined. In order to see all the variables, including the system ones, that 

regulate the operation of the program, and that part of the variables that the user can 

control, do the following: 

- make the «Variable Browser» window active; 

- on the menu bar at the top, select the «Filter» item; 

- in the menu that opens, uncheck the «Hide Scilab Variables» item. 

 

 Study these variables, but by no means try to edit them. 

 
 ! 

Figure 1.9 – Variables Editor window. 
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1.3.4 Command History. 

 

The Command History window displays 

all the commands that the user entered into the 

command line during the current session. 

Figure 1.10 shows the Command History 

window. You can see the records of the last 

session that reflect all the commands we 

entered. All logs are saved by the environment 

so that you can remember and restore the 

commands that you entered earlier. This can be 

useful if you forgot to save the codes and 

ended the session, or, for another example, if 

you entered a very long command earlier, and 

now you need to enter a similar one, but with 

only minor differences. 

However, if you do not need the logs, 

you can always delete or clear them using the commands from the menu. 

 

1.3.5 Scilab help system. 

 

The easiest way to get help, for most of the questions encountered during 

work, is to refer to the built-in Help Browser shown in fig.1.11. To call it on the 

toolbar, click LMB on the icon      . 

 

Figure 1.11 – Scilab built-in help window. 

 

Figure 1.10 – Command History 

    window. 
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When the «Scilab 6.1.1 Console» window is active, the help window can be 

called in two ways. By pressing the [F1] key, or by typing the «help» command in the 

command line and pressing the [Enter] key: 

 
-->help 

 

If you need to view help material on a specific topic, for example, you are 

interested in the syntax of the function for calculating the sin, then you can scroll 

through the contents in the left frame of the built-in help window, find the section on 

trigonometric functions, find and select sin, after which a description of this will be 

displayed in the browser frame functions. 

A more convenient way to get information about a specific function, if its 

name is known, is to use the "help" command in the Command window  indicating 

the name of the function wnich is interested for you: 
 

--> help sin 

 

If the specified function does not exist in the Scilab environment or its name is 

entered with an error, then a beep will sound and nothing will be displayed in the help 

browser window that opens in the left frame of the help window. 

On a computer connected to the Internet, help can also be obtained by 

contacting the Online Help service at: https://help.scilab.org  

When you call Scilab help in this way, you can use one of five languages: 

English - Français - Português - 日本語 - Русский.  

 

1.3.6. Built-in SciNotes text editor. 

 

SciNotes is a built-in text editor for 

writing and editing program code executed by 

the Scilab interpreter (fig. 1.12). 

There are several ways to open the 

SciNotes editor window.  

If you select the «Applications» option 

in the main menu of the Scilab console 

window and click on it with LMB, a drop-

down menu will appear, on which you should 

select the «SciNotes» option (fig. 1.13). 

You can also click LMB on the icon in 

the toolbar of the Scilab console (fig. 1.13). 

The SciNotes editor window can also 

be opened from the Scilab console window. 

To do this, on the command line, you should 

type one of the commands: 

 
-->editor() 

Figure 1.12 – SciNotes text editor 

   window. 

https://help.scilab.org/
https://help.scilab.org/docs/6.1.1/en_US/index.html
https://help.scilab.org/docs/6.1.1/fr_FR/index.html
https://help.scilab.org/docs/6.1.1/pt_BR/index.html
https://help.scilab.org/docs/6.1.1/ja_JP/index.html
https://help.scilab.org/docs/6.1.1/ru_RU/index.html
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-->scinotes() 

 

Both of the above commands are the same in terms of the result of their 

execution. 

The SciNotes editor allows you to 

work with several simultaneously open 

files. In fig. 1.12 shows 2 files whicn is 

opened for editing in two tabs. 

Run for execution the code of the 

program which is typed in the SciNotes 

editor you can use the commands of the 

«Execute» drop-down menu: 

- «... file with no echo» - the file 

will be executed without 

displaying the program in the 

console. Be sure to save the file 

before executing this command. 

This command can be executed 

by simultaneously pressing the 

key combination [CTRL] + 

[SHIFT] + [E]. 

- -«... file with echo» - the file 

will be executed and displayed in the console. This command can be 

executed by simultaneously pressing the keys combination [CTRL] + [L]. 

- - «... until the caret, with echo»- the selected part of the commands will be 

executed and displayed in the console, if there is no selected program 

section in the text editor window, then the command is not executed. The 

command can be launched by the key combination [CTRL] + [E]. 

The Scilab software package has other windows with which we will get 

acquainted  as it will be needed. 

It is recommended to save programs which was created in the SciNotes text 

editor, that will make easy to use them in further . With the aim of save the file of the 

program code, use the «Save» and «Save as» in drop-down menu options. They are 

located in the main menu bar item «File» of SciNotes. The saved files with the code 

can be run for execution both in the command line of the Scilab console and when 

starting the program in SciNotes. For which it is convenient to use the command: 
 

-->exec(‘path and file name’) 

 

Note: files with the «.sce» extension, after installing the Scilab package on the 

computer, are associated by the operating system as executable files with the 

program code for the Scilab package. 

Figure 1.13 – SciNotes launch. 

Launch 
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Например в папке «Примеры», на диске «Е» записан файл с именем 

«открытие файла2.sce» с кодом программы. Команда на выполнение этой 

программы будет иметь вид:  

 
--> exec(‘E:\Примеры\открытие файла2.sce’) 

 

Questions for self-examination for the first lecture: 

1. What are the advantages of the Scilab software product? 

2. Where can you find the "Scilab 6.1.1" package for installation on a 

computer? 

3. What is the sequence of installing the "Scilab 6.1.1" package on a 

computer? 

4. How many and what windows does the user interface have after starting the 

program? 

5. How can the windows of the program interface be rearranged? 

6. What is the Command Window (Scilab 6.1.1 Console) for? 

7. Where does the command line put in? 

8. How to make it so that the result of the calculation is not displayed on the 

screen after each command line? 

9. How to set the value of a variable? 

10. What is the Variable Browser for? 

11. How can be opened the Variable Editor? 

12. How can be changed the value of a variable? 

13.What are objects in the Scilab environment? 

14. What is the Command History for? 

15 What is the SciNotes built-in text editor for? 

16. How can be opened the built-in SciNotes text editor? 

17. How to run a program using SciNotes? 

18. How to run a program for execution which was saved in a file ? 

 

Lecture 2.  

The purpose of the lecture is to familiarize yourself with textual comments, the 

rules for writing mathematical expressions, ways of defining variables and their types 

and with the dynamic typing of variables, learn how to enter real numbers and 

change the presentation of calculation results. 

 

2 SCILAB PROGRAMMING LANGUAGE. 
 

2.1 Text comments. 

 

Text comments in Scilab are a line which is starting with the characters "//" 

(double slash). You can use text comments both in the workspace of the console and 

in the text editor of the program file. In the Scilab console window, the line after the 

"//"  characters is not interpreted as a command, and after pressing the [Enter] key 
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activates the next command line. For example, let's type the following code in the 

console window: 

-->// Explanation of the program which have been typing below. 

-->// Example of multiplication: 

-->2*2 

 

and after pressing the [Enter] key on the console screen we get the following 

text: 

--> // Explanation of the program which have been typing below. 

--> // Example of multiplication: 

--> 2*2 

 ans  = 

   4. 

 

If we implement the same example and type the code in the text editor 

window, then it will look like this: 

 

// Explanation of the program which have been typing below. 

// Example of multiplication: 

2*2 

 

After pressing keys [Ctrl] + [L] at the same time, the above calculation 

example with explanations will appear in the console window. 

 

2.2 Elementary mathematical expressions 

 

The following operators are used to perform the simplest arithmetic operations 

in Scilab. The description of these operators can be easily found in the "Help" 

window (see figure 2.1). 
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Figure 2.1 – The description of elementary operators in the "Help" window. 

 

 star (*) — multiplication operator.  

Description: Multiplication. Valid for constant, Boolean, polynomial, rational 

matrices. 

Example:  

--> // Basic numerical operations 

--> 2 * 2  

ans  = 

   4. 

 slash (/) — operator of right divisions. 

Description: When the left operand is divisible by the right operand. 

Example:  

--> a = 4 / 2        // Should be 2 

a =  

   2. 

 backslash (\) — operator of left divisions. 

Description: When the right operand is divisible by the left operand. 

Example:  

--> a = 4 \ 2        // Should be 0.5 

a =  

   0.5 

 plus (+) — numerical addition.  

Description: For numeric operands, the addition has its usual meaning.  

Example:  

--> 2 + 5 // Should be 7 

ans  = 

   7. 

 hat (power) (^) or (**) — exponentiation.  

Description: Exponentiation of matrices or vectors by a constant vector.  

Example:  

--> 2^3 // Should be 8 

ans  = 

   8. 

--> 2**3 // Should be 8 

ans  = 

   8. 

 equal (=) assignment, comparison, equal sign  

Description: The equal sign (=) is used to denote the assignment of value(s) to 

variable(s).  

Example:  

--> x=5 // Should be x=5 

x  =  

   5. 

about:blankpower.html
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Each operator has its own priority and is executed according to its priority. 

Below is the hierarchy of operators that were presented above. 

 

Priority level Operators 

1 (), [ ], « ^ » 

2 « * », « / » or  « \ » 

3 « + », « - » 

4 « = » 

 

You can calculate the value of an arithmetic expression by entering it into the 

command line: 

 
 -->2.35*(1.8-0.25)+1.34^2/3.12 

 

and press the [Enter] key. 

The result will appear on the console screen: 

 
 ans  = 

    4.2180128 

 

Let's consider in detail the sequence of calculations in accordance with the 

priority of the operators: 
1) (1.8-0.25) = 1.55  
2) 2.35*1.55 = 3.6425  
3) 1.34^2 = 1.7956  
4) 1.7956/3.12 = 0.5755128  
5) 3.6425 + 0.5755128 = 4.2180128  

If the calculated expression is too long, then before pressing the [Enter] 

key, you must type three or more dots. This will mean that the command will 

continue on the next line: 

 

-->1+2+3+4+5+6.... 

-->+7+8+9+10.... 

-->+11+12+13+14+15 

 ans  = 

    120.  

 

If the semicolon character ";" is specified at the end of the expression, the 

result of the calculations is not displayed on the console screen: 

 

-->2+3; 
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 or: 

-->3+4 

 ans  = 

  

    7. 

 

2.3 Variables in Scilab 

 

In the Scilab console window, you can define variables and then use them in 

expressions. Any variable must be defined before being used in formulas and 

expressions. To define a variable, you need to type the name of the variable, then 

type the "=" symbol and at last you need to type the value of the variable. Here the 

equal sign is an assignment operator, the effect of which does not differ from similar 

operators in other programming languages. That is, if in general form the assignment 

operator will be written as: 

 
variable_name = expression_value 

 

then the value of the expression which is specified on the right will be written to the 

variable whose name is specified on the left. The variable name must be written in 

one word, if you want to use several words in one variable, then the spaces between 

the words must be replaced with the underscore symbol "_".  

The variable name must not coincide with the names of procedures, functions 

and system variables predefined in the system and can contain up to 24 characters. 

Allowed characters in variable names are Latin letters, numbers, as well as symbols 

"%", "!", "$", "?". The system distinguishes between uppercase and lowercase letters 

in variable names. Those. ABC, abc, Abc, aBc are the names of different variables. 

The expression on the right side of an assignment operator (=) can be a 

number, arithmetic expression, character string, or symbolic expression. If we are 

talking about a character or string variable, then the expression on the right side of 

the assignment operator (=) should be enclosed in single (') or double (") quotes. 

Concatenation (merging) of strings is carried out using the "+" operator. for example: 

 

Name= 'path'+ "/" + "File1" 

 

If the character ";" semicolon at the end of the expression, the name of the 

variable and its value are displayed as the result. The presence of the semicolon 

symbol “;" transfers control to the next command line. This allows variable names to 

be used to write intermediate results to the computer's memory. 

 

Let's type the following program text in the window of the SciNotes text 

editor: 

//------------------------------------------------ 



 20 

// assigning values to variables а and b 

a=2.3 

b=-34.7 

// assigning values to variables x and y, 

// calculating the value of a variable z 

x=1; 

y=2; 

z=(x+y)-a/b 

// Error message - variable is not defined 

e=c+3^2 

// Defining a symbolic variable 

d='a' 

// Defining a string variable 

h=' example of writing a string 

 

and press the [Ctrl] + [L] keys simultaneously. 

The text of the executed program will appear in the console window. After 

the line "--> e = c + 3 ^ 2", the program will interrupt the execution of 

calculations and display an error message: 

 

-->e=c+3^2 

at line   11 of executed file 

Undefined variable: c 

 

Let's make a correction in the SciNotes text editor window by defining the "c" 

variable, for example, assigning it a value which will be equal to 1 (c = 1;), and again 

send the program for execution by pressing the [Ctrl] + [L] keys simultaneously. In 

the Scilab console window, we get the following result: 

 

--> // assigning values to variables x and y, 

--> // calculating the value of a variable z 

--> x=1; 

--> y=2; 

--> z=(x+y)-a/b 

 z  =  

   3.0662824 

--> // Error message - variable is not defined 

--> c=1 

 c  =  
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   1. 

--> e=c+3^2 

 e  =  

   10. 

--> // Defining a symbolic variable 

--> d='a' 

 d  =  

  "a" 

--> // Defining a string variable 

--> h=' example of writing a string' 

 h  =  

  " example of writing a string" 

 

To clear the value of a variable, you can use the command 

 

clear variable_name 

 

If you want to cancel the definitions of all variables which was given for a 

given program, you can use the clear command. The following are examples of 

how to use this command. Let's type in the Scilab console window: 

 

-->// Defining variables x and y 

-->x=3; y=-1; 

 

and then press the [Enter] key. In the Variable Browser window, the values of the x 

and y variables changed their values and became equal to 3 and –1, respectively. If 

we type clear x command and try to view its value in the Variable Browser 

window, we will see that the x variable has been removed from the list of variables. 

By typing the name of the variable x in the Scilab console window, we get the 

message: 

  

-->x 

Undefined variable: x 

If you run the command in the Scilab console window 

-->clear 

then we will see that the list of variables has cleared in the Variable Browser window. 

Such a cleanup is useful if several programs are executed sequentially and the values 

of variables which was defined in previous programs can affect to the result of the 

execution, if you forget to redefine them. 
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2.4 Scilab system variables 

 

If the command does not contain an assignment sign, then by default the 

calculated value is assigned to the special system variable ans (short for the English 

word answer). Moreover, the resulting value can be used in subsequent calculations, 

but it is important to remember that the ans value changes after each command call 

without an assignment operator. 

For example, type an arbitrary number in the Scilab console window, for 

example 45.67, and press the [Enter] key. The ans variable will take a value equal 

to 45.67. Enter the name of the ans variable in the console window, press the 

[Enter] key and make sure that its value is equal to 45.67. Let's type the command 

2*ans, press the [Enter] key and see that the value of ans has doubled. Below is a 

listing of the steps which was taken: 

 

-->45.67 

 ans  = 

    45.67   

-->ans 

 ans  = 

    45.67   

-->2*ans 

 ans  = 

    91.34 

 

The result of the last calculation that was performed without an assignment 

operation is always stored in an ans variable.  

Other system variables in Scilab start with a % character. Below is an 

incomplete list of them: 

 %eps — epsilon (floating-point relative accuracy).  

Description: 

%eps is a predefined variable, %eps = 2^(-16). Calculations are not exact, but 

performed for a given precision. 

Example:  
--> %eps  

 %eps  =  

   2.220D-16 

 

 %i — imaginary unit. 

Description:  

%i is imaginary unit, used to enter complex number.  
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Example:  
--> %i  

 %i  =  

   i   

 %inf — infinity. 

Description:  

returns of the representation for positive infinity.  

Example:  
--> %inf  

 %inf  =  

   Inf 

 %nan — not-a-number  

Description: 

%nan returns the representation for Not-a-Number (NaN).  

Example:  
--> %nan  

 %nan  =  

   Nan 

 %pi — ratio of circle's circumference to its diameter. 

Description:  

%pi returns the floating-point number nearest to the value to π. 

Example:  
--> %pi  

 %pi  =  

   3.1415927 

 %e — Euler number.  

 . 

Example:  
--> %e  

 %e  =  

   2.7182818 

All of the above system variables can be used in mathematical expressions, 

for example: 

 

-->a=5.4;b=0.1; 

-->F=cos(%pi/3)+(a-b)*%e^2 

 F  = 

    39.661997 

The following is an example of an invalid reference to the %pi system 

variable: 

-->sin(pi/2) 

Undefined variable : pi 



 24 

2.5 Dynamic typing of Scilab variables. 

 

The type of a variable in Scilab can change dynamically depending on the 

value assigned to that variable. This means that it is possible, for example, to create a 

variable containing a real value, and then assign the value to this variable as a 

sequence of characters – strings, as is shown below: 

 
-->x=1 

 x  = 

    1.   

-->x+1 

 ans  = 

    2.   

-->x="foot" 

 x  = 

foot    

-->x+'boll' 

 ans  = 

footboll 

 

It should be emphasized once again that Scilab is an untyped language, so there 

is no need to specify the type of a variable before assigning a value to it, and 

moreover, the type of a variable can change during the lifetime of a variable. 

 

2.6 Entering a real number and displaying the results of calculations. 

 

Numeric results can be represented with floating point (for example, –3.2E – 6, 

–6.42E + 2) or with a fixed point (for example, 4.12, 6.05, –17.5489) *. 

Note: * Since in some, mainly English-speaking countries, when writing numbers, 

the integer part is separated from the fractional by a point, the term "floating point" 

appears in the terminology of these countries. In Ukraine, the integer part of the 

number from the fractional part is traditionally separated by a comma, therefore In 

Ukraine, the term "floating comma" is usually used to denote the same concept. Both 

options of the term "floating point"  and "floating comma"  can be found in the 

technical documentation. 

Floating point numbers are represented in exponential form mep, where m is 

the mantissa (integer or fractional number with decimal point), p is the order (integer 

number ). In order to convert a number which is represented in exponential form 

(floating point) to a fixed point form, you need to multiply the mantissa m by ten to 

the power of the order p. 

For example:  

 

–6.42e+2 = –6.42102 = –642; 

3.2e–6 = 3.210–6 =0.0000032. 
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When you are entering real numbers, a point is used to separate the fractional 

part. Examples of input and output of real numbers: 
 

-->0.123 

 ans  = 

    0.123   

-->-6.43e+2 

 ans  = 

  - 643.   

-->3.2e-6 

 ans  = 

    0.0000032 

 

Consider an example of outputting the value of the system variable  and some 

variable q, which is defined by the user: 

 
-->%pi 

 %pi  = 

    3.1415927   

-->q=0123.4567890123456789 

 q  = 

    123.45679  

 

It is easy to see that Scilab outputs only eight significant digits as a result. This 

is the default floating point format. In order to control the number of bits displayed 

on the screen or printed, use the printf command with a specified format that 

corresponds to the rules adopted for this command in the C language. 

For example, let's define some variable g with 20 decimal places. And let's try 

to display this value in the command line in three ways. To do this, type the 

following lines in the text editor window and press the [Ctrl] + [L] keys: 

 

g=1.12345678901234567890 

printf("%1.20f",g) 

printf("%1.16f",g) 

 

In the Scilab console window, we get the following result: 

 
 -->g=1.12345678901234567890 

 g  = 

    1.1234568   

-->printf("%1.20f",g) 

1.12345678901234570000 

-->printf("%1.16f",g) 

1.1234567890123457 
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The example shows that for normal output Scilab outputs only 8 digits after the 

decimal point, and for a given format no more than 16, and the last of them is 

rounded, the rest are zeroed. 

 

2.7 Boolean type of variables. 

 

The Boolean type can store the values "true" or "false", In Scilab, "true" is 

stored in the system variable %t or %T (from English true), and "false" -% f or % F 

(from English false). 

In the table 2.1 boolean and comparison operators that are used in Scilab are 

listed. Comparison operators accept data of any of the basic data types as input (real, 

complex and integer numbers, strings) and return a boolean value. Comparison 

operators can also be used to compare matrices. 

 

Table 2.1 - Logical and comparison operators. 

Designation Description 

а & b logical "AND", "True" if a and b is equal to 

"true" 

а | b logical "OR", "True" if a and  b is equal to 

"true" 

~ а  (~) logical not  

а == b "True" if a is equal to b 

  a~=b or а <> b "True" if a and b are not equal 

а < b "True" if a is less than b 

а > b "True" if a is greater than b 

а <= b "True" if a is less than or equal to b 

а >= b "True" if a is greater than or equal to b 

 

The following example illustrates performing operations on boolean types. 

Let's assign logical values to two variables in the text editor window and execute the 

logical "AND" operator. 

 
// variable a is assigned the value "true" 
a=%T  

// variable b is assigned the value of the 
//result of comparing two numbers "0" and "1" 
b=(0==1) 

a&b 

 

After launching the program for execution by pressing the [Ctrl] + [L] keys in 

the same time , we will see in the console window: 

 
--> // variable a is assigned the value "true" 

--> a=%T 

 a  =  
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     T 

--> // variable b is assigned the value of the 

--> //result of comparing two numbers "0" and "1" 

--> b=(0==1) 

 b  =  

     F 

--> a&b 

 ans  = 

     F 

 

2.8 Functions of Scilab 

 

All functions used in Scilab can be divided into two classes: built-in; user-

defined. 

In general, a call to a function in Scilab looks like this: 

 
variable_name = function_name (variable1 [, variable2, ...]) 

 

where variable_name is the variable to which the results of the calculation in the 

function will be written; this parameter can be absent, then the value calculated by the 

function will be assigned to the system variable ans; 

function_name is the name of a built-in or previously created by the user function; 

variable1, variable2, ... is a list of function arguments. 

 

2.8.1 Elementary mathematical functions. 

 

The number of built-in functions supported by Scilab is quite large, there are 

more than 50 trigonometric functions alone, all of them can be found in the Scilab 

help system (fig. 2.2). Familiarization with the main of them will occur by you when 

you will refer to them. 

Figure 2.2 – Basic package functions in the Scilab help window. 



 28 

Here we give only the elementary mathematical functions that are used most 

often (tab. 2.2). 

 

Table 2.2 –  Elementary mathematical functions 
Function Function description Function Function description 

sin(x) sine of number x atan(x) arctangent of a number x 

cos(x) cosine of number x exp(x) exponential of number x 

tan(x) tangent of number x log(x) Natural logarithm of x 

cotg(x) cotangent of number  x sqrt(x) square root of number x 

asin(x) arcsine of number x abs(x) absolute value of number x 

acos(x) inverse cosine of x log10(x) base 10 logarithm of number x 

Let's consider an example of calculating the value of an expression: 

 

-->x=1.2;y=0.3; 

-->z=sqrt(abs(sin(x/y)))*exp(x**y) 

 z  = 

    2.5015073 

 

 

Questions for self-examination for the second lecture: 

1. What are text comments in the programs for? 

2. How are text comments written in the Scilab programming language? 

3. What operators are used to write mathematical expressions in the Scilab 

programming language? 

4. What the priority level of operators for writing mathematical expressions in 

the Scilab programming language is? 

5. How to determine the value of a variable in the Scilab programming 

language? 

6. How to write the name of the variable? 

7. What is the clear command for? 

8. What is a system variable and how it can be used? 

Questions for self-examination for the fourth lecture: 

1. What is dynamic typing of Scilab variables? 

2. How to enter a real number? 

3. How displaying the results of calculations? 

4. What is Boolean type of variables and where are they used? 

5. What types of functions in Scilab do you know? 

yxe
y

x
z  )sin(
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Lecture 3 

The purpose of the lecture is to get acquainted with the type of Scilab 

functions, learn how to create user functions in two ways and with the definition of an 

array and a matrix, how they are formed, to study actions on vectors and matrices. 

 

2.8.2 User-defined functions. 

 

Which function, as a rule, is intended for repeated use; it has input parameters 

and cannot be executed without first specifying them. Let's look at several ways to 

create functions in Scilab.  

The first way is to use the deff command (from the English define function - 

define a function), which in general can be written as follows: 
 

deff('[name1,...,nameN] = function_name (variable_1, ..., 

variable_M) ',' name1 = expression1; ...; nameN = 

expressionN ') 

 

where: 

– name1,...,nameN is a list of output parameters, that is, variables that will be 

assigned the final result of calculations; 

– function_name - the name with which this function will be called; 

– variable_1, ..., variable_M - input parameters. 

 
The following is the simplest way to use the deff command. Let's  create and 

use a function to evaluate an expression (the value of this expression has already been 

calculated in section 2.8.1). 

deff('[z]=fun1(x,y)','z=sqrt(abs(sin(x/y)))*exp(x**y)'); 

x=1.2; y=0.3; z=fun1(x,y)  

 

After launching the program for execution by pressing the [Ctrl] + [L] keys in 

the same time, we get in the console window: 

 

Input 

parameters 

 

variable_1, ..., 

variable_M 

Function 

 

function_name 

Output 

parameters 

 

name1,..., 

nameN 

yxe
y

x
z  )sin(
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-->deff('[z]=fun1(x,y)','z=sqrt(abs(sin(x/y)))*exp(x**y)'); 

-->x=1.2; y=0.3; z=fun1(x,y) 

 z  = 

    2.5015073 

 

In the following example, we will create a function that can be used to find the 

roots of a quadratic equation of the form ax2 + bx + c = 0 using the formulas  

D = b2 – 4ас; x1,2 = (– b  D)/(2*a) 

Let's type the program codes in the text editor window: 

 
deff('[x1,x2] = korni(a,b,c)',... 

'd=b**2-4*a*c; x1=(-b+sqrt(d))/(2*a); x2=(-b-sqrt(d))/(2*a);'); 

[x1,x2] = korni(-2,-3,5) 

 

After started the program for execution by pressing the [Ctrl] + [L] keys, we 

will have in the console window: 

 
--> deff('[x1,x2] = korni(a,b,c)',... 

-->'d=b**2-4*a*c; x1=(-b+sqrt(d))/(2*a); x2=(-b-sqrt(d))/(2*a);'); 

--> [x1,x2] = korni(-2,-3,5) 

 x2  =  

   1. 

 x1  =  

  -2.5 

The second way to create a function is to use a construction like this: 

 
function[name1,...,nameN] = name_ function (variable_1, 

..., variable_M) 

// function body 
endfunction 

 

here: name1,...,nameN – a list of output parameters, that is, variables that will be 

assigned the final result of calculations;  

name_ function – the name with which this function will be called; 

variable_1, ..., variable_M) –  input parameters. 

All variable names which was defined inside the function, as well as names 

from the list of input and output parameters are perceived by the system as local, that 

is, they are considered defined only inside the function. 

Generally speaking, functions in Scilab play the role of subroutines. A 

subroutine is the same function, but it has no output parameters. For the convenience 

of using the functions, it is advisable to save their text as separate files. 

Moreover, the file name must necessarily coincide with the function name. 

The extension for function files is usually sci or sce. 

The function is accessed in the same way as any other built-in function of the 

system, that is, from the command line. However, the functions stored in separate 

files must be previously loaded into the system, for example, using the exec 
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(file_name) operator or the File – Execute. . . command of the main 

menu. ... ... , which is, in general, the same thing. 

As an example, consider solving a cubic equation. 

Cubic equation of the form 

ax3 + bx2 + cx + d = 0, 

after division by a equation takes the canonical form: 

x3 + rx2 +sx +t = 0; 

where r = b/a;   s = c/a;   t = d/a. 

In the last equation, we make the change x = y - r/3 and we have the following 

reduced equation: 

y3 +py +q = 0; 

 

where: p = (3s – r2)/3,  q = 2r2/27 – rs/3 + t. 

The number of real roots of the reduced equation depends on the sign of the 

discriminant D = (p/3)3 + (q/2)3 

 

Table 2.2 – Number of roots of a cubic equation. 

Discriminant The number of real roots Number of complex roots 

D > 0 

D < 0 

1 

3 

2 

– 

 

The roots of the given equation can be calculated using the Cardano formula: 

here: 

 

Below is the text of the function that implements the above method for solving 

the cubic equation. Let's type the text of the function in the text editor and save it 

with the name cub.sce: 

 
//файл cub.sce 

function [x1,x2,x3]=cub(a,b,c,d) 

r=b/a; 

s=c/a; 

t=d/a; 

p=(3*s-r^2)/3; 

q=2*r^2/27-r*s/3+t; 

D=(p/3)^3+(q/2)^3; 

u=(-q/2+sqrt(D))^(1/3); 

v=(-q/2-sqrt(D))^(1/3); 

.i
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y1=u+v; 

y2=-(u+v)/2+(u-v)/2*%i*sqrt(3); 

y3=-(u+v)/2-(u-v)/2*%i*sqrt(3); 

x1=y1-r/3; 

x2=y2-r/3; 

x3=y3-r/3; 

endfunction 

 

In the editor window, type the command for calling the file and the command 

for calling the function: 

 
exec('C:\Users\D\Desktop\Примеры\cub.sce') 

[x1,x2,x3]=cub(3,-20,-3,4) 

 

Let's start the program for execution by pressing the [Ctrl] + [L] keys in the 

same time, we will get the solution of the cubic equation in the console window: 

 
  -->exec('E:\Примеры\cub.sci'); 

-->[x1,x2,x3]=cub(3,-20,-3,4) 

 x3  =  

   2.3745111   

 x2  =  

  -1.8272   

 x1  =  

   6.1193556   

 

3 ARRAYS AND MATRICES IN Scilab. 

 

If you want to work with a lot of homogeneous data, it is convenient to use 

arrays. For example, you can create an array to store numeric or character data. In 

this case, instead of creating a set of variables in which data is stored, it is enough to 

create one array, with many ordered elements, where each element will have a serial 

number and each element can be assigned its own value. 

Thus, an array is a multiple data type with a fixed number of elements. Like 

any other variable, the array must be given a name. A variable that is simply a list of 

data is called a one-dimensional array, or vector. To access the data stored in a 

specific element of the array, you must specify the name of the array and the ordinal 

number of this element, which is called the index. 

If it becomes necessary to store data in the form of tables, in the format of rows 

and columns, then it is necessary to use two-dimensional arrays or matrices. To 

access data stored in such an array, you must specify the name of the array and two 

indices, the first must correspond to the row number, and the second to the number of 

the column in which the required element is stored. 

The lower bound of indexing in Scilab is equal to one. Indexes can only be 

positive integers. 
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3.1 Input and formation of arrays and matrices. 

 

Scilab uses the following symbols to define matrices: 

- square brackets "[" "]" denote the beginning and end of the enumeration of 

matrix elements, 

- "space" or "," separates matrix elements that are in one line, 

- semicolon ";" separates the rows of the matrix. 

You can define a one-dimensional array in Scilab as follows: 

 
name=Xn:dX:Xk 

 

where: name is the name of the variable to which the generated array will be written, 

Xn - the value of the first element of the array, 

dX - the value of the last element of the array, 

Xk - the step by which each next element of the array is formed, that is, the 

value of the second element will be equal to Xn+dX,, the third - Xn+ dX+dX, and so 

on up to Xk. 

If the dX parameter is absent in the construction, this means that by default it 

takes on a value equal to one, that is each next element of the array is equal to the 

value of the previous one plus one: 

 
name=Xn:Xk 

// let's determine the values of the variables Xn,dX и Xk 

Xn=-3.5;dX=1.5;Xk=4.5; 

// set the values of the array Х 

X=Xn:dX:Xk 

// as a function argument sin() transmit the argument Х 

 // each element of which is divided by two 

Y=sin(X/2) 

// Define array A with has six elements: from 0 to 5 

A=0:5 

0:5 

// the system variable ans has the value of elements  

// of the array A 

ans/2+%pi 
 

Running the program for execution by pressing the [Ctrl] + [L] keys at the 

same time and we will get: 

 
--> // determine the values of the variables Xn,dX и Xk 

-->Xn=-3.5;dX=1.5;Xk=4.5; 

-->X=Xn:dX:Xk 

 X  = 

  - 3.5  - 2.  - 0.5    1.    2.5    4.   

-->Y=sin(X/2) 
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 Y  = 

   - 0.9839859  - 0.8414710  - 0.2474040    0.4794255    

0.9489846    0.9092974   

-->A=0:5 

 A  = 

  

    0.    1.    2.    3.    4.    5.   

-->0:5 

 ans  = 

    0.    1.    2.    3.    4.    5.   

-->ans/2+%pi 

 ans  = 

    3.1415927    3.6415927    4.1415927    4.6415927    

5.1415927    5.6415927 

 

Another way to set the structure and values of matrix elements in Scilab is to 

enter all the matrix data element by element. 

So, to define a row vector, enter the name of the array, and then after the 

assignment sign, in square brackets separated by a space or comma, write down the 

values of the array elements: 

 

name=[x1 x2 ... xn] or name=[x1, x2, ..., xn] 

 

Example of inputting a row vector: 

 

 -->V=[1 2 3 4 5] 

 V  = 

    1.    2.    3.    4.    5.   

-->W=[6.1,4.56,-45.34,0.01] 

 W  = 

    6.1    4.56  - 45.34    0.01 

 

The values of the elements of the column vector are entered separated by 

semicolons: 

 
name=[x1; x2; ...; xn] 

 

Example of inputting of a column vector: 

 

-->ST=[1;2;3] 

 ST  = 

    1.   

    2.   

    3.  

You can refer to an element of a vector by specifying the name of the array and 
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the ordinal number of the element in round brackets: 

 
name(index) 

For example: 

 

-->W=[1.1,2.3,-0.1,5.88]; 

-->W(1)+2*W(3) 

 ans  = 

  

    0.9  

 

Matrix elements are also entered in square brackets, with the line elements 

separated from each other by a space or comma, and the lines are separated by a 

semicolon: 

 
name=[x11, x12, ..., x1n; x21, x22, ..., x2n; ...; 

xm1, xm2, ..., xmn;] 

 

You can refer to an element of a two-dimensional matrix by specifying the row 

number and column number at the intersection of which the element is located after 

the name of the matrix. The index of the line number and the index of the column 

number are indicated in round brackets, where indexes are separated by commas: 

 
name(index1, index2) 

 

Let's consider an example of defining a two-dimensional matrix and accessing 

its elements: 

 

-->Aray=[1 2 3;4 5 6;7 8 9] 

 Aray  = 

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9.  

--> Aray(1,2)^Aray(2,2)/Aray(3,3) 

ans =  3.5556 
 

The example which just is shown corresponds to this action: 
 

-->2**5/9 

 ans  = 

    3.5555556 

 

In addition, matrices and vectors you can be formed by composing them from 

previously specified matrices and vectors: 
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-->v1=[1 2 3]; v2=[4 5 6]; v3=[7 8 9]; 

-->// Horizontally conjunction of the row vectors: 

-->V=[v1 v2 v3] 

 V  = 

    1.    2.    3.    4.    5.    6.    7.    8.    9. 

-->// Vertical conjunction of the row vectors: 

-->// the result is the matrix: 

-->V=[v1; v2; v3] 

 V  = 

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9.   

-->// Horizontally conjunction of the matrices: 

-->M=[V V V] 

 M  = 

    1.    2.    3.    1.    2.    3.    1.    2.    3.   

    4.    5.    6.    4.    5.    6.    4.    5.    6.   

    7.    8.    9.    7.    8.    9.    7.    8.    9. 

-->// Vertical conjunction of the matrices: 
-->M=[V;V;V] 

 M  = 

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9.   

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9.   

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9. 

 

An important role, when you are working with matrices, has the colon ":". 

By specifying it instead of an index when you are using an array, you can access 

groups of its elements, that is, rows or columns. Let's type the program in the text 

editor window: 
 

// Let the matrix is given А 

A=[5 7 6 5; 7 10 8 7;6 8 10 9;5 7 9 10] 

// Let select the second column from matrix A 

A(:,2) 

 

We will receive the answer in the console: 

 

 ans  = 
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    8.    

    7.    

    10.   

    9.    

    9.    

    10. 

 

Let's add two lines to the console window: 

 
// Select the third row from the matrix A 

A(3,:) 

 

After that in the console, we'll get the answer: 

 
ans  = 

    6.    8.    10.    9. 

 

And then we will carry out a number of operations, the meaning of which are 

indicated in the comment lines: 

 
// Let select from the matrix A the submatrix M 

// which is located at the intersection of  

// the 3rd and 4th rows and the 2nd   

//and 3rd columns 

M=A(3:4,2:3) 

 

Let’s pressing the [Ctrl] + [L] keys at the same time and we get the answer in 

the console window: 
 

M  = 

    8.    10.   

    7.    9.    

 

Consider the following example. After typing the program code into the editor 

window: 
// Remove second column from matrix A 

A(:,2)=[] 

 

Let’s pressing the [Ctrl] + [L] keys at the same time and we get the answer in 

the console window: 
 

 A  = 

    5.    6.     5.    

    7.    8.     7.    
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    6.    10.    9.    

    5.    9.     10.   

 

Next example. After typing the program code into the editor window: 
 

// Remove the third row from the matrix A 

A(3,:)=[] 

 

Press the [Ctrl] + [L] keys at the same time and we get the answer in the 

console window: 
 

 A  = 

    5.    6.    5.    

    7.    8.    7.    

    5.    9.    10.   

 

Next example. After typing the program code into the editor window 
 

// Represent the matrix M as a column vector 

v=M(:) 

Press the [Ctrl] + [L] keys at the same time and we get the answer in the 

console window: 
 

 v  = 

    8.    

    7.    

    10.   

    9.    

Next example. After typing the program code into the editor window: 

 
//Extract from the column vector v the elements 

//from the second to the fourth 

b=v(2:4) 

 

Press the [Ctrl] + [L] keys at the same time and we get the answer in the 

console window: 
 

 b  = 

    7.    

    10.   

    9.    

 

Next example. After typing the program code into the editor window: 
 

// Let's remove second element from array b 
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b(2)=[] 

 

Press the [Ctrl] + [L] keys at the same time and we get the answer in the 

console window: 
 

 b  = 

    7.   

    9. 

 

3.2 Actions with vectors and matrices. 

 

When you are working with rows and columns in Scilab, the following 

mathematical operations are permissible for you:  

 plus (+)  

Numerical addition. Text concatenation (gluing).  

Syntax:  

X + Y 

str1 + str2 

Arguments:  

X,Y – scalars, vectors, matrices of booleans, numbers, polynomials, or 

rationals.  

str1, str2 – two texts, vectors or matrices of texts.  

Description:  

For numeric operands, the addition has its usual meaning.  

For two texts, + concatenates (glues) them together.  

If an operand is an array and the other one is a scalar, the scalar is applied 

(added or glued) to each component of the array.  

Adding booleans together or to numbers of integer, performs the implicit 

conversions %F => 0 and %T => 1 before processing. The result has the type of the 

input numbers, or is decimal for booleans added together. 

If an operand is the empty matrix [], the result is [].  

Examples:  
--> [1, 2] + 1 

 ans  = 

   2.   3. 

--> [%f %f %t %t] + [%f %t %f %t] 

 ans  = 

   0.   1.   1.   2. 

--> %f + [-1 0 2] 

 ans  = 

  -1.   0.   2. 

--> %t + [-1 0 2] 

 ans  = 

   0.   1.   3.  
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--> [] + 2 

 ans  = 

    [] 

--> "con" + ["catenate" "crete" "sole"] 

 ans  = 

!concatenate  concrete  console  ! 

 

 minus (-) 

Subtraction operator. Sign change.  

Syntax:  

X - Y 

-X 

Arguments:  

X, Y – scalars, vectors, matrices of booleans, numbers.  

Description:  

Subtraction for numeric operands, the subtraction has its usual meaning. If one of 

the operands is a scalar, then the subtraction is performed with each component of the 

other operand.  

As soon as a boolean is involved in a subtraction with a number (decimal or 

integer), it is automatically converted in the type (and integer type) of the number 

before performing the subtraction or the sign change, as %F => 0 and %T => 1. 

Whatever is the (regular) type of X, then the empty matrix []-X, X-[], and -[] 

return [].  

The addition and subtraction operations are defined for matrices of the same 

dimension or vectors of the same type, that is, you can sum (subtract) either column 

vectors or row vectors of the same length. 

Examples:  
--> [] - 2 

 ans  = 

    [] 

--> 1 - [] 

 ans  = 

    [] 

--> [2, 5] - 1 

 ans  = 

   1.   4. 

--> [2, 5] - [3 -2] 

 ans  = 

  -1.   7. 

--> -[%f %t] 

 ans  = 

   0.  -1. 

--> [%f %f %t %t] - [%f %t %f %t] 

 ans  = 

   0.  -1.   1.   0. 
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 quote (') 

Transpose operator, string delimiter.  

Description:  

Quote (') is used for conjugate transpose of matrix.  

Quote (.') is used for non-conjugate transpose of matrix. 

If in some matrix the rows are replaced by the corresponding columns, then the 

transposed matrix will be obtained. 

Simple (') or double (") quotes are also used to define character strings. 

(Character strings are defined between two quotes). A quote within a character string 

is denoted by two quotes.  

Examples:  

--> [1, 2; 3,4] 

 ans  = 

   1.   2. 

   3.   4. 

--> [1, 2; 3,4]' 

 ans  = 

   1.   3. 

   2.   4. 

--> x='This is a character string' 

 x =  

  "This is a character string" 

--> x="This is another character string" 

 x =  

  "This is another character string" 

--> 'He said:""Very Good""' 

 ans  = 

  "He said:"Very Good"" 

 

 star (*) 

Multiplication operator. 

Description:  

The operation of multiplying a matrix by a number. Each member in the matrix is 

multiplied by the number. 

Examples:  
--> A = [1 2;3 4] 

 A  =  

   1.   2. 

   3.   4. 

--> A*3 

 ans  = 

   3.   6.  

   9.   12. 
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 dot star (.*) 

Element-wise matrix multiplication; 

Description:  

The first member of the matrix is multiplied by the first  member of the second 

matrix, then the second  member of the matrix is multiplied by the second member of 

the second matrix, and so on until the last members of the matrix will be multiplied. 

Examples:  
--> A = [1 2;3 4] 

 A  =  

   1.   2. 

   3.   4. 

--> B = [5 6;7 8] 

 B  =  

   5.   6. 

   7.   8. 

--> A.*B 

 ans  = 

   5.    12. 

   21.   32. 

 

 power (.^) 

Power operation. 

Syntax  

t = A .^ b 

Arguments:  

A, t – a scalar, vector, or matrix, decimal or complex numbers or polynomials.  

b – a scalar, vector or matrix, decimal or complex numbers.  

Examples:  

--> A = [1 2 ; 3 4] 

 A  =  

   1.   2. 

   3.   4. 

--> A.^3 

 ans  = 

   1.    8.  

   27.   64. 

--> B=[1 2;3 4] 

 B  =  

   1.   2. 

   3.   4. 

--> A.^B 

 ans  = 
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   1.    4.   

   27.   256. 

 

 element-wise left division (.\) 

 element-wise right division(./) 

Description:  

(A\B)  (A-1B), the operation can be applied to solve a matrix equation of 

the form AX = B, where X is an unknown vector. 

(B/A)  (BA-1) are used to solve matrix equations of the form XA = B. 

( 
Examples:  

-->// Solve matrix equations А*Х=В and Х*A=B. 

-->A=[3 2;4 3]; 

-->B=[-1 7;3 5]; 

-->// Solving the matrix equation AX=B: 

-->X=A\B 

 X  = 

  - 9.     11.   

    13.  - 13.   

-->// Checking of the equation solution    

-->A*X-B 

 ans  = 

    0.    0.   

    0.    0. 

In addition, if any function is applied to some given vector or matrix then 

the result will be a new vector or matrix of the same dimension, but the members 

of the original matrix will be transformed in accordance with the applied 

function: 

-->x=[0.1 -2.2 3.14 0 -1]; 

-->sin(x) 

 ans  = 

    0.0998334  - 0.8084964    0.0015927    0.  - 0.8414710 

 

Questions for self-examination for the third lecture: 

1. Explain how to create a user-defined function in the first way? 

2. Explain how to create a user-defined function in the second way? 

3. What is a vector and a matrix? 

4. How to form a vector? 

4. How to form a matrix? 

6. What actions can be performed on vectors in Scilab? 

7. What actions on matrices can be performed in Scilab? 
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Lecture 4 

The purpose of the lecture is to get acquainted with the functions of 

determining matrices, creating a matrix of ones, creating a matrix of zeros, creating 

an identity matrix, creating a matrix of random numbers, ordering an array, 

determining the size of an array and to get acquainted with the functions of 

determining the length of a matrix, calculating the sum and product of matrix 

elements, calculating the determinant of a matrix, calculating the largest and 

smallest elements in a matrix, calculating the average value of matrix elements, 

obtaining an inverse matrix. Get acquainted with symbolic matrices and operations 

of them. 

 

3.3 Special matrix functions in Scilab. 

  

There are special functions for working with matrices and vectors in Scilab. 

Let's consider the most commonly used ones. 

 

3.3.1 Functions for definition of matrix. 

 

3.3.1.1 The function of converting a matrix v to a matrix of a different size: 

 

y=matrix(v,n,m) 

here v is a vector or matrix; 

 n, m - integers of the number of rows and columns; 

y  is a vector or matrix. 

For a vector or matrix with n x m elements, command 

y = matrix(v,n,m) or the equivalent command y = matrix(v,[n,m]), 

converts the vector or matrix v to an n x m matrix with column-wise v. 

To get acquainted with the operation of the matrix function, let us set the text 

matrix D and 4 variants of the matrix function in the editor window: 

 

D=[1 2;3 4;5 6] 

matrix(D,2,3) 

matrix(D,1,6) 

matrix(D,6,1) 

matrix(D,3,2) 

 

Let's run the program by pressing the [Ctrl] + [L] keys. In the Scilab console 

window we will get: 

 
 -->D=[1 2;3 4;5 6] 

 D  = 

    1.    2.   

    3.    4.   
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    5.    6.   

-->matrix(D,2,3) 

 ans  = 

    1.    5.    4.   

    3.    2.    6.   

-->matrix(D,1,6) 

 ans  = 

    1.    3.    5.    2.    4.    6.   

-->matrix(D,6,1) 

 ans  = 

    1.   

    3.   

    5.   

    2.   

    4.   

    6.   

-->matrix(D,3,2) 

 ans  = 

    1.    2.   

    3.    4.   

    5.    6. 

 

3.3.1.2 The function  creating a matrix which is composed of ones: 

 
y=ones(m1,m2,...) 

y=ones(x) 

y=ones()  

 

where x,y are matrices; 

m1, m2,... are integers defining the dimension of the matrix v. 

The ones(m1,m2) function returns a matrix of dimensions (m1,m2) filled 

with ones.  

The ones(m1,m2,..,mn) function creates a multidimensional matrix of 

size (m1, m2, .., mn) which is filled with ones.  

The ones(x) function returns a matrix of the same size as the ones-filled 

matrix x. 

Let's look at some examples of using the ones function. For this, in the text 

editor window, we will type: 

 
ones(3) 

ones(3,3) 

ones() 

m=3; n=2; 

//A matrix of dimensions (mхn)will be formed 

//An (mх n) matrix will be formed 
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X=ones(m,n) 

// A two-dimensional matrix M will be formed 

M=[1 2 3;4 5 6] 

// A matrix Y consisting of ones will be formed, 

//with same dimension as matrix M 

Y=ones(M) 

 

Let's run the program by pressing the [Ctrl] + [L] keys. In the Scilab console 

window we will get: 
 

--> ones(3) 

 ans  = 

   1. 

--> ones(3,3) 

 ans  = 

   1.   1.   1. 

   1.   1.   1. 

   1.   1.   1. 

--> ones() 

 ans  = 

   1. 

--> m=3; n=2; 

--> //A matrix of dimensions (mхn)will be formed 

--> //An (mх n) matrix will be formed 

--> X=ones(m,n) 

 X  =  

   1.   1. 

   1.   1. 

   1.   1. 

--> // A two-dimensional matrix M will be formed 

--> M=[1 2 3;4 5 6] 

 M  =  

   1.   2.   3. 

   4.   5.   6. 

--> // A matrix Y consisting of ones will be 

formed, 

--> //with same dimension as matrix M 

--> Y=ones(M) 

 Y  =  

   1.   1.   1. 
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   1.   1.   1. 

 

3.3.1.3 The function creating a matrix which is composed of zero: 

 
y=zeros() 

y=zeros(x) 

y=zeros(m1,m2,..) 

 

here x,y are matrices; 

m1, m2, ... are integers. 

The functions for creating a matrix which are consisting of zeros: 

zeros(m1,m2) function returns a matrix of dimensions (m1,m2); 

zeros(m1,m2,..,mn) function creates a multidimensional matrix of size 

(m1,m2,...,mn), which is filled with zeros; 

zeros(A) function returns a matrix of the same size as the matrix A; 

zeros() returns a single zero, that is, a 1 × 1 matrix equal to zero. 

 

Let's look examples of using the zeros function. For this, in the text editor 

window we will type: 
 

zeros() 

zeros(3,3) 

zeros(2,3,2) // Two  matrices of dimensions 2x3 

// or matrix of dimensions 3D 

M=[1 2 3 4 5]; 

Z=zeros(M) 

 

Let's run the program by pressing the [Ctrl] + [L] keys. In the Scilab console 

window we will get: 

 

--> zeros() 

 ans  = 

   0. 

--> zeros(3,3) 

 ans  = 

   0.   0.   0. 

   0.   0.   0. 

   0.   0.   0. 

--> zeros(2,3,2)  

// Two  matrices of dimensions 2x3 

 ans  = 

(:,:,1) 
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   0.   0.   0. 

   0.   0.   0. 

(:,:,2) 

   0.   0.   0. 

   0.   0.   0. 

--> // or matrix of dimensions 3D 

--> M=[1 2 3 4 5]; 

--> Z=zeros(M) 

 Z  =  

   0.   0.   0.   0.   0. 

 

 

3.3.1.4 The function creating the identity matrix with undefined dimensions.  

X=eye(m,n) 

X=eye(A) 

X=eye() 

 

where: A,X – matrices, hypermatrices, or syslin lists;  

m х n – integer values: numbers of rows and columns for X. 

The X = eye(m,n) defines the (m × n) identity matrix (in the identity 

matrix, the elements of the main diagonal are equal to one, and all the rest are zero). 

The function X = eye(A) defines the identity matrix of the same dimension 

as the matrix A. 

The X = eye() function forms an identity matrix of undefined sizes. The 

dimensions will be determined when the given identity matrix will be summed with 

the matrix whose dimensions are determined. 

Let's consider some examples of using the eye function. For this, in the text 

editor window, we will type the following code: 

 
eye(3,4) 

A=[1,2,3;4,5,6;7,8,9] 

eye(A) 

m=3; n=4; 

E=eye(m,n) 

M=[0 1;2 3] 

// Forms a matrix E of the same dimension 

// as the matrix M 

E=eye(M) 

M=[1 2;3 4;5 6] 

E=eye() 

A=E+M 
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M-E 

 

Let's run the program by pressing the [Ctrl] + [L] keys. In the Scilab console 

window we will get: 

--> eye(3,4) 

 ans  = 

   1.   0.   0.   0. 

   0.   1.   0.   0. 

   0.   0.   1.   0. 

--> A=[1,2,3;4,5,6;7,8,9] 

 A  =  

   1.   2.   3. 

   4.   5.   6. 

   7.   8.   9. 

--> eye(A) 

 ans  = 

   1.   0.   0. 

   0.   1.   0. 

   0.   0.   1. 

--> m=3; n=4; 

--> E=eye(m,n) 

 E  =  

   1.   0.   0.   0. 

   0.   1.   0.   0. 

   0.   0.   1.   0. 

--> M=[0 1;2 3] 

 M  =  

   0.   1. 

   2.   3. 

--> // Forms a matrix E of the same dimension 

--> // as the matrix M 

--> E=eye(M) 

 E  =  

   1.   0. 

   0.   1. 

--> M=[1 2;3 4;5 6] 

 M  =  

   1.   2. 

   3.   4. 
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   5.   6. 

--> E=eye() 

 E  =  

eye * 

   1. 

--> A=E+M 

 A  =  

   2.   2. 

   3.   5. 

   5.   6. 

--> M-E 

 ans  = 

   0.   2. 

   3.   3. 

   5.   6. 

 

3.3.1.5 The function to create a matrix of random numbers. 

 
r = rand() 

r = rand(m1,m2,...) 

r = rand(m1,m2,...,key) 

r = rand(x) 

r = rand(x,key) 

rand(key) 

key = rand("info") 

 

here: m1, m2, ... - integers defining the dimension of the matrix of random 

numbers r; 

key - a variable of the "string" type that determines the law of distribution of 

random numbers. The available values for the variable are "uniform" for an 

equiprobable distribution and "normal" for a normal distribution. By default, the 

variable key is defined as "uniform"; 

x is a real or complex matrix; 

r is a real array of double precision numbers of size m1 х m2 х ... with 

random elements. 

For an equiprobable distribution, random numbers are evenly distributed in the 

range from 0 to 1. For a normal distribution, the characteristic of the distribution of 

random numbers will be the mathematical expectation equal to zero and the variance 

equal to one. 

It should be noted that these sequences are called random by convention, since 

the sequences will be repeated during repeated calculations. This sequence is called 

pseudo-random. In what follows, for simplicity of presentation, pseudo-random 



 51 

sequences will be called random. To get a truly random sequence, you need to 

randomly determine the generator seed for the rand() function. 

 
rand("seed",s) 

 

sets the seed of the random number generator to s (by default s is = 0 on first call). 

The functions rand return: 

r=rand() returns a 1-by-1 matrix of doubles, with one random value; 

r=rand(m1,m2) is a random matrix with dimension m1-by- m2; 

r=rand(m1,m2,...,mn) returns a random matrix with dimension m1-by- 

m2-by-... -by-mn;. 

r=rand(a) returns the random matrix with the same size as the matrix a. 

The matrix r is real if a is a real matrix and r is complex if a is a complex matrix. 

The function rand("uniform") or rand("u") sets the generator to a 

uniform random number generator. Random numbers are uniformly distributed in the 

interval [0,1]. 

The function rand("normal") or rand("n") sets the generator to a 

normal (Gauss-Laplace) random number generator, with mean which is equal to 0 

and variance which is equal to 1. 

The function key=rand("info") return the current distribution of the 

random generator ("uniform" or "normal")  

In order to get acquainted with the capabilities of the rand function, type the 

command «rand» in the command line of the console window, highlight this word, 

and right-click on it (RMB). In the context menu that opens, select the option "Help 

about‘ rand’". In the help service window that opens, read the description of the 

function «rand». Find the description section "Examples" and click LMB on the text 

editor icon      which is located on the lilac field of the example description (fig. 3.1). 

The example text will be transferred to the window of the text editor. 

 

Figure 3.1 - Text of an example of using the function rand. 

 

Let's run the program by pressing the [Ctrl] + [L] keys and in the Scilab 

console window we will get: 
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--> // Get one random double (based on the current distribution) 
--> r=rand() 
 r  =  
   0.2113249 
--> // Get one 4-by-6 matrix of doubles (based on the current distribution) 
--> r=rand(4,6) 
 r  =  
   0.7560439   0.6283918   0.068374    0.1985144   0.2164633   0.9329616 
   0.0002211   0.8497452   0.5608486   0.5442573   0.8833888   0.2146008 
   0.3303271   0.685731    0.6623569   0.2320748   0.6525135   0.312642  
   0.6653811   0.8782165   0.7263507   0.2312237   0.3076091   0.3616361 
--> // Get one 4-by-6 matrix of doubles with uniform entries 
--> r=rand(4,6,"uniform") 
 r  =  
   0.2922267   0.5935095   0.6325745   0.4818509   0.1280058   0.6856896 
   0.5664249   0.5015342   0.4051954   0.2639556   0.7783129   0.1531217 
   0.4826472   0.4368588   0.9184708   0.4148104   0.211903    0.6970851 
   0.3321719   0.2693125   0.0437334   0.2806498   0.1121355   0.8415518 
--> // Produce a matrix of random doubles with the same size as x 
--> x=rand(4,4); 
--> r=rand(x,"normal") 
 r  =  
   0.8895818   1.7315364   0.6472466  -1.2660345 
  -0.9060355   2.5692052   1.3250986  -0.4619728 
  -0.0047727  -0.4122445  -0.3449928   1.1932161 
  -1.7322409  -0.2976452   0.1317441   0.3176977 
--> // Produce a 2-by-2-by-2 array of random doubles 
--> r=rand(2,2,2) 
 r  =  
(:,:,1) 
   0.4829179   0.8400886 
   0.2232865   0.1205996 
(:,:,2) 
   0.2855364   0.8494102 
   0.8607515   0.5257061 

 

3.3.1.6 Array ordering function: 
gsort(X) 

 

The function performs the ordering of the vector X; if X is a matrix, sorting 

will be done by columns. 

Let's consider an example of how the function works. 

 
 -->b=[2 0 1] 

 b  = 

    2.    0.    1.   



 53 

-->gsort(b) // Sort descending 

 ans  = 

    2.    1.    0.   

-->-gsort(-b) // Sort Ascending 

 ans  = 

    0.    1.    2.   

-->A=[1 2 0;-1 3 1;4 -2 5]; 

-->gsort(A) // Sort a matrix 

 ans  = 

    5.    2.    0.   

    4.    1.  - 1.   

    3.    1.  - 2. 

 

3.3.2 Functions for calculating some numeric characteristics of matrices. 

 

3.3.2.1 Function for determining the size of an array: 

 
[n1, n2, n3, ...] = size(x) 

n = size(x, sel) 

 

here: x is two-dimensional or n-dimensional array of any type; 

sel is a positive scalar with integer value or one of the character strings 'r', 

'c' or '*' 

n1, n2, ... are numbers with integer values; 

n is a number with integer value. 

The size(x) function returns in each argument [n1, n2, ...], the 

value of the corresponding dimension. 

The expression n = size(x, sel) can be used to determine the 

dimension of array x: 

– set sel to 1 or 'r' to get the number of rows;  

– set sel to 2 or 'c' to get the number of columns.  

– Set sel to m, where m is a positive integer to get the mth dimension. If m 

is greater than  dimension of  the array x, then size(x,m) returns 1. 

– Set sel to '*' to get the product of the dimensions.  

 

Let's consider an example of how the function works. 

 
x=rand(3, 2) 

[n, m] = size(x) 

// Function returns the number of rows 
n = size(x, "r") 

// Function returns the number of columns 
m = size(x, "c") 

// Function returns the the product of the 
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dimensions  

nm = size(x, "*") 

 

Let's run the program by pressing the [Ctrl] + [L] keys. In the Scilab 

console window we will get: 

 

--> x=rand(3, 2) 

 x  =  

   0.993121    0.050042  

   0.6488563   0.7485507 

   0.9923191   0.4104059 

--> [n, m] = size(x) 

 n  =  

   3. 

 m  =  

   2. 

--> // Function returns the number of rows 

--> n = size(x, "r") 

 n  =  

   3. 

--> // Function returns the number of columns 

--> m = size(x, "c") 

 m  =  

   2. 

--> // Function returns the the product of the 

dimensions  

--> nm = size(x, "*") 

 nm  =  

   6. 

 

3.3.2.2 Function for determining the length of the matrix: 

 

n = length(M) 

where: M - matrix; 

n is an integer or a matrix of integer values. 

For an ordinary matrix, n is an integer equal to the product of the number of 

rows and columns of the matrix M. It is also correct for a matrix of booleans. 

For a matrix whose element is a character variable, the length() function 

returns the length of that variable in characters, including spaces. For a matrix 

composed of several rows, the length() function returns the length of all elements 

of the matrix, in other words, the length of all rows. 
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For a sparse matrix, the function does not work correctly, so it is recommended 

to use the size(...,'*')function for it. 

Let's consider an example of using the function: 
 

 -->length([123,456 ; 789,101 ])// Matrix 
 ans  = 

    4.   

-->length(['hello world'])// Row 

 ans  = 

    11.  

 

3.3.2.3 Function for calculating the sum of array elements: 

 
y=sum(x) 

y=sum(,orientation) 

 

where: x is array of real, complex, logical values, polynomials or rational fractions; 

orientation - (orientation) can be either a string with possible values "*", 

"r", "c";; 

y is a scalar or array. 

For an array x function y=sum(x) returns the number y, which is the sum 

of all the elements of x. 

  The function y=sum(x,orientation)) returns in y the sum of x along 

the dimension given by orientation: 

– - if orientation is equal to 1 or "r", then the function will return a string 

equal to the elementwise sum of the columns of the array x; 

– - if orientation is equal to 2 or "c", then the result of the function will 

be a column vector, each element of which is equal to the sum of the elements of the 

rows of the array x. 

Let's consider an example of using the function: 

 
-->M=[1 2 3;4 5 6;7 8 9] 

 M  = 

  

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9.   

-->Y=sum(M) // The sum of the matrix elements. 

 Y  = 

    45.   

-->S1=sum(M,1) // Sum of matrix elements by columns 

 S1  = 

    12.    15.    18.   

-->S2=sum(M,'c') // Sum of matrix elements by rows 
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 S2  = 

    6.    

    15.   

    24.   

--> V=[-1 0 3 -2 1 -1 1]; 

-->sum(V) // Sum of the elements of vector 

 ans  = 

    1. 

 

3.3.2.3 Function for calculating the product of array elements: 

 
y=prod(x) 

y=prod(x,orientation) 

 

The function works similarly to the sum function. 

An example of how the function works: 

 
-->M=[1 2 3;4 5 6;7 8 9] 

 M  = 

  

    1.    2.    3.   

    4.    5.    6.   

    7.    8.    9.   

-->Y=prod(M) // Product of matrix elements 

 Y  = 

    362880.   

-->P1=prod(M,1) // Product of matrix elements by 

  // columns 

 P1  = 

    28.    80.    162.   

-->P2=prod(M,'c') // Product of matrix elements by 

//rows 

 P2  = 

    6.     

    120.   

    504.   

-->V=[-1 2 3 -2 1 -1 1]; 

-->prod(V) // Product of matrix elements 

 ans  = 

  - 12. 
 

3.3.2.4 Function for calculating the determinant of a square matrix. 

 
det(M) 

where M is a square matrix. 
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An example of how the function works: 

 
-->M=[1 0 2;3 2 1;0 3 1]; 

-->det(M) 

 ans  = 

    17.   

-->Z=[1 2 2;0 1 3;2 4 4]; 

-->det(Z) 

 ans  = 

    0. 

-->M=[1 3;4 2] 

 M  = 

    1.    3.   

    4.    2.   

-->det(M) 

 ans  = 

  - 10.  

 

3.3.2.5 Function for calculating the largest element in an array. 

 
max(M) 

max(M,'c') 

max(M,'r') 

 

A function can return a value in one or more variables 

 
m = max(M) 

[mх[,n]] = max(M) 

 

where: M is a real vector or matrix; 

'c' is pointer to work by rows; 

'r' is pointer to work by columns;  

m - the return value of the element with the maximum value; 

n the return value of the index of the maximum element. 

The max(M) function returns the value of the largest element in the array M. 

The max(M,'c') function returns the largest element in each row. 

The max(M,'r') function returns the largest element in each column. 

The [m,n] = max(M) function returns the index value of the largest 

element n and the value of the largest element m. 

An example of how the function works: 

 

 
-->M=[5 0 3 5;2 7 1 4;0 4 9 10] 

 M  = 
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    5.    0.    3.    5.    

    2.    7.    1.    4.    

    0.    4.    9.    10.   

-->max(M) 

 ans  = 

    10.   

-->max(M,'c') 

 ans  = 

    5.    

    7.    

    10.   

-->max(M,'r') 

 ans  = 

    5.    7.    9.    10.   

--> [m,n] = max(M) 

 n  = 

    3.    4.   

 m  = 

    10.   

-->// the largest element in each row. 
-->[m,n] = max(M,'c') 

 n  = 

    1.   

    2.   

    4.   

 m  = 

    5.    

    7.    

    10.   

-->// the largest element in each column 
--> [m,n] = max(M,'r') 

 n  = 

    1.    2.    3.    3.   

 m  = 

    5.    7.    9.    10. 

 

3.3.2.6 Function for calculating the smallest element in an array. 

 
min (M) 

min (M,'c') 
min (M,'r') 

[m,n] = min (M) 
[m,n] = min (M,'c') 
[m,n] = min (M,'r') 
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The min function works in the same way as the max function works. 

An example of how the function works: 

 
-->M=[5 0 3 5;2 7 1 4;0 4 9 10] 

 M  = 

    5.    0.    3.    5.    
    2.    7.    1.    4.    

    0.    4.    9.    10.   

// smallest element in each row 

-->[m,n] = min (M,'c') 

 n  = 

    2.   

    3.   

    1.   

 m  = 

    0.   

    1.   

    0.   

// smallest element in each column 
-->[m,n] = min (M,'r') 

 n  = 

    3.    1.    2.    2.   

 m  = 

    0.    0.    1.    4.   

 

3.3.2.7 Function for calculating the average value of array elements. 

 
Y = mean(x) 

Y = mean(x,'r') 

Y = mean(x,'c') 

 

where: Y is average value of array elements; 

x is a real vector or matrix; 

'c' is pointer to work by rows; 

'r' is pointer to work by columns;  

The mean(x) function calculates the average of the elements in the array x. 

The mean(x,'r') function calculates the average value of the elements in 

each column. As a result in the console window the line will be shown. The number 

of elements in a line will be equal to the number of columns in the array. 

The mean(x,'c') function calculates the average value of the elements in 

each row. A column will be shown in the console window. The number of elements in 

a column will be equal to the number of rows in the array. 

An example of how the function works: 

 
-->x=[1,2,10;7,7.1,7.01] 
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 x  = 

    1.    2.     10.    
    7.    7.1    7.01   

-->Y = mean(x) 

 Y  = 

    5.685   

// The average value of the elements in each column 

-->Y = mean(x,'r') 

 Y  = 

    4.    4.55    8.505   

// The average value of the elements in each row 
-->Y = mean(x,'c') 

 Y  = 

    4.3333333   

    7.0366667  

 

3.3.2.8 Function of inverse matrix calculation. 

 
B = inv(A) 

 

where A is a square matrix; 

B is square matrix inverse of matrix A. 

The inverse matrix, in relation to a given one, is a matrix of the same type, 

which, being multiplied both on the left and on the right by the given matrix, will 

result in the identity matrix. Those multiplying A by the inverse matrix (B) on the left 

should result in the identity matrix. 

Let's consider an example of obtaining an inverse matrix. 

 
--> A=rand(3,3) 

 A  =  

   0.993121    0.050042    0.6084526 

   0.6488563   0.7485507   0.8544211 

   0.9923191   0.4104059   0.0642647 

--> inv(A)*A 

 ans  = 

   1.   0.   0. 

   0.   1.   0. 

   0.   0.   1. 

 

3.3.2.9 The function of converting a matrix to a triangular form. 

 
B = rref(A) 

where A is a matrix; 

B is matrix A reduced to triangular form using the Gaussian elimination method. 

An example of how the function works: 
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-->A=[3 -2 1 5;6 -4 2 7;9 -6 3 12] 

 A  = 

    3.  - 2.    1.    5.    

    6.  - 4.    2.    7.    

    9.  - 6.    3.    12.   

-->rref(A) 

 ans  = 

     1.  - 0.6666667    0.3333333    0.   

    0.    0.           0.           1.   

    0.    0.           0.           0. 

 

3.4 Symbolic matrices and operations on them. 

 

In Scilab it is possible to define symbolic matrices, that is, matrices whose 

elements are of string type. It should be remembered that string elements must be 

enclosed in double or single quotes. 

 
--> M=['a' 'b';'c' 'd'] 

 M  =  

!a  b  ! 

!      ! 

!c  d  ! 

--> P = ['1' '2';'3' '4'] 

 P  =  

!1  2  ! 

!      ! 

!3  4  ! 

 

Symbolic matrices can be added (the result of addition is the concatenation of 

the corresponding strings) and transposed: 

 
--> M+P 

 ans  = 

!a1  b2  ! 

!        ! 

!c3  d4  ! 

  

In addition, addition operations can be performed on individual elements of 

symbolic matrices: 
 

--> M(1,1)+P(2,2) 

 ans  = 

 a4 
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The above list of functions is far from complete, for example, we have not 

considered matrix functions that implement numerical algorithms for solving linear 

algebra problems. The description of functions for working with vectors, arrays and 

matrices is widely presented in the Scilab help system. 

 

Questions for self-examination for the fourth lecture: 

1. How to convert a matrix to a matrix of a different size? 

2. How to create a matrix of ones? 

3. How to create a matrix of zeros? 

4. How to create an identity matrix? 

5. How to create a matrix of random numbers? 

6. How to perform the ordering of the the elements of the matrix? 

7. How to determine the size of the matrix? 

8. How to determine the length of the matrix? 

9. How to calculate the sum of array elements? 

10. How to calculate the product of array elements? 

11. How to calculate the determinant of a square matrix? 

12. How to calculate the largest element in an array? 

13. How to calculate the smallest element in an array? 

14. How to calculate the average of the elements? 

15. What are symbolic matrices? 

16. What is an inverse matrix and how to get it? 

17. What operations can be performed on symbolic matrices? 

 

Lecture 5 

The purpose of the lecture is to learn how to solve systems of linear algebraic 

equations in various ways, to learn how to plot graphs using the plot function. 

 

3.5 Solving systems of linear algebraic equations. 

 

A system of m equations with n unknowns of the form: 

 

is called a system of linear algebraic equations (SLAE), where xj are unknowns, aij 

are coefficients of unknowns, bi are free coefficients (i= 1…m, j= 1…n). A system of 

m linear equations with n unknowns can be described using matrices: Ax = b, where 

x is the vector of unknowns, A is the matrix of coefficients for unknowns or the 

matrix of the system, b is the vector of free members of the system or the vector of 

the right-hand sides. The set of all solutions of the system (x1,x2,…,xn) is called the set 
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of solutions or simply the solution of the system. 

Let's solve the SLAE using Cramer's rule: 
 

Cramer's rule is as follows. If the determinant  = det A of the matrix of a 

system of n equations with n unknowns Ax = b is nonzero, then the system has a 

unique solution x1,x2,…,xn, determined by Cramer's formulas: xi = i /, where i is 

the determinant of the matrix obtained from the matrix of system A by replacing the 

ith column with the column of free members b. 

Let's write down the program code with the solution of the system of equations 

using Cramer's formulas in the text editor: 

 
// Matrix and vector of free coefficients 

// of the system: 

A=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6]; 

b=[8;9;-5;0];  // Vector of free coefficients 

A1=A;A1(:,1)=b; // First auxiliary matrix 

A2=A;A2(:,2)=b; //Second auxiliary matrix  

A3=A;A3(:,3)=b; //Third auxiliary matrix  

A4=A;A4(:,4)=b;// Fourth auxiliary matrix 

D=det(A); // Main determinant 

// Determinants of auxiliary matrices: 

d(1)=det(A1);d(2)=det(A2);d(3)=det(A3);d(4)=det(A4); 

x=d/D // Vector of unknowns 

P=A*x-b // Verification 

 

Let's start the program for execution by pressing the [Ctrl] + [L] keys and view 

the results of solving the system of equations in the Scilab console window. 
x  = 

    3.   

  - 4.   

  - 1.   

    1.   

-->P=A*x-b // Verification 

 P  = 

    0.          

    0.          

  - 8.882D-16    

    2.665D-15   

 

.0674

,522

,963

,852

4321

432

421

4321









xxxx

xxx

xxx

xxxx
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Let us solve the same SLAE by the inverse matrix method. 

For a system of n linear equations with n unknowns Ax = b, provided that the 

determinant of the matrix A is not equal to zero, the only solution can be represented 

as x = A-1 b.. 

Let's type the program code in the SciNotes text editor: 
 

// Matrix and vector of free coefficients 

// of the system: 

A=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6]; 

b=[8;9;-5;0];// Vector of free coefficients 

x=inv(A)*b // System solution 

 

Let's start the program for execution by pressing the [Ctrl] + [L] keys and view 

the results of solving the system of equations in the Scilab console window. 

 
x  = 

    3.   

  - 4.   

  - 1.   

    1.  

 

As you can see, the result is the same. 

Now we will solve the system of linear equations by the Gauss method: 

The solution of a system of linear equations using the Gauss method is based 

on the fact that from a given system we go to an equivalent system, which is easier to 

solve than the original system. 

Gauss's method consists of two steps. The first step  is a direct move, as a result 

of which the expanded matrix of the system is reduced to a stepwise form by means 

of elementary transformations (rearrangement of the equations of the system, 

multiplication of equations by a number other than zero, and addition of equations). 

At the second step (backward move), the stepped matrix is transformed so that the 

identity matrix is obtained in the first n columns. The last, n + 1 column of this 

matrix contains the solution of a system of linear equations. 

Let's type the program code in the SciNotes text editor: 

 
// Matrix and vector of free coefficients 

// of the system: 

A=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6]; 

b=[8;9;-5;0];// Vector of free coefficients. 

//Reducing the extended matrix to a triangular form: 

C=rref([A b]); 

// Determination of the dimension of  

//the extended matrix: 

[n,m]=size(C); //m- the number of the last column 

// of the matrix C 
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// Extracting the last column from matrix C: 

x=C(:,m) //x - System solution 

 

Let's run the program by pressing the [Ctrl] + [L] keys and view the results of solving 

the system of equations in the Scilab console window. 
 x  = 

    3.   

  - 4.   

  - 1.   

    1.  

 

4 PLOTTING A SET OF 2D CURVES. 

 

In the Scilab software environment, graphic means of displaying the results of 

various calculations and transformations are widely presented. First, let's get 

acquainted with the tools for plotting two-dimensional graphs. Two-dimensional 

plots are those in which the position of each point is set by two values. 

 

4.1 plot function.  

 

To plot two-dimensional graphs of a function of one variable of the form y=f(x) 

in Scilab there is a plot function, which can be accessed in the following way: 

 
plot(x,y) 

 

where: x is real matrix or vector of abscissa values; 

y is a real matrix or a vector of ordinates of the function f at these points given x. 

 

At the same time, with the plot function, it is convenient to use the xtitle 

function to plot explanatory labels on the chart and its axes. For two-dimensional 

plots, the function is: 

 
xtitle(title,x_label,y_label)  

 

here: title is a string type variable in which will be added title on a graphic 

window; 

x_label is a string type variable into which the label located next to the 

abscissa axis is placed; 

y_label is a string type variable into which the label located next to the 

ordinate axis is placed. 

 

Consider an example of plotting the change in the size of a part in time during 

the day. Let the change in the size of the part depend on the temperature, which in 

turn changes in a sinusoidal manner. Suppose that measurements were made every 
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half hour, then the data array of time changes can be represented by the vector 

0:0.5:24. The nominal size of the part is 40 mm and its change occurred in the 

range of  0.01 mm. Considering all of the above, the function of resizing over time 

will look like: 

y=40+0.01*sin((2*%pi*x)/24). 

 

Let's type the code of the program in the window of the SciNotes text editor: 

 
x=0:0.5:24; 

y=40+0.01*sin((2*%pi*x)/24); 

plot(x,y) 

xtitle( 'Changing the size of a part over time',... 

'Time, hour', 'Diameter, mm'); 

 

Let's start the program for execution by pressing the [Ctrl] + [L] keys and in the 

graphic window that appears on the computer screen we will see the сhange graph of 

the part size over time (fig. 4.1). 

 

Figure 4.1 – Change graph of the part size over time. 
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To increase the clarity of the graph, it is useful to use the function for drawing a 

grid on the graph: 
xgrid(с[,t] [,p]) 

 

where: с is a prime number defining the colour of the grid; 

t is the thickness of the grid line [optional]; 

p is grid line type [optional]. 

In the simplest case, the call to the function has the form plot(y), the array 

of points numbers of the array y acts as an array х as in the previous example. Let's 

consider an example of plotting a function of the form y=f ( i ), where i is the number 

of a point in the y array. 

 
y=[1 2 3 -2 4 5 -1 6 9 11 0 -2 5]; 

xgrid(5) 

plot(y);  

 

After starting the program, we get the graph which is shown in fig. 4.2. 

 рис 4.2. 

Figure 4.2 – Graph of the function y=f ( i ). 

 

When plotting several graphs, it is enough to simply set several plot() 

functions in the current program, that is, without closing the graphics window. 

However, in this case, the graphs will be of the same color. 
 

x=0:0.5:24; 

y=40+0.01*sin((2*%pi*x)/24); 

plot(x,y) 
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y1=39.99+0.01*sin((2*%pi*x)/24); 

plot(x,y1) 

xtitle( 'Changing the size of a part over time',... 

'Time, hour', 'Diameter, mm'); 

 

It is more convenient (and more correct) to use the plot()function in the 

following way: 
plot(x,[f1(x) f2(x) f3(x) ...]) 

 

Let x belong to the interval [0…2]. Since x is an argument for all functions, 

so x can be absent in the plot() functions. It is also not necessary to form its own 

array of values for each function. It is enough to indicate their mathematical 

expressions in square brackets separated by a space, and these arrays will 

automatically be created as an intermediate stage in plotting the curves of functions. 

Example. Plot the function sin(x), cos(x) and exp(sin(x)) on the 

interval [0; 2π] in one window. 

 
x = [0:0.1:2*%pi]'; 

xgrid(5) 

plot([sin(x) cos(x) exp(sin(x))]) 

 

Figure 4.3 – An example of graphing multiple functions in one window. 

 

Let's consider plotting a graph of a two-dimensional array using an example: 
 

t=[1     1     1     1 

   2     3     4     5 
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   3     4     5     6 

   4     5     6     7]; 

xgrid(1) 

plot(t)  

 

As a result of the program execution, we get the graph which is shown in fig. 

4.4. 

 

Figure 4.4 – An example the graph of the two-dimensional array. 

 

4.2 Modification of graphs. 

 

The type of the graph can be changed when using the plot function, for that in 

addition to the main arguments, one more argument - a string of three symbols that 

will determine the color of the line, the type of symbol which will be used for the 

graph and the type of the line. A call to the plot () function will look like this: 

 
plot(x1,y1,string1,x2,y2,string2,...) 

 

here: string looks like this: 

 
' parameter1 parameter2 parameter3'. 

 

Parameters are written one after the other without separators. 

parameter1 defines the color of the graph: 
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Symbol Description  

y yellow 

m pink 

c blue 

r red 

g green  

b blue 

w white 

k black  

 

parameter2 sets the symbol for drawing the graph: 

 

Symbol Description 

. Point 

o Circle 

x Cross 

+ Plus sign 

* Star  

'square' or 's' Square 

'diamond' or 'd' Rhombus 

v Down-pointing triangle 

^ Up-pointing triangle 

< Left-pointing triangle 

> Right-pointing triangle 

'pentagram' or 'p' Five pointed star 

 No marker (default) 

 

parameter3 install plot line type: 

Symbol Description 

- Solid line (default) 

: Dotted line 

-- Dashed line 

-. Dash-dotted line 

 

If one of the symbols for line type is not specified, so it means that its value is 

selected by default (as a rule, a blue solid line), if the symbol for drawing the graph is 

not specified, it will be absent.  

Let's consider examples of plotting three graphs: 

- f1=|3x| on the interval [-3; 3] - solid blue line; 

- f2=8sin(x) on the interval [-π; π] - dashed red line; 

- f3=ex/10 on the interval [-1; 4] the graph drawn by green circles. 

 

x1=-3:0.2:3; f1=abs(3*x1); 
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x2=-%pi:0.2:%pi; f2=8*sin(x2); 

x3=-1:0.2:4; f3=exp(x3/10); 

plot(x1,f1,'b-',x2,f2,'r--',x3,f3,'go') 

xgrid(1) 

 

The result of the program working is shown in fig. 4.5. 

For more convenient use of graphs, the description of lines (the so-called 

legend) is used with help of the command: 

 
legend(line1,line2,...,lineN,place,frame) 

here: line1 and others - the names of the graphs; 

place - the location of the description: 

1 - upper right corner of the graph's window; 

2 - top left corner of the graph's window; 

3 - bottom left corner of the graph's window; 

4 - lower right corner of the graph's window;, 

5 - defined by the user after displaying the graph. 

frame sets the frame for the description: 

%t - the description is framed, 

%f - no frame. 

As an example, let's plot a graph of the functions f(x)=sin(x) and g(x)=cos(x) 

on the interval [-2π; 2π] and design it by signing the graph itself, axes and displaying 

the description of the lines and the grid. 

 
clf() 

x=-2*%pi:0.2:2*%pi; f1=sin(x); f2=cos(x); 

xgrid(2) 

plot(x,f1,'b.--',x,f2,'r*:') 

legend('f1(x)','f2(x)',3,%t) 

xtitle('Draph f1(x) and f2(x)',' Axis X',' Axis Y') 

 

As a result of the program execution, we get the graph which is shown in fig. 

4.6. 

 

Figure 4.5 – An example of the graph with different types of lines. 



 72 

Figure 4.6 – An example of a complete graph formatting in Scilab. 

 

Questions for self-examination for the fifth lecture: 

1. What is a system of linear algebraic equations? 

2. How to solve SLAE using Cramer's formulas? 

3. How to solve SLAE by the inverse matrix method? 

4. How to solve SLAE by the Gaussian method? 

5. What is the plot function for? 

6. How to display graphs of several functions in one window? 

7. How to display the graph of the matrix? 

8. What parameters of the plot function control the appearance of the lines? 

9. How to place labels on the axes and the title of the graphs? 

10. How do I plot a grid of the graph? 

 

Lecture 6 

The purpose of the lecture is to learn how to build several graphs in one 

graphic window, study the plot2d function and its parameters, and learn how to draw 

up graphs using it. 

 

4.3 Plotting several graphs in one graphic window. 

 

In Scilab, it is possible to plot several graphs in one window without aligning 

them in the same coordinate axes. For example, if a graphic window should contain 4 

independent graphs, then it is divided into 4 areas, and then a function graph is 

displayed in each of them. 

To form several areas in the graphic window, use the command 

 

subplot (m,n,p) 
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here m,n,p are integers defining the position of the sub-window in the area of the 

graphic window. 

The subplot function divides the area of the graphic window into a matrix 

consisting of m х n subwindows and selects the subwindow with the ordinal number 

p to display the graf. The subwindow number is counted starting from the top left, 

from left to right, along the rows of the m х n matrix. After selecting an area, you can 

enter a graph into it, for example, using the plot function. 

As an example, let's build graphs of the functions y = sin(2x), z = cos(3x),  u = 

cos(sin(2x)), v= sin(cos(3x)) in one graphics window, each graph in its own 

coordinate system. 

Let's assume that x changes in the interval [–3: 0.1: 30]. Let's form arrays of 

values of the function Y, Z, U, V. 

Using the subplot function, divide the graphic window into 4 subwindows. 

Let's type the program in the SciNotes text editor: 

 

x=[-3:0.1:3]; 

y=sin(2*x); z=cos(3*x); u=cos(sin(2*x)); 

v=sin(cos(3*x)); 

subplot(221)// Subwindow 1 

xgrid(2) 

xtitle('Graph y=sin(2*x)',' Axis X',' Axis Y') 

plot(x,y,'b.--'); legend('f1(x)',3,%t) 

subplot(222) // Subwindow 2 

xgrid(3) 

plot(x,z,'r--*'); 

subplot(223) // Subwindow 3 

xgrid(4) 

plot(x,u,'c--<'); 

subplot(224) // Subwindow 4 

xgrid(5) 

plot(x,v,'k--o'); 
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Let's start the program for execution by pressing the [Ctrl] + [L] keys and in the 

graphic window that appears on the computer screen we will see four subwindows 

with graphs of functions (fig. 4.7). 

 

Figure 4.7 – An example of splitting a graphic window into four parts. 

 

4.4 The plot2d function.  

 

The next function that can be used to plot 2D graphs is the plot2d function. 

In general, a function call looks like this: 

 
plot2d([logflag],x,y’,[key1=value1,key2=value2,... 

keyn=valuen]) 

 

where: logflag is a string of two characters, each of which defines the type of axes 

(n - normal axis, l - logarithmic axis), by default - (nn); 

x is array of abscissas; 

y is an array of ordinates or a matrix, each column of which contains an array 

of ordinates of the next graph - in case it is necessary to plot graphs of several 

functions y1, y2, ..., yn, when they all depend on the same variable x. In this case, the 

number of elements in the array x and y must be the same. If x and y are matrices of 

the same size, then each column of y is mapped relative to the corresponding column 

of x; 

keyi=valuei is a sequence of values of the graph key1=value1, 
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key2=value2, ..., keyn=valuen, which determine its appearance. Possible 

values of the graph properties will be described in detail below. 

It should be noted that it is not at all necessary to use the full notation of the 

plot2d function with all its parameters. In the simplest case, you can refer to it 

briefly, as well as to the plot function. 

Let's consider an example of using the plot2d function. Let the variable x is 

in the range from –2 to +2 with a step of 0.1. Let's form an array x. It is not 

necessary to create an array y, you only need to specify the mathematical expression 

of the function as an argument to the plot2d function, then the program will look 

like this: 

x=[-2*%pi:0.1:2*%pi]; 

plot2d(sin(x)); 

 

In the graphic window, we get the graph which is shown in figure 4.8. 

Using the plot2d function, you can also plot multiple graphs in the same 

coordinate axes. For example, let's build the graphs of the functions y= sin(x), 

y1= sin(2x), y2= sin(3x) in the same coordinate axes. To do this, we will form an 

array x, with values of x and varying in the range from 0 to + +2 with a step of 

0.1. To plot curves in the same coordinate axes, we will use the plot2d(x,y) 

function. However, as an array y in square brackets, we alternately indicate the 

mathematical expressions of the given functions, separating them with spaces: 

 

x=[0:0.1:2*%pi]'; 

plot2d(x,[sin(x) sin(2*x) sin(3*x)]) 

 

As a result, we get the graph which is shown in figure 4.9. 

 

 
 

Figure 4.8 – Graph of the function y = sin (x). 
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Figure 4.9 – Graphs of the functions y= sin(x), y1= sin(2x), y2= sin(3x). 

 

In chapter 4.4 it was mentioned that the full form of calling the plot2d 

function allows of the user to independently determine the appearance of the graph - 

the parameter keyn=valuen is responsible for this. 

The full form of calling the plot2d function looks like: 

 
plot2d([logflag],x,y’,[key1=value1,key2=value2,... 

,keyn=valuen]) 

 

4.5 Figuration of the graphs using the plot2 function. 

 

The following values are available for the keyn=valuen parameter. 

The style value defines an array of numeric values for the graph colors. The number 

of array elements coincides with the number of displayed graphs. You can use the 

color function, which, by the name (color ("color name")) or the rgb 

code (color(r,g,b))) of the color, forms the desired color id (code). A 

complete list of all shades available for formatting with their RGB-id can be found in 

the article in the built-in Scilab help system сolor_list (Scilab Help >> 

Graphics > Color management > color_list). As an example, we will plot the graphs 

of the functions y = sin(x) and y = cos (x) in the same coordinate axes, for the 

sinusoid using the style parameter we define the color name - red ('red'), and for 

the cosine curve - the green id (0,176, 0). The corresponding program will look like: 

 

x=[-2*%pi:0.1:2*%pi]; 

y=[sin(x);cos(x)]; 

plot2d(x,y',style=[color("red"),color(0,176,0)]); 

 

about:blankindex.html
about:blanksection_da44721134b0622107373c99041ccc7a.html
about:blanksection_1c4afc622733adb88cdac0db9f0d39c9.html
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The graph corresponding to this program is shown in fig. 4.10. 

 

 

Figure 4.10 – The style parameter of the plot2d function. 

 

The rect value of the keyn=valuen parameter of the plot2d function is 

a [xmin, ymin, xmax, ymax], that determines the size of the window around 

the graph. Here xmin, ymin is position of the lower left corner of the window; 

xmax ymax is position of the upper right corner of the window. 

Consider an example of using the rect value for the previous example, setting 

it to the following values [-8, -2,8,2] (fig. 4.11), the program in this case will look 

like this: 

 

x=[-2*%pi:0.1:2*%pi]; 

y=[sin(x);cos(x)]; 

plot2d(x,y',style=[color("red"),... 

color(0,176,0)],rect=[-8,-2,8,2]); 

 

Due to the fact that the Y-axis has extended from [-1: 1] to [-2: 2], and the X-

axis has remained unchanged, it visually appears as if the graph has shrunk along the 

Y-axis. 
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Figure 4.11 – The rect value of the keyn=valuen parameter of the 

plot2d function. 

 

The axesflag value of the keyn=valuen parameter of the plot2d 

function determines the presence of a frame around the graph. It is necessary to 

highlight the following basic values of this parameter: 

0 - no frame; 

1 - image of the frame, Y-axis to the left (by default); 

3 - image of the frame, Y-axis to the right; 

5 - the image of the axes which are passed through the point (0,0). 

Let's plot graphs of the functions y = sin (x) and y1 = cos (x), using 4 basic 

values of the axesflag parameter, in one graphic window using the subplot 

function. Divide the graphic window into 4 subwindows. The action of the parameter 

axesflag=0 will be displaying the subwindow in the upper left corner of the 

graphic window, axesflag=1 - in the upper right corner , axesflag=3 - in the 

lower left corner , and axesflag=5 - in the lower right corner of the graphic 

window. The program will take the form: 

 

clf 

x=[-2*%pi:0.1:2*%pi]; 

y=[sin(x); cos(x)]; 

subplot(2,2,1) 

plot2d(x,y',style=[color("red"), color("blue")],... 

 axesflag=0); 

subplot(2,2,2) 

plot2d(x,y',style=[color("red"), color("blue")],... 

 axesflag=1); 

subplot(2,2,3) 
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plot2d(x,y',style=[color("red"), color("blue")],... 

 axesflag=3); 

subplot(2,2,4) 

plot2d(x,y',style=[color("red"), color("blue")],... 

 axesflag=5); 

 

And the graph corresponding to this program is shown in fig. 4.12. 

 
 

Figure 4.12 – The axesflag value of the keyn=valuen parameter of the 

plot2d function. 

 

To determine the number of major and intermediate divisions of the coordinate 

axes, Scilab has the nax parameter. If axesflag=1 (default), then nax is an array 

of four values: [nx,Nx,ny,Ny]. Here Nx (Ny) is the number of major 

divisions with labels under the X (Y) axis; nx (ny) is the number of intermediate 

divisions. 

For example, let's plot graphs of the functions y = sin (x) and y1 = cos (x) by 

changing the scale of the coordinate axes of the graph. Let's form an array x, its 

values will be varying in the range [-8: 8] with a step of 0.1, then we'll form arrays of 

values of the specified functions using the notation y=[sin(x); cos(x)]. 

Using the plot2d function, plot the curves of the functions y = sin (x) and 

y1= cos (x), setting the value of the parameter nax=[4,9,3,6]. Thus, the X-axis 

will be divided by 9 main divisions and each main division will be divided by 4 

intermediate divisions, and the Y-axis - respectively by 6 and 3. Then the program 

will look like: 

 

x=[-8:0.1:8]; 
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y=[sin(x); cos(x)]; 

plot2d(x,y',style=[color("red"),color("blue")],... 

axesflag=1,nax=[4,9,3,6]); 

 

And the graph which is corresponded to the program is shown in fig. 4.13. 

 

Figure 4.13 – The nax value of the keyn=valuen parameter of the 

plot2d function. 

 

The value leg of the keyn=valuen parameter of the plot2d function is a 

string that defines the legends for each plots: "leg1@leg2@leg3@ ...@legn", 

where leg1 is the legend of the first plot, ..., legn is the legend of the n-th plot. 

 

Let's use the previous task as an example. Let's plot the graphs of the functions 

y = sin (x) and y1 = cos (x), with the intersection of the X and Y axes at the point 

(0,0) - the value of the parameter axesflag = 4, display a legend with legend for 

both curves. In this case, the program will look like: 

 

x=[-8:0.1:8]; 

y=[sin(x); cos(x)]; 

plot2d(x,y',style=[color("red"),color("blue")],... 

axesflag=4,nax=[4,9,3,6],leg="sin(x)@cos(x)"); 

 

And the graph which is corresponded to the program is shown in fig. 4.14. 
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Figure 4.14 – The leg value of the keyn=valuen parameter of the 

plot2d function. 

 

Questions for self-examination for the sixth lecture: 

1. What is the subplot function used for? 

2. What is the difference between the plot2d function and the subplot function? 

3. How to set the color of the curve on the graph in the plot2d function? 

4. How to set the defining window size on the chart in the plot2d function? 

5. How to set the position of the axes and the presence of the frame on the 

graph in the plot2d function? 

6. How to determine the number of main and intermediate divisions on the 

coordinate axes using the plot2d function? 

7. How to set a legend for each curve on the graph using the plot2d function? 

 

Lecture 7 

The purpose of the lecture is to learn how to plot point graphs and graphs in 

the form of a stepped line, in a polar coordinate system and plots of functions 

specified in parametric form, get acquainted with the modes of plot formatting. 

 

4.6 Plotting dot graphs using the plot2d function. 

 

The plot2d function can be used to plot point graphs. In this case, the call to 

the function looks like: 
plot2d(x,y,d) 
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here d is a negative number that defines the type of marker. 

 
Number Type of marker 

- 0 point 

- 1 plus 

- 2 cross 

- 3 plus inscribed in a circle 

- 4 filled rhombus 

- 5 no filled rhombus 

- 6 upward triangle 

- 7 downward triangle 

- 8 plus inscribed in a rhombus 

- 9 circle 

- 10 star 

- 11 square 

- 12 right-pointing triangle 

- 13 left-pointing triangle 

-14 five-pointed star 

 

To get acquainted with the possibilities of plotting pointed graphs, consider the 

following example of plotting a pointed graph of the function y = sin (x) with the 

marker type «plus inscribed in a rhombus». 

Have determined the range of x variation, we will form arrays of x and y 

values. When plotting a curve using the plot2d function, we will specify the 

argument as number 8, which determines the type of marker «plus inscribed in a 

rhombus». In this case, the program will look like this: 

 
x=[-2*%pi:0.25:2*%pi]; 

y=sin(x); 

plot2d(x,y,-8) 

 

The graph which was obtained as a result of the execution of the program will 

be obtained in the form shown in fig. 4.14. 

 

Figure 4.14 - Point graph of the function y = sin (x). 
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4.7 Plotting graphs in the form of a stepped line. 

 

To display a graph as a stepped line there is a plot2d2(x,y) function in 

Scilab. It completely coincides in syntax with the plot2d function. The main 

difference is that x and y can be functions independent of each other, it is only 

important that the arrays x and y are split into the same number of intervals. 

Let’s consider the following example, we have detailed observations of 

population growth on the planet from 1947 to 2021 in billions of people. Let's plot a 

graph reflecting the dynamics of the process based on data from 1947, 1958, 1970, 

1980, 1999, 2006 and 2021. 

We will introduce the arrays x and y element by element and use the function 

plot2d2(x,y): 

 

x=[1947 1958 1970 1980 1999 2006 2021]; 

y=[2.003 3.1 3.6 4.7 5.2 5.4 7.1]; 

plot2d2(x,y,axesflag=1); 

 

The graph will be obtained as a result of the execution of the program and 

obtained in the form which will be shown in fig. 4.15. 

 

4.8 Plotting graphs in polar coordinate system. 

 

The polar coordinate system consists of a given fixed point 0 – the pole of the 

system, concentric circles which are centred at the pole and rays emanating from the 

point 0, one of which is 0X – the polar axis. 

 
 

Figure 4.15 – Stepped graph which is obtained using the plot2d2 function. 
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Figure 4.16 - Plotting the graph 

   by polarplot function. 

The location of any point M in polar coordinates can be specified by a positive 

number  = OM (polar radius), and a number  which is equal to the value of the 

XOM angle (polar angle). 

In Scilab, to generate a plot in a polar coordinate system, you need to generate 

arrays of polar angle and polar radius values, and then call the polarplot function: 

 

polarplot(fi,ro,[key1=value1,key2=value2,...,keyn=valuen]) 

 

Let's consider an example of plotting a polar graph of the functions  = 

3cos(5) and 1 = 3 cos(3). 

Have determined the range and step of changing the polar angle, we will form 

the arrays fi and ro. 

Let's plotting the given curves one by one using the polarplot function, 

while for the line of the graph of the ro function we will set the colour to red, and for 

the function ro1 - blue. Let's type a program in the SciNotes text editor that will look 

like this: 

 

fi=0:0.01:2*%pi; 

ro=3*cos(5*fi); 

ro1=3*cos(3*fi); 

polarplot(fi,ro,... 

style=color("red")); 

polarplot(fi,ro1,... 

style=color("blue")); 

 

Let's run the program and get 

the graph which is shown in fig. 

4.16 

 

4.9 Graphs of functions 

specified in parametric form. 

 

The setting of the function 

y(x) using the equalities x = f(t) and 

y = g(t) is called parametric, and the 

auxiliary value t is called a 

parameter. 

To plot the graph of a function specified parametrically, it is necessary to 

define the array t, define the arrays x = f(t), y = g(t) and plot the function y(x) using 

the functions plot(x,y) or plot2d(x,y). 

For example, let's plot a graph of a strophoid, which is an algebraic curve of the 

third order and is generally given by the equation: 
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x2(a + x) = y2(a – x) 

 

We represent this equation using the parameter t: 

 

Let's set the arrays t, x and y and plot a graph using the function plot(x,y): 

 

t=-5:0.01:5; 

x=(t.^2-1)./(t.^2+1); y=t.*(t.^2-1)./(t.^2+1); 

plot(x,y); 

 

The function graph is shown in fig. 4.17. 

 

Figure 4.17 – The graph of a strophoid. 

 

Let's consider another example of plotting a graph of a function given in a 

parametric form. Let's plot a semi-cube parabola. 

A semi-cubic parabola is a second-order algebraic curve, which in general 

form can be described by the following equation: 

 

y m = A + Bx + Cx2 + … + Nxn. 
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Let's bring this equation to a parametric form: 

 

As in the example with the strophoid, the t is a parameter which is defined as 

an array, and x and y as dependent values. For diversity, let's plot a graph with help 

of the plot2d(x,y) function:  

 

t=-3:0.01:3; 

x=0.5*t.^2; 

y=0.3*t.^3; 

plot2d(x,y); 

 

The function graph is shown in fig. 4.18. 

 

Figure 4.18 – The graph of a semi-cube parabola. 

 

4.10 Graph formatting mode. 

 

In Scilab, the appearance of a graph can be changed using the capabilities of 

the graphic window in which it is displayed. The transition to the formatting mode is 

carried out by the command «Edit» - «Figure properties» of the graphical window 

menu. 

We will consider formatting possibilities by the example of plotting the graphs 

of the functions y1 = sin(2x) and y2 = sin(3x) in the interval [0; 2] with a step of 0.1. 

Let's form an array x and use the plot2d function: 
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x=[0:0.1:2*%pi]'; 

plot2d(x,[sin(2*x) sin(3*x)]); 

 

The function graph is shown in fig. 4.19. 

 

Figure 4.19 – Graphs of the functions y1 = sin(2x) and y2 = sin(3x). 

 

Let's click on the «Edit» option of 

the graphic window menu, in the pop-up 

window click on the «Figure properties» 

option (fig. 4.20), as a result of these 

actions we call the «Figure Editor» 

window fig. 4.21. 

The left side of the «Object 

Browser» is the viewport for objects 

available for formatting. Clicking on the 

Figure (1) object makes it active 

(highlighted in blue), and the properties of 

the active object appear in the right panel 

of the «Object Properties» window, which 

can be changed (fig 4.21). 

Initially, the «Object Browser» 

always displays two objects: the «Figure 

(1)» and its child «Axes(1)». A plus sign 

next to an object indicates that it contains 

objects of a lower order. 

When you click the plus sign next to the «Axes(1)» object, the «Compound(1)» 

object appears, also with a plus sign. The «Compound(1)» object contains the graphs 

of the functions y1 = sin(2x) and y2 = sin(3x) plot in the same coordinate axes – 

«Polyline(1)» and «Polyline(2)», respectively (fig. 4.22). 

 

Figure 4.20 - The sequence of calling 

the properties of the graphic window. 
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Figure 4.21 – Window of the «Figure Editor» 

 

4.10.1 Formatting object «Figure(1)». 

 

Recall that the Figure object is a graphic window and the actual graph 

which is displayed in it. To change the properties of the graphic window, select 

«Figure (1)» in the «Object Browser» window (fig 4.21). 

Figure 4.22 shows the «Style» tab of the panel «Object Properties» for 

formatting properties of the «Polyline(1)» object, which is corresponded to the 

graph of the function y1 = sin(2x) for our example. Here you can change the 

values of the following properties: 

 «Visibility:» (graph display) is a switch that takes on values (a check 

mark in the box next to it). By default, the state is set to «on» - the graph is 

displayed on the screen. 

 «Figure name:» is a sequence of characters that appear in the title bar of 

the graphic window. By default, the graphic window is assigned «Graphic 

window number %d», where %d is the ordinal number of the graph. 

However, you can enter any name which you want. For example, replace 

«Graphic window number %d» with «My first graph» and press the [Enter] 

key. The title of the window will be changed. 

 «Figure id:». For the first graphic window, the «Figure id» is 0, for the 
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second - 1, for the third - 2, etc. 

 

 
 

Figure 4.22 - Window for formatting graph properties.  

 

 «X position:», «Y position:» - these fields define the position of the 

graphic window on the monitor in pixels horizontally and vertically, 

respectively. Point with coordinates [0; 0] is the upper left corner of the 

screen. 

 «X size:», «Y size:» are respectively the width and height of the graphic 

window in pixels. 

 «X axis size:», «Y axis size:» - these values determine the size of the 

axes. 

 «Back. Color:» - each position of the slider has its own color number 

(RGB-id). 35 shades are available ( from 2 - white to 32 - hot yellow). If you 

set the slider to position 30. The background color will turn pale pink 

(fg.4.23). 

On the «Mode» tab in the «Object Properties» area for the «Figure(1)» object 

(fig. 4.24), you can set the following properties: 
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Figure 4.23 – Changing the properties of  

   the Graphic window. 

 «Auto resize:» - a 

property that allows you 

to resize the graph. When 

this mode is enabled (the 

switch position is "on" - 

by default), we can resize 

the graphic window by 

dragging its borders with 

the mouse, and the size of 

the graph displayed in the 

window will 

automatically resize. In 

the off position, the graph 

will retain its size (fig. 

4.24). 

 «Pixel drawing 

mode:» - property that 

determines how the image 

is rendered on the screen. 

The default is “copy” 

mode. In this case, the 

required plotting operation 

is performed exactly. However, it is often necessary to apply an image to an 

existing one, while the color of the newly built graphic should clearly stand 

out. There is a set of modes for this:«clear», «and», «andReverse», 

«ndInverted», «noop», «xor», «nor», «equiv», «invert», «orReverse», 

«copyInverted», «orInverted», «nand», «set». 

 «Rotation style:» - this property applies only to 3D graphs. The default 

«unary» mode is designed to rotate the selected graphs; when the «multiple» 

mode is on, all three-dimensional graphs are rotated.  

 

Figure 4.24 – «Mode» tab of the formatting the window of the «Figure Editor». 

 

Questions for self-examination for the seventh lecture: 
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1. How to plot point graphs? 

2. How to plot graphs in the form of a stepped line? 

3. How to plot graphs in a polar coordinate system? 

4. How to plot graphs of functions which are specified in parametric form? 

5. How to format graphs? 

 

Lecture 8 

The purpose of the lecture is to study the parameters of the plot2d function and 

learn how to plot graphs using it. 

 

4.10.2 Formatting the Axes object. 

 

To change the properties of the «Axes(1)» object, select it in the «Object 

Browser» field of the formatting window (fig. 4.25). In the «Object Properties» area, 

the properties available for modification will be grouped into several tabs. The «X», 

«Y» and «Z» tabs are identical, with the only difference that they allow you to set the 

desired appearance for the «X», «Y» and «Z» axes, respectively.Therefore, we will 

only consider the «X» tab. 

 

Figure 4.25. The «X» tab of the formatting the properties of the axis X 

 

On the «X» tab, all properties are divided into two areas: «Label Options» and 

«Axis Options». In the «Label Options» area you can set: 

 «Text:» – axis label is any sequence of characters which is located next to 

the corresponding axis; 

 «Visibility:» determines the visibility of the «Text:» caption. The switch is set 
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to the «on» position, which is indicated by a mark in the window         . By default, 

the axis label of the graph is displayed (position «on»). 

 «Fill mode:» – is a switch that accepts values «on» or «off» (default is «off»). 

In order to define the background color around the axis label, it is necessary to set 

the state «on». 

 «Auto position:» – automatic determination of the position of the graph axis 

label. By default, the value is set to «on» - the label is displayed at the bottom, in 

the center of the axis. However, the position of the label can be determined 

independently, for this, coordinates are specified in the «Position:» field in the 

form of a vector [x; y]. In this case, the «Auto position:» switch will automatically 

take the value «off». 

 «Auto Rotation:» – the mode of automatic rotation of the axis label. By 

default, this mode is disabled (switch state «off») 

 «Font angle:» – angle of rotation of the axis label. You can set one of the 

suggested values: 0, 90, 180 and 270 degrees, as well as any arbitrary angle of 

rotation of the inscription in the last field (fig. 4.25). 

 «Fore/Back colors:» – the color of the frame around the label and the 

background color of the axis label, respectively - set using the slider, each position 

of which corresponds to a certain color. A total of 35 colors are available. . 

 «Font size/color:» – The first slider sets the size of the axis label symbols, 

possible values are from 0 to 6, the default size for the font is 1. The second slider 

sets the color of the text symbols, 35 colors are available. 

 «Font style:» –style of the axis label symbols. The default style is «Sans 

Serif».  

In the «Axis Options» area, you can change: 

«Location:» – the location of the axis of the graph. For the «X» axis, the 

following values of this property are possible: bottom, top, middle and origin. For the 

«Y» axis, the following values of this property are possible: left, middle, right and 

origin. 

  «Grid color:» – the color of the graph grid lines, set using the slider. At 

position «-1» there are no graph grid lines, at position «0» black lines are 

displayed, in addition, 32 more colors are available. In order to display grid lines 

for the «X» and «Y» axes tabs, you must set the «Grid color:» property on both the 

«X» and «Y» tabs. 

 «Data bounds:» – data limitation. For each axis, you can reduce the range of  

data that is plotted by stretching or shrinking the axis. 

 «Scale:» – scale of the axis of the graph. There are two automatic modes: 

«Lin» (linear) and «Log» (logarithmic). Pressing the [Ticks…] button brings up 

the «Edit Axes Ticks» window for modifying the tick of the axis. This window is 

shown in fig. 4.26. 

It can be used to set the following properties of the axis ticks: 

 «Visibility:» – a switch that takes on the value «on», which is signaled by a 

check mark in the box         . By default, the tick marks on the axis of the graph are 

displayed (position «on»). 
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 «Auto ticks:» – the mode of 

automatic division of the axis is also 

enabled by default (the value of the 

switch is «on»). However, it is 

possible to independently determine 

the step with which the axis will be 

staked, it must be entered in the «Step 

by:» field and press [Enter] key. The 

«Auto ticks:» switch will 

automatically uncheck in the box 

«on». 

 «Sub ticks:» – intermediate ticks. 

In this field you need to enter the 

number of tick marks that will be 

displayed between the major tick 

marks on the axis. It should be noted 

that intermediate ticks are not signed. 

A table of ticks is generated in the 

«Ticks Editor:» window. The first 

column, «Locations», specifies the 

position of the ticks, and the second, 

«Labels», the label of the ticks.  

For the convenience of editing the 

table, the window is equipped with 

buttons [Insert], [Delete], [Apply], 

[Quit]. The [Insert] button allows you to 

insert a ready-made ticks table (or its 

fragment) into the window using the 

clipboard. The insertion is performed 

starting from the position of the active cell. The [Delete] button allows you to delete 

not only the active cell, but the entire row to which it belongs. The [Apply] button 

confirms the changes, and [Quit] exits the «Edit Axes Ticks» window. 

The last option on the «X» tab is the «Reverse:» switch. If you set it to «on», 

the graph will be mirrored about the Y axis. If you enable this mode on the «Y» tab, 

the graph will be mirrored about the X axis. 

The «Title» tab of the formatting window is intended for changing the 

properties of the graph title. It contains only one area – «LabelOptions», which is 

identical to the «Label Options» area of the «X», «Y» and «Z» tabs (fig. 4.27) 

Let's illustrate the possibilities of changing the properties of the graph 

coordinate axes using the «X», «Y» and «Title» tabs of the «Axes Editor» window. 

Plotting the functions y1 =  sin(2x) and y2 = sin(3x) in the interval [0; 2] with a 

step of 0.1. Let's form an array x and use the plot2d function: 

 
x=[0:0.1:2*%pi]'; 

plot2d(x,[sin(2*x) sin(3*x)]); 

Figure 4.26 – Window Edit Axes Ticks. 
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Figure 4.27 – Tab «Title» of the window «Axes Editor». 

 

Let's display the labels for the X-axis «Abscissa Axis» and for the Y-axis 

«Ordinate Axis», set the «Serif Bold» font style and size for the labels to 3. For both 

axes, set the «Grid Color:» slider to position 1. Define the middle position for the 

«X» axis, and on the tab «Y» turn «on» the «Reverse:» mode. Let's display the 

«Title» of the graph ''Graphs of functions y1 and y2)'', defining the «Serif Bold» font 

style, the «Font size:» is 4, and the «Font color:» is red (the position of the slider is 

5). Turn «on» the «Fill mode:» and set its «Back colors:» to yellow (the position of 

the slider 7). 

As a result which is shown in figure 4.28 the form of the graphic window will 

be formed. 

 

Figure 4.28 – The graph which is formed by the «Axes Editor» window tabs. 
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The «Style» tab of the «Axes Editor» graph axes formatting window (see fig. 

4.29) provides the ability to change the following properties of the axis line and tick 

marks: 

 «Visibility:» is a switch that accepts values «on» (by default). If there is no 

check mark in the box, then the chart is not displayed in the graphic window at all. 

 «Font style:» is the character style of the tick labels on the axis. The default 

style is SansSerif. 

 «Font color:» is a slider, each position of which determines the color of the 

symbols for the tick labels. The default is set to «-1» - black. 

 «Font size:» – is the size of the characters of the tick labels on the axis, the 

possible values are from «0» to «6». By default, the font size is set to «1». 

 

Figure 4.29 –  The Style tab of the Axes Editor formatting window. 

 

 «Fore.color:» – is a slider, each position of which determines the color of the 
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actual coordinate axis. The default is set to «-1» - black. 

 «Back.color:» is a slider, each position of which determines the fill color of the 

chart background. The default is set to «-2» - white. 

 «Thickness:» is the line width of the coordinate axis, defined by a slider with 

positions from «1» to «30». By default, the line width is set to «1». 

 «Line style:» – line style. There are 6 possible modes, solid - solid line, other 

modes - dotted line variations. 

As an example, let's format the graphs of the functions of the previous example 

using the «Style» tab. Let's set the font style of the caption on the «Serif Bold» axes, 

the font size to 2, set the blue background color of the graph (the slider position 

«Back.color» 12) and the line width of the coordinate axes 3. The graphical window 

shown in fig. 30 will be displayed on the screen.  

 

Figure 4.30 – Formatting the graph axes using the «Style» tab. 

 

«Aspect» tab of the «Axes Editor» (fig. 4.30) allows you to change the 

following properties: 

 «Auto clear:» if the switch is set to «on» (the checkbox is checked), the 

graphic window will be automatically cleared every time before a new graph is 

drawn. If this mode is disabled (by default), graphs will be superimposed in the 

same coordinate axes in accordance with the «Auto scale» mode. 

 «Auto scale:» – is the mode of updating the boundaries of the coordinate axes 
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of the graph. In the state of the switch «on» (the checkbox is checked by default), 

the new graph will change the boundaries of the previous graph to form over the 

entire specified interval, but at the same scale as the previous graph. When the 

«Auto scale:» mode is disabled, the new graph will be drawn within the axes of the 

previous graph and, possibly, will reflect only a part of the specified interval. 

 «Isoview:» – is the property which is used to set the same scale for all graph 

axes. The property is disabled by default (there is no check mark in the box). 

 «Tight limits:» if this mode is enabled, the axes of the graph are changed in 

such a way as to exactly correspond to the value of the «Data bounds:» property of 

the X, Y and Z tabs. In the disabled state (by default), the axes can increase the 

initial interval to make it easier to select the scale of the axis and apply ticks to it. 

 «Cube scaling:» – this option only applies to 3D graphs. When the switch is 

«on», the initial data is limited so that the surface fits into a cube of size 1. This 

allows you to more clearly depict the 3D graph in cases where the scale of the 

coordinate axes is too different from one axis to another. By default, the switch 

state is set to «off» (there is no check mark in the box). 

 

Figure 4.31 – The «Aspect» tab of the «Axes Editor» formatting window. 
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 «Сlip state:» is cropping mode. One of the following switch states is possible: 

«off» means that the generated image is not cropped; «Clipgrf» (default) - the area 

outside the axes is cropped from the created image; «On» - the area that is outside 

the boundaries set by the «Сlip box:» property is cropped from the created image. 

 «Сlip box:» is a rectangular area that will be displayed after cropping the 

image. First, the upper-left point coordinates are set in the «X:» and «Y:» fields, 

then the width and height - the «W:» and «H:» fields. 

 «Margins:» this property sets the distance from the border of the graphic 

window to the graph area: «Left:», «Right:», «Top:», «Bottom:». The value must 

be in the range [0: 1]. By default, each field is assigned a value of 0.125. 

 Axes bounds this property sets the part of the graph that will be displayed in 

the coordinate axes. Left and Up define the position of the upper left corner, Width 

and Height - the width and height of the graph fragment. The value must be in the 

range [0: 1]. By default, the displayed fragment is set by the matrix [0 0 1 1]. 

Let's illustrate the action of the Auto scale mode by plotting the graphs of the 

functions y = sin (x) and y1 = cos (x) on the interval ( – 2…2), and then the graph 

of the function y2 = sin (3x) on the interval (0…2). Note that the interval of the 

third graph is much narrower. Since the «Auto scale:» mode is on by default, the axes 

will be changed so that both graphs are formed completely at the specified intervals: 

 
x=[-2*%pi:0.1:2*%pi]; y=[sin(x); cos(x)]; 

plot2d(x,y'); 

x=[0:0.1:2*%pi]; 

plot2d(sin(3*x)); 

 

The resulting graph is shown in Figure 4.32. 

 

 

Figure 4.32 – Plotting of the graph with Autoscale enabled. 

 

The «Viewpoint» tab of the «Axes Editor» formatting window (fig. 4.33) 

allows you to set only one property - the angle at which the observer sees the graph. 

By default, the «Rotation angles:» are set to 0 and 270 degrees. 
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Figure 4.33 – The View Point tab of the Axes Editor format window. 

 

4.10.3 Polyline object formatting. 

 

For formatting the graph line, select the «Polyline(1)» object in the «Object 

Browser» window. The properties available for editing in the «Object Properties» 

area are grouped on three tabs: «Style», «Data», «Clipping». 

The «Style» tab of the «Polyline Editor» formatting window (see fig. 4.34) 

allows you to set the values of the following properties: 

 «Visibility:» – a switch that takes values «on» (default). In the off position 

(there is no mark in the box), the graph line is not displayed in the graphic 

window. 

 «Line_mode:» – This value should be «on» (line drawn) or «off» (no line 

drawn). 

 «Fill mode:» – fill mode (disabled by default). In order to determine the 

background color of the area that the curve limits, the switch must be set to «on». 

 «Closed:» – if you turn on this property, the graph line will become closed. 

 «Polyline style:» – graph display style. Possible values are: «interpolated» - 

solid smooth line; «staircase» - stepped line; «barplot» - striped areas; «arrowed» 

- a line consisting of a sequence of arrows, the size of the arrow can be set in the 

«Arrow size:» field; «filled» - filled areas; «bar» - banded areas bounded by a 

solid smooth line (fig. 4.45). 

 «Line:» – line styles. There are 8 styles available: solid, dot, the rest - 

variations of the dashed line. Here you can also select the desired curve thickness 

from the list: from 0 to 10. 

 «Foreground:» and «Background:» – properties that set, respectively, the 

color of the graph line and the fill of the area that is limited by the curve, in this 

time the «Fill mode:» switch should be set to «on». 



 100 

 

Figure 4.34 – The «Style» tab of the «Polyline Editor» formatting window. 

 

 «Interp.vector:» – a vector that 

defines the fill for each segment of 

the graph. 

 «Mark mode:» – a mode that 

allows you to build pointed graphs 

(switch position «on»). This 

property is disabled by default. 

 «Mark style:» – marker style, 

the following values are possible: 

«dot» - point; «plus» - plus sign; 

«cross» - cross; «star» - plus 

inscribed in a circle; «filled 

diamond» - filled diamond; 

«diamond» - rhombus; «triangle up» 

Рис. 4.45. Стиль отображения 

линии графика bar. 
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- triangle with top up; «triangle down» - triangle with top down; «diamond plus» 

- a plus inscribed in a rhombus; «circle» - circle; «asterisk» - little star; «square» 

- square; «triangle right» - triangle with top to the right; «triangle left» - triangle 

with top to the left; «pentagram» is a five-pointed star. 

 «Mark size:» – marker size settable values can vary from 0 to 30 pt.  

 «Mark foreground:» – a slider, each position of which determines the fill 

color of the marker. 

The «Data» tab of the «Polyline Editor» formatting window allows you to 

specify the data area on which the graphs are drawn. The field «Data field:» initially 

indicates the current range, in our case these are 2 arrays of type Double, each of 

them has 63 values - [63x2 double array] (fig. 4.46). However, in «Data field:» you 

can select the «Edit data…» line and edit the source data table. 

 

Figure 4.46 –  The «Date» tab of the «Polyline Editor» formatting window. 

 

The «Clipping:» tab of the «Polyline Editor» formatting window allows you to 

set the borders of a rectangular area – «Clip box:», which will remain visible after 

cropping the image (fig. 4.47). In the «X:» and «Y:» fields you should specify the x; y 

coordinates of the upper left corner of the frame, and in the «W:», «H:» fields - its 

width and height. The «Clip state:» mode can also take one of the following values: 

«off» - means that the generated graph are not cropped; «Clipgrf» - (default) means 

that the area outside the bounds of the axes is cropped from the generated graph; 

«On» - the area that is outside the boundaries set by the «Сlip box:» property is 

cropped from the generated graph. 

 

Questions for self-examination for the eighth lecture: 

1. How to label the axes of the graph and style its title? 

2. How to change the font style of the axis labels and the thickness of the lines 

of the coordinate axes? 

3. How to plot graphs of several functions at different intervals in one graphics 

window? 
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4. How do change the display style of the graph lines? 

 

 
 

Figure 4.47 –  The «Clipping» tab of the «Polyline Editor» formatting window. 

 

Lecture 9 

The purpose of the lecture is to learn how to plot volumetric graphs using the 

plot3d, plot3d1, meshgrid, surf and mesh functions, using the genfac3d and eval3dp 

commands. 

 

5 PLOTTING THREE-DIMENSIONAL CHARTS IN Scilab. 

 

The Scilab environment allows you to build 3D graphs. In this case, all graphs 

belong to three-dimensional, the position of each point of which is set by three 

values. 

In general, the process of plotting a function of the form Z(x;y) can be 

divided into three stages: 

1. Creation of a rectangular grid in the plotting area. For this, straight lines are 

formed parallel to the coordinate axes xi and yj, j, 
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here: h is the step of plotting the graph along the corresponding axis; 

n is the number of intervals on the x-axis; 

k is the number of intervals on the y-axis. 

2. Calculation of the values of the function zij = f(xi, yj) at all grid nodes. 

3. Calling the function of building three-dimensional graph. 

 

5.1 Functions plot3d and plot3d1. 

 

In Scilab, a surface can be plotted using the plot3d or plot3d1 functions. Their 

difference is that plot3d builds a surface and fills it with one color, while plot3d1 

builds a surface, each cell of which has a color depending on the value of the function 

at each corresponding grid point (fig. 5.2). 

The function calls are as follows: 

 
plot3d(x,y,z,[theta,alpha,leg,flag,ebox][keyn=valuen]), 

plot3d1(x,y,z,[theta,alpha,leg,flag,ebox][keyn=valuen]), 

 

here: x is a column vector of abscissa values; 

y - column vector of ordinate values; 

z - matrix of function values; 

theta,alpha - real numbers that define in degrees the spherical coordinates 

of the angle of view on the graph. Simply put, it is the angle at which the viewer sees 

the displayed surface; 

leg - labels of the coordinate axes of the graph, symbols separated by the «@» 

sign. For example, ’X @Y@Z’; 

flag - an array consisting of three integer parameters: [mode,type,box]. 

Here: 

mode - sets the color of the surface (table 5.1). The default is 2 - the fill color is 

blue, the rectangular grid is drawn. 

type - allows you to control the scale of the graph (table 5.2), by default it has 

a value of 2; 

box - defines the presence of a frame around the displayed graph (Table 5.3). 

The default is 4. 

 

Table 5.1 – mode parameter values. 

Values Description 

>0 the surface has the color of mode, a rectangular grid is 

displayed 

0 a rectangular grid is displayed, there is no fill (white) 

<0 the surface has the color mode, there is no rectangular grid 
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Table 5.2 – type parameter values. 

Values Description 

0 

 

the scaling method is applied, as for the previously created 

graph 

1 graph boundaries are specified manually using the parameter 
ebox 

2 the boundaries of the graph define the original data 

 

Table 5.3 – box parameter values. 

Values Description 

0 and 1 no frame 

2 only axes behind the surface 

3 the frame and axis labels are displayed 

4 the frame, axes and their labels are displayed 

 

ebox – defines the boundaries of the area 

into which the surface will be displayed, as a 

vector [xmin, xmax, ymin, ymax, 

zmin, zmax]. This parameter can only be 

used if the parameter type=1. 

keyn = valuen – a sequence of 

values of the graph properties key1 = 

value1, key2 = value2, ..., 

keyn = valuen, such as line thickness, 

line color, background fill color of the graphic 

window, presence of a marker, etc. 

Thus, to the function plot3d 

(plot3d1) must be passed a rectangular grid 

and a matrix of values at the grid nodes as 

parameters. 

Let us plot the function Z= sin(t)cos(t) (fig.5.1). For this, we will create an 

array of values for the argument t. Let's calculate the values of the function and write 

them to the array Z. 

Note that when calling the plot3d function, the parameter t is specified twice 

as parameters X and Y that define a rectangular grid, since both functions sin and 

cos depend on the same variable t: 

 
t=[0:0.3:2*%pi]'; 

Z=sin(t)*cos(t'); 

plot3d(t,t,Z); 

 

Figure 5.1 – 3D graph of the  

       function Z= sin(t)cos(t). 
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Having launched the program for execution, we will receive a three-

dimensional graph of the function Z= sin(t)cos(t) which is shown in fig.5.1. 

Now let's complicate the task a little bit. We will plot a surface whose equation 

is given by two independent variables Z = 5y2 – х2  (fig. 5.2).  

First, we define the arrays X 

and Y. Then we form the matrix of 

values of the function Z(xi;yj), using 

the loop operator for. Here i is the 

parameter of the loop, which will 

iterate over all the values of the array 

X, and j is the parameter of the loop, 

which will iterate each value of the 

array Y which corresponds to each 

value of the array X. 

So, first, all the values of the Z 

function will be calculated with 

changing Y (from the first to the last 

value in the array) and the first value 

of the array X. Then, with the second 

value of the array X, and so on. Recall 

that here length determines the 

number of elements in the array X (Y). 

Finally, to plot the surface, turn to the 

plot3d1 function: 

 
x=[-2:0.1:2]; 

y=[-3:0.1:3]; 

for i=1:length(x) 

for j=1:length(y) 

z(i,j)=5*y(j)^2-x(i)^2; 

end 

end 

plot3d1(x',y',z,-125,10); 

colorbar(-3,3) 

Having launched the program for execution, we will receive a three-

dimensional graph of the function Z = 5y2 – х2  shown in fig.5.2. 

As you can see from the example, using only the plot3d function to 

graphically display indicators that depend on two independent variables is quite 

difficult. Scilab provides several commands to make it easier to create a rectangular 

grid - these are the commands genfac3d and eval3dp. 

The function genfac3d has simplest syntax: 

 
[xx,yy,zz]=genfac3d(x,y,z) 

 

Figure 5.2 – 3D graph of the  

function Z = 5y2 – х2. 
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here: xx,yy,zz – the resulting matrix of size (4,n – 1хm – 1), and xx(:,1), 

yy(:,1) and zz(:,1) are the coordinates of each of the cells of the rectangular 

grid; 

x – vector of x-coordinates of size m; 

y – vector of y-coordinates of size n; 

z – matrix of size (m by n) of values of the function Z(xi;yj). 

Let's plot the function Z= sin(t)cos(t). For this we define the array of the 

parameter t and calculate the values of the function Z= sin(t)cos(t). Then we will 

create a rectangular grid using the genfac3d command: 

 
t=[0:0.3:2*%pi]'; 

z=sin(t)*cos(t'); 

[xx,yy,zz]=genfac3d(t,t,z); 

plot3d(xx,yy,zz); 

 

We will receive a graph which similar to that was obtained earlier (fig. 5.1). 

The disadvantage of the genfac3d command is that it still does not simplify 

the work with the plot3d function, if the surface is set as a function of two 

variables. In this case, use the eval3dp command: 

 
[Xf,Yf,Zf]=eval3dp(fun,p1,p2) 

 

here: Xf,Yf,Zf – the resulting matrix of size (4,n – 1хm – 1), xx(:,1), 

yy(:,1) and zz(:,1) – coordinates of each of the cells of the rectangular grid; 

fun – a user-defined function which defines a 3D plot; 

p1 – vector of size m; 

p2 – vector of size n. 

Let's illustrate the effect of the eval3dp command with the following 

example. 

We will plot a graph given by the following equations x = p1sin(p1) cos(p2), y 

= p1cos(p1)cos(p2), z = p1 sin(p2).  

First of all, let's define arrays of values for the parameters p1 and p2.. Next, will 

create a scp function that sets the graph. 

Recall that functions in Scilab are created using the deff command: 

 
deff([s1,s2,...]=newfunction(e1,e2,...)’ 

 

here: s1,s2,... is a list of output parameters, i.e. variables to which the final 

result of calculations will be assigned; 

newfunction – the name of the function to be created, it will be used to 

call this function; 

e1,e2,... – input parameters. 

For the convenience of specifying the input matrices, we will use the function 
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linspace.  

[v]=linspace(x1,x2 [,n]) 

 

here: x1,x2 – real or complex numbers or column vectors; 

n – integer: the number of requested values. It must be greater than or equal to 

two (by default, it is 100); 

v – real or complex row vector. 

The linspace(x1, x2) function generates a row vector from n (by default 

n = 100) equally spaced points between x1 and x2. If x1 or x2 are complex, then 

linspace(x1,x2) returns a row vector of n complex values. The real part (and 

the imaginary part) of these n complex values is evenly distributed between the real 

parts (or the imaginary parts) x1 and x2. 

We will form a rectangular network using the eval3dp command, note that 

the deff command is written in four lines only for the convenience of reading the 

program, and draw a graph using the plot3d function. 

The program will take the form: 

 

p1=linspace(0,2*%pi,10); 

p2=linspace(0,2*%pi,10); 

deff("[x,y,z]=scp(p1,p2)",... 

["x=p1.*sin(p1).*cos(p2)"; 

"y=p1.*cos(p1).*cos(p2)"; 

"z=p1.*sin(p2)"]); 

[Xf,Yf,Zf]=eval3dp(scp,p1,p2); 

plot3d(Xf,Yf,Zf); 

 

Let's run the program for execution and get a three-dimensional graph which is 

shown in fig. 5.3. 

 

 

Scilab also has several other functions for constructing surfaces. They have a 

simpler syntax, although they cannot always replace the plot3d function. 

 

5.2 meshgrid, surf end mesh functions.  

 

To form a rectangular grid, Scilab uses the meshgrid function, which creates 

matrices or three-dimensional arrays. The call to function looks like: 

 

[X, Y] = meshgrid(x) 

[X, Y] = meshgrid(x,y) 

[X, Y, Z] = meshgrid(x,y,z) 
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here: x,y,z are vectors; X, Y, Z – matrices, if there are two input arguments, and 

if there are three input arguments, then three-dimensional arrays. 

After forming the grid, you can 

display the graph in it using the surf 

or mesh functions. As with the plot3d 

and plot3d1 functions, surf plots the 

surface by filling each cell with a 

color that depends on the specific 

value of the function at the grid node, 

and mesh fills it with one color. 

Thus, mesh function is a 

complete analog of the surf function 

with the value of the parameters 

Color mode = index of white 

color in the current color palette and 

Сolor flag=0. 

The call to function looks like: 

surf([X,Y],Z,[color,keyn=valuen]) 

mesh([X,Y],Z,[color,) 

 

here: X,Y - arrays defining a rectangular grid; 

Z - matrix of function values; 

color - a matrix of real numbers that set the color for each knot of the 

network; 

keyn=valuen - a sequence of values of the graph properties 

key1=value1, key2=value2, ..., keyn=valuen, which determine its 

appearance. 

Of course, in the event 

that the rectangular grid was 

built with the meshgrid 

command, there is no need to 

specify the X,Y parameters. In 

the simplest case, the surf 

function can be accessed like 

this - surf(z). 

To get acquainted with 

the functions meshgrid and 

mesh, we will plot a graph of 

dependence Z = 5y2 – х2 shown 

in fig. 5.4, the program for this 

graph will look like: 

 

[x y]=meshgrid(-2:2,-3:3) 

Figure 5.3 – Function graph plot using 

 the eval3dp command. 

Figure 5.4 - Function graph plot with help 

of the mesh command. 
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z=5*y.^2-x.^2; 

mesh(x,y,z) 

 

As you can see from figure 5.4, the grid, built with a step of 1, is too rare, and 

the calculated values of the function at the nodes are not enough to display a smooth 

graph. Therefore, it is often better 

to independently specify the step of 

forming a rectangular grid when 

calling the meshgrid command. 

To do this, let's plot the same graph 

using the meshgrid command 

with a rectangular grid, specifying 

a step of 0.1, through which lines 

parallel to both coordinate axes 

will be drawn. In this case, the grid 

will be denser and the graph 

smoother than in the previous 

example. Next, we compute the 

values of the Z function and call 

surf to plot the surface: 

 

[x y]=meshgrid(-2:0.1:2,-3:0.1:3); 

z=5*y.^2-x.^2; 

surf(x,y,z) 

 

We will get the graph which is shown in figure 5.5. At first view, it may seem 

that for the function Z = 5y2 – х2 plot3d1 and surf have plotted different surfaces 

(see fig. 5.2 and fig. 5.5). However, it is not true. The difference is due to mode 

«Cube scaling:». If you disable it, surf will display an image identical to that which 

was plotted using the plot3d function (figure 5.6). 

In Scilab, you can plot two surfaces in the same coordinate system, for this, as 

for two-dimensional plots, use mtlb_hold(’on’) command, which blocks the 

creation of a new graphic window when the surf or mesh commands are executed. 

 

Figure 5.5 – Function graph plotted by the 

surf command. 

«Cube scaling:» 

is of 

Figure 5.6 – «Cube scaling:» mode of the Axes Editor format window. 
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To illustrate this possibility, let's plot a function graph. Create a dense 

rectangular grid using the meshgrid command. Let z(x,y) = (3x2+4y2) – 1 and 

z1(x,y) = – (3x2+4y2) – 1. Calculate the values of the functions at all grid nodes. The 

surface z(x,y) = (3x2+4y2) – 1 is constructed using the surf command. Next, we call 

the mtlb_hold(’on’) command, which will block the creation of a new graphic 

window, and using the mesh command, plot a surface z1(x,y) = –(3x2+4y2) – 1 in the 

same coordinate axes with z(x,y) = (3x2+4y2) – 1 (fig. 5.7) this will display a 

rectangular grid. The program will look like: 

 

[x y]=meshgrid(-2:0.2:2,-2:0.2:2); 

z=3*x.^2+4*y.^2-1; 

z1=-3*x.^2-4*y.^2-1; 

mesh(x,y,z); 

mtlb_hold('on'); 

mesh(x,y,z1); 

 

5.3 plot3d2 и plot3d3 

functions. 

 

plot3d2 and plot3d3 functions 

are analogous to the plot3 function, so 

they have the same syntax: 

 

plot3d2(x,y,z,[theta,alpha,leg,flag,ebox][keyn=valuen]), 

plot3d3(x,y,z,[theta,alpha,leg,flag,ebox][keyn=valuen]) 

 

These functions are designed to plot a surface that is defined by a set of faces. 

That is, if the plot3d function, based on the input data, is able to plot only flat faces 

that are separately standing from each other, then plot3d2 (plot3d3) will 

interpret the relative position of these faces in the form of a solid geometric body. 

The difference between the functions plot3d2 and plot3d3 is similar to the 

difference between the actions of the functions plot3d and plot3d1, as well as 

surf and mesh. 

The plot3d2 function plots a surface, displays a grid and fills all cells with 

one of the colors, blue by default. The plot3d3 function also displays the grid, but 

leaves all cells unfilled (that is white). 

For example, let's plot a sphere (fig.5.8) using the plot3d2 function whose 

equation is presented in the form: 
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Figure 5.7 –  A 3D graph of the 

function z(x,y) = (3x2+4y2) – 1 
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When plotting graphs of surfaces specified parametrically - x(u,v), y(u,v) and 

z(u,v) – it is necessary to form matrices X, Y and Z of the same size. For this, the 

arrays u and v must be the same 

size. After that, two main types of 

representation x, y and z should be 

distinguished in the case of 

parametric definition of surfaces: 

1. If x, y and z can be 

represented in the form f(u)g(v), 

then the corresponding matrices X, 

Y and Z should be formed in the 

form of matrix multiplication f(u) 

by g(v). 

2. If x, y and z can be 

represented in the form f(u) or 

g(v), then in this case the matrices 

X, Y and Z should be written in the 

f(u)ones(size(v)) or g(v)ones(size(u)) respectively. 

We define the arrays x, y and z using the linspace function, then the 

program will look like this: 

 
u = linspace(-%pi/2,%pi/2,40); 

v = linspace(0,2*%pi,20); 

X = cos(u)'*cos(v); 

Y = cos(u)'*sin(v); 

Z = sin(u)'*ones(v); 

plot3d2(X,Y,Z); 

 

The sphere plotted by the plot3d2 function is shown in Figure 5.8. Now let's 

see how the plot3d function will perform the same task. 

Let's define the parameters u and v, then calculate the values of the functions x, 

y and z, as in the previous example. However, to plot the graph, let's call the plot3d 

function. We get an image (fig.5.9, a) and the program corresponding to it: 

 

u = linspace(-%pi/2,%pi/2,40); 

v = linspace(0,2*%pi,20); 

X = cos(u)'*cos(v); 

Y = cos(u)'*sin(v); 

Figure 5.8 – A graph of the sphere which 

was plotted with the plot3d2 function. 
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a) plot3d b) plot3d3 

Figure 5.9 – Plots of the spherewhich was plotted by the functions 

 plot3d and plot3d3. 

Z = sin(u)'*ones(v); 

plot3d(X,Y,Z); 

Let's illustrate the action of the plot3d3 function using the same example. 

We leave everything as in the previous example for building a graph (fig.5.9, b), the 

program will look like this: 

 

u = linspace(-%pi/2,%pi/2,40); 

v = linspace(0,2*%pi,20); 

X = cos(u)'*cos(v); 

Y = cos(u)'*sin(v); 

Z = sin(u)'*ones(v); 

plot3d3(X,Y,Z); 

 

Questions for self-examination for the ninth lecture: 

1. What are the functions plot3d and plot3d1 used for? 

2. What parameters do the functions plot3d and plot3d1 have and what are 

they used for? 

3. What are the genfac3d and eval3dp commands used for? 

4. What is the linspace function used for? 

5. What are meshgrid, surf, and mesh functions for? 

6. What is the difference between the functions plot3d2 and plot3d3? 

 

Lecture 10 

The purpose of the lecture is to learn how to plot three-dimensional graphs 

using the param3d and param3d1 functions, explore the capabilities of the contour 

and contourf functions and how to use them, learn how to plot three-dimensional 
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histograms. 

 

5.4 param3d and param3d1 commands. 

 

To plot a parametric curve in Scilab, there is the param3d command.  

The param3d command is used to plot three dimensional lines defined by 

their x, y, z coordinate. The command looks like: 
 

param3d(x,y,z,[theta,alpha,leg,flag,ebox]) 

 

here: x,y,z are three vectors of the same size that define the points of the 

parametric curve; 

theta,alpha are integers defining the values of the viewing angles in a 

spherical coordinate system, by default they are 35 and 45 degrees; 

leg is a string that defines the label of each axis, with the @ sign as a field 

separator, for example "Х @ Y @ Z". 

Let's illustrate the capabilities of the param3d function with the following 

examples. 

Let's plot a line, specified parametrically: 

 

 

 

 

 

First, we define the range and step of the parameter t. Then we turn to the 

param3d command, passing to it the values of the vectors x,y,z expressed in the 

form of mathematical 

functions y, y1 and y2, as well 

as the angles in degrees at 

which the observer will see 

the generated graph equal to 

60 and 30 degrees. We will 

sign the axes in the form: "X-

axis", "Y-axis" and "Z-axis". 

The graph is shown in fig. 

5.10, and the program will 

look like: 

 

t=[0:0.1:10*%pi]; 

param3d(sin(t),cos(t

),t/7,60,30,'X-

axis@Y-axis@Z-

axis'); 

As a second example of using the param3d command, let's plot a 

.7
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Figure 5.10 - Graph of a parametric line, 

plot  

by the param3d function. 
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parametrically defined line: 

 

 

 

 

 

 

Have determined the array of values of the parameter t, we will calculate the 

values of x,y,z coordinate of the curve. To plot the graph, we use the param3d 

command, setting the viewing angles to 45 and 60 degrees. The graph is shown in fig. 

5.11, and the program will look like: 

 
t=-50*%pi:0.1:50*%pi; 

x=t.*sin(t); 

y=t.*cos(t); 

z=t.*abs(t)/(50*%pi); 

param3d(x,y,z,45,60, 'X-axis@Y-axis@Z-axis'); 

 

To display several parametrically defined curves in the same coordinate in 

Scilab, use the param3d1command. It has a slightly different syntax.  

 
param3d1(x,y,list(z,colors),[theta,alpha,leg,flag,ebox]) 

 

Here it becomes necessary to use the list(z,colors) construction, which 

allows not only to set the Z-coordinate for each of the curves, but also to set the 
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Figure 5.11 – Graph of a parametric line, plot 

by the param3d command. 
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desired color for them. Let's look at an example. It is necessary to plot graphs of two 

parametrically defined lines: 

 

 

and 

 

 

Let's set an array of values of the t parameter. To plot lines in one coordinate 

system, let's call the 

param3d1 command. As 

parameters in the first 

square brackets, we pass it 

the X and Y coordinate of 

the first curve, and in the 

second square brackets - 

of the second curve. Using 

the list property, define 

the Z-coordinate and set 

the line color to dark blue 

(9) for the first curve, and 

red for the second (5). 

Numbers 35 and 45 

viewing angles. The 

'X@Y@Z' parameters are 

responsible for displaying 

the labels of the graph axes. The graph is shown in fig. 5.12, and the program will 

look like: 

 
t=[0:0.1:5*%pi]'; 

param3d1([sin(t),sin(2*t)],[cos(t),cos(2*t)],... 

list([t/10,sin(t)],[9,5]),35,45,'X@Y@Z'); 

 

5.5 contour function. 

 

Scilab, in addition to plotting volumetric graphs, also implements the ability to 

create spatial models of objects. In practice, it is often necessary to build maps in the 

isolines of the indicator values, where X, Y – coordinates set the position of a 

particular point under study on the plane, and Z is the coordinate of the fixed value of 

this point height. Points with the same height values are connected by so-called 

isolines. These are lines of the same levels of values of the investigated quantity. 

To plot contour lines (isolines) in Scilab there is a contour function. The 

appeal to it looks like: 

 
contour(x,y,z,nz[theta,alpha,leg,flag,ebox,zlev]) 
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Figure 5.12 - Graphs of curves plotted by 

the param3d1 command. 
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here: x,y are arrays of real numbers; 

z is matrix of real numbers of values of the function describing the surface 

Z(x,y); 

nz is a parameter that sets the number of contour lines. If nz is an integer, 

then nz`s isolines will be drawn at equal intervals in the range between the 

minimum and maximum values of the function Z(x,y). If nz is set as an array, 

then isolines will be drawn through all the values specified in the array; 

theta,alpha are real numbers which define the spherical coordinate of the 

viewing angle in degrees; 

leg are labels of the graph coordinate axes, symbols separated by the @ sign. 

For example, 'X@Y@Z'; 

flag is an array consisting of three integer parameters [mode,type,box],  

here:  

mode - sets the method and place of drawing the level lines (Table 5.4); 

type – allows you to control the graph scale (table 5.2), by default it has a 

value of 2; 

box – defines the presence of a frame around the displayed graph (Table 5.3). 

The default is 4; 

ebox –defines the boundaries of the area into which the surface will be 

displayed, as a vector [xmin,xmax,ymin,ymax,zmin,zmax]. This parameter 

can only be used if the parameter type=1; 

zlev is a mathematical expression that specifies a plan (horizontal projection of 

a given surface) for creating contours. By default, it is the same as the equation 

describing the plane and in this case can be omitted. 

It should be noted that it is more convenient to pass the equation of the surface 

Z(x,y)) to the contour function as a parameter as a user-defined function. Recall 

that functions in Scilab are created using the deff or function command (see 

point 2.8.2). 

 

Table 5.4 – mode parameter values. 

Value Description 

0 Isolines applied to the surface Z = (x,y). 

1 Isolines are plotted on the surface and on the plan, which is given by 

the equation z=zlev 

2 Isolines are plotted on a 2D graph 

 

As an example of using the contour function, plot the level lines of the 

surface Z = xsin(x)2cos(y). 

Let's introduce the parameter t and define an array of its values. Using the 

function command, we will plot a function my_surface with inputs x, y and 

output z parameters. In the body of the function, we calculate the values of the 
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mathematical expression that defines the surface.  

To plot contour lines, let's turn to the contour function, composing the 

appropriate program: 
t=linspace(-%pi,%pi,30); 

function z=my_surface(x,y) 

z=x*sin(x)^2*cos(y) 

endfunction 

contour(t,t,my_surface,10) 

 

After starting the program, we will receive a graph of isolines which are shown 

in figure 5.12. 

 

Figure 5.12 - Isolines of the surface Z = xsin(x)2cos(y). 

 

This example shows that the execution of the contour function results in the 

formation of lines of the same indicator values and their projection onto the 

horizontal plane. Obviously, such a presentation of data is not very informative. 

Much clearer is the image of surface contours and the surface itself in one graphic 

window. To illustrate this situation, consider an example of plotting a surface Z = 

sin(x)cos(y) and displaying isolines in one graphic window (fig. 5.13). 

The plotted graph is shown in figure 5.13, and the program looks like this: 
 

t=%pi*(-10:10)/10; 

deff('[z]=Surf(x,y)','z=sin(x)*cos(y)'); 

rect=[-%pi,%pi,-%pi,%pi,-5,1]; 

z=feval(t,t,Surf); 

plot3d(t,t,z,35,45,'X@Y@Z',[2,1,4],rect); 
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contour(t,t,z,10,35,45,'X@Y@Z',[1,1,4],rect, -5); 

xtitle('plot3d and contour'); 

 

First of all, we introduce the parameter t and form an array of its values. Let's 

plot Surf function by calling the deff command. Using the rect command, we 

set the boundaries of the plotting area in the graphic window in order to make it 

possible to match both the surface and the contours of the surface projected onto the 

horizontal plane. 

Recall that when plot a graph of a function of the form Z(x,y) using the 

plot3d function, it is necessary to use the cycle operator For, form a matrix of 

values of the function zij = f(xi,yj).To avoid this, we will use the feval command. 

Next, using the plot3d function, we plot a graph of the surface Z = 

sin(x)cos(y), setting the viewing angles of the observer and labels for the coordinate 

axes. We also define the flag [2,1,4]: array: 2 – the color of the graph is blue, 1 

– the boundaries of the plotting area are defined manually (further, the rect 

parameter specified above is indicated), 4 – all axes and a frame around the graph are 

displayed. Then we will form isolines, referring to the contour function, we also 

set the viewing angles, the labels of the coordinate axes the number of isolines will be 

equal and the values f the flag array is [1,1,4]: 1 – the mode of outputting isolines 

on a separately plotted plan, which is set by the same equation as the surface Z = 

sin(x)cos(y); 1 – the boundaries of the plotting area are defined manually (the rect 

parameter specified above is specified below); 4 – all axes and a frame around the 

graph are displayed. The number -5 sets the position of the horizontal plane with 

Figure 5.13 - Graph of the surface and its isolines in one window. 



 119 

isolines of 5 units below the surface plot. With help of xtitle command will be 

displayed the caption for the graph.  

However, even such an image of the surface and its isolines is not always 

convenient. Let's try to combine the graph of the same surface Z = sin(x)cos(y) with 

its level lines. 

As in the previous example, let's set an array of values for the t parameter, 

create a Surf function, constrain the area for displaying the graph inside the graphic 

window using the rect command, and calculate the values of the function Z = 

sin(x)cos(y), by executing the feval command. 

When plotting the surface, we do`t change all the parameters, except for the 

viewing angles of the observer (set 45 and 70) and the graph fill color (set the value 

of the mode parameter in the flag array to 19 - brown). 

When calling the contour function to align the surface and its isolines, let 

delete the value of the location parameter , -5 and set for "mode" in the flag array 

to 0 ([0,1,4]) – contour lines are applied directly to the surface Z = sin(x)cos(y). 

Use the xtitle command to display the caption for the graph. 

With help of the xtitle command we displaid  the caption for the graph.  

The plotted graph is shown in Figure 5.14, and the program looks like this: 

 
t=%pi*(-10:10)/10; 

deff('[z]=Surf(x,y)','z=sin(x)*cos(y)'); 

rect=[-%pi,%pi,-%pi,%pi,-1,1]; 

z=feval(t,t,Surf); 

plot3d(t,t,z,45,45,'X@Y@Z',[-19,1,4],rect); 

contour(t,t,z+0.1,10,45,70,'X@Y@Z',[0,1,4],rect); 

xtitle('plot3d and contour'); 

 

5.6 contourf function. 

 

Scilab has a contourf function that not only plots a surface on a horizontal 

plane as isolines, but also fills the intervals between them with color, depending on 

the specific level of values.  

The function call looks like: 

 
contourf (x,y,z,nz,[style,strf,leg,rect,nax]) 

 

here: x,y are arrays of real numbers; 

z is the matrix of real numbers of the value of the function describing the 

surface Z(x,y); 

nz is a parameter that sets the number of contour lines. If nz is an integer, then 

nz isolines will be drawn at equal intervals in the range between the minimum and 

maximum values of the function Z(x,y). If nz is set as an array, then isolines will be 

drawn through all the values specified in this array; 
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style is an array of the same size as nz, it sets the color for each interval of 

value levels; 

strf is a string consisting of three numbers «csa». Here c (Captions) sets the 

display mode of graph captions (see Table 5.5); s (Scaling) - scaling mode (see table 

5.6); a (Axes) – defines the position of the graph axes (see Table 5.7); 

leg is the legend of the graph, the signature of each of the curves, characters 

are separated by @. leg is the legend of the graph, the signature of each of the 

curves, characters are separated by @ sign. By default,  the string is empty «      »; 

rect is vector [xmin, ymin, xmax, ymax], which defines the 

boundaries of the x and y coordinate of the graphic area of the window; 

nax is an array of four values [nx, Nx, ny, Ny], defining the number of 

major and intermediate divisions of the graph coordinate axes. Here Nx (Ny) is the 

number of major ticks with labels under the X (Y) axis; nx (ny) is the number of 

intermediate ticks. 

 

Table 5.5 – The value of the c parameter (Captions) of the strf string. 

Value Description 

0 no signatures 

1 the captions given by the leg parameter are displayed 

 

Table 5.6 – The value of the s parameter (Scaling) of the strf string. 

Figure 5.14 – Imposition of the isolines on surface. 
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Value Description 

0 default scaling 

1 set by the rect parameter 

2 the scale depends on the minimum and maximum values of the input data 

3 isometric axes are plotted based on the values of the rect parameter 

4 isometric axes are displayed based on input data 

5 expanding the axes for the best view based on the values of the rect 

parameter 

6 expanding the axes for the best view based on the input data 

 

Table 5.7 – The value of the a parameter (Axes) of the strf string. 

Value Description 

0 no axes 

1 the axes are displayed, the Y-axis is on the left 

2 a frame is displayed around the graph without ticks 

3 the axes are displayed, the Y-axis is on the right 

4 the axes are centered in the graphic window 

5 the axes are drawn in such a way that they intersect at the point (0; 0) 

 

To get acquainted with the operation of the contourf function, we will plot 

an image of the surface Z = sin(x)cos(y). 

Let's introduce the t parameter and create an array of its values, define them 

using the deff command and the surf function. 

For clarity, we present a graph of the surface Z = sin(x)cos(y), plot by the 

plot3d1 function, and its image on the horizontal plane, formed by the contourf 

function in one graphics window. 

For this purpose, let`s use the subplot function, which will split the graphic 

window into two areas for displaying graphs. 

Using feval, we calculate the values of the function Z = sin(x)cos(y) and plot 

its graph using plot3d1, specifying the viewing angles of 80 and 15 degrees, and 

also, by calling the xtitle command, display the graph caption "plot3d1". 

After that, we will form a projection of the surface onto a horizontal plane 

using the contourf function. As parameters, we pass X, Y and Z - coordinate, the 

number of isolines (10): 10:20 is an array defining the color of each interval 

between isolines, as well as the values of the string strf="121" (1 – signature 

display mode; 2 – the choice of scale depends on the minimum and maximum values 

of the input data; 1 – the axes are displayed, the Y-axis is on the left.  

For this graph, we will also display the labels of the axes and the graph as a 

whole ('contourf','X','Y'); using the xtitle command, the graph will 

take the form shown in fig. 5.15, and the program will be like this: 
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t=-%pi:0.2:%pi; 

deff('[z]=Surf(x,y)','z=sin(x)*cos(y)'); 

subplot(121); 

z=feval(t,t,Surf); 

plot3d1(t,t,z,80,15); 

xtitle('plot3d1'); 

subplot(122); 

contourf(t,t,z,10,10:20,strf="121"); 

xtitle('contourf','X','Y'); 

 

Figure 5.15 - The graphs plotting by the functions plot3d1 and contourf. 

 

5.7 hist3d function. 

 

Scilab uses the 

hist3d function to plot 

3D histograms: 
 

hist3d(f,[thet

a,alpha,leg,flag,e

box]) 

 

here: f is (m:n), matrix 

defining the histogram of 

the function f(i,j) = 

F(x(i),y(j));  
 

 

theta,alpha,le

Рис. 5.8. Трехмерная гистограмма, 

построенная функцией 

hist3d. 
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g,flag,ebox are parameters that control the same properties as for the . plot3d 

function. 

To get acquainted with the work of the hist3d function, let's plot a graph of a 

three-dimensional histogram.  

To form the input data matrix, we will use the rand command. Recall, to 

create a matrix of size (m, n), you need to use the construction rand(m,n). The 

resulting graph is shown in fig. 5.16, and the program will look like this: 

 
hist3d(10*rand(10,10),20,35); 

 

Using this function, you can also plot a two-dimensional histogram: 
 

hist3d(10*rand(1,10),0,90); 

 

Questions for self-examination for the tenth lecture: 

1. What is the param3d function for? 

2. What is the param3d1 function for? 

3. What is the contour function for? 

4. How to plot the isolines of the surface? 

5. How do imposition of the isolines on surface? 

6.. What is the contourf function for? 

7. How to plot a 3D histogram? 

 

Lecture 11 

The purpose of the lecture is to learn how to solve algebraic equations of any 

degree, transcendental equations and systems of equations and integrate functions 

which are given both in the form of an equation and in the form of a data set, how to 

integrate and calculate derivatives. 

 

 

6 NONLINEAR EQUATIONS AND SYSTEMS IN SCILAB. 

 

If a nonlinear equation is complex enough, then finding its roots is a very 

difficult task. Let's consider what tools Scilab has for solving this problem. 

 

6.1 Algebraic equations. 

 

Any equation of the form P(x) = 0 where P(x) is a nonzero polynomial, is 

called an algebraic equation or polynomial. Any algebraic equation for x can be 

written in the form a0x
n + a1x

n-1 +…+ an-1x + an = 0, where a0  0 n  1 and ai are the 

coefficients of an algebraic equation of the n-th degree. For example, a linear 

equation is an algebraic equation of the first degree, quadratic - second, cubic - third, 

and so on. 

Algebraic equations are separated into a separate class for two reasons. First, 
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when working with such equations, you don't have to think about the domain of 

definition. The x argument can be any valid value. Second, polynomials have as 

many roots as the order of the polynomial, but some of the solutions can be complex. 

Solving an algebraic equation in Scilab has two steps. First, you define the 

polynomial P(x) using the poly function, and second – find its roots using the 

roots function. 

So, the definition of polynomials in Scilab is carried out by the function: 

 
poly(a, "x" ["fl"]) 

 

here: a is a number or a matrix of numbers; 

x is a string, the name of a symbolic variable, if the string is more than 4 

characters, then only the first 4 of them are taken into account; 

fl is an optional symbolic variable that defines how the polynomial is 

specified. 

The symbolic variable fl can only have two values «roots» or «coeff» (r 

or c, respectively). If fl = c, then a polynomial with the coefficients stored in the a 

parameter will be generated. If fl = r, then the values of the parameters a are 

perceived by the function as roots, for which it is necessary to calculate the 

coefficients of the corresponding polynomial. By default fl = r. 

The following example shows the creation of a polynomial p with a three as a 

root and a polynomial f with a coefficient which is equal to three. 

In the console window, type sequentially: -->p=poly(3,'x','r') and -

->f=poly(3,'x','c'),  and accordingly we will get: 

 
p  = 

  - 3 + x and 

 

 f  = 

    3 

 

The below are examples of how to create more complex polynomials. 

An example using the poly function: 

 
// Polynomial with roots 1, 0 and 2 

poly([1 0 2],'x') 

 ans  = 

           2   3   

    2x - 3x + x    

 

In this example, we got a polynomial of the form: 2x - 3x2 + x3. 

 

// Polynomial with coefficients 1, 0 and 2 

poly([1 0 2],'x','c') 
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 ans  = 

          2   

    1 + 2x 

In this example, we got a polynomial of the form: 1 + 2x2. 

Let's consider some examples of symbolic operations with polynomials: 

 
p1=poly([-1 2],'x','c') 

 p1  = 

  - 1 + 2x    

p2=poly([3 -7 2],'x','c') 

 p2  = 

               2   

    3 - 7x + 2x    

p1+p2 // Addition 

 ans  = 

               2   

    2 - 5x + 2x    

p1-p2 // Subtraction 

 ans  = 

               2   

  - 4 + 9x - 2x    

p1*p2 // Multiplication 

 ans  = 

                 2    3   

  - 3 + 13x - 16x + 4x    

p1/p2 // Division 

 ans  = 

      1      

    -----    

  - 3 + x    

p1^2 // Exponentiation 

 ans  = 

               2   

    1 - 4x + 4x    

p2^(-1) // Negative exponentiation 

 ans  = 

         1         

    -----------    

               2   

    3 - 7x + 2x  

 

The roots(p) function is designed to solve an algebraic equation. Here p is 

the polynomial created by the poly function and represents the left side of the 

equation P(x) = 0.  

Let`s solve several algebraic equations. 
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First we will find the roots of the polynomial 2x4 – 8x3 + 8x2 – 1 = 0. 

To solve this task, it is necessary to specify a polynomial p. We will do this 

using the poly function, having previously defined the vector of coefficients V. 

Please note that the equation does not contain the variable x in the first degree, 

this means that the corresponding coefficient is equal to zero and that when we will 

be forming the vector of coefficients V, first the coefficient at x0 is written, then at x1 

and the last is written the coefficient at xn: 
 

V=[-1 0 8 -8 2]; 

p=poly(V,'x','c')  

 p  = 

          2    3    4   

  - 1 + 8x - 8x + 2x   

 

Now let's find the roots of the polynomial: 

 
X=roots(p) 

 X  = 

    2.306563    

    1.5411961   

  - 0.3065630   

    0.4588039 

 

To check the correctness of the solution of the task, let's plot a graph of the 

function y=2x4 – 8x3 + 8x2 – 1 = 0 by running the program: 

 
x=-1:0.1:3; 

y=2.*x.^4-8.*x.^3+8.*x.^2-1; 

plot2d(x,y)  

 

In order for the X axis to cross zero in the «Axes Editor» window, set the value 

of the «Location» parameter equal to «origin», for the X axis, and set the value of the 

«Grid color» parameter to 0 to display the grid for both axes. The graphic solution of 

the task shown in fig. 6.1 allows you to make sure that the roots are found correctly. 
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Figure 6.1 – Graphic solution of the equation 2x4 – 8x3 + 8x2 – 1 = 0. 

 

Let's solve onece more equation by finding the roots of the polynomial x3 + 

0,4x2 + 0,8x – 1 = 0. The solution of this task is similar to the solution to the previous 

one, the difference lies in the way of calling the function which needs for this: 

 
roots(poly([-1 0.8 0.4 1],'x','c')) 

 ans  = 

    - 0.5319410 + 1.1060428i   

    - 0.5319410 - 1.1060428i   

       0.6638819 

 

As you can see from the answer, the polynomial has one real and two complex 

roots. The graph of the function y=x3 + 0,4x2 + 0,8x – 1 is shown in fig. 6.2. 

 
x=-1:0.1:1; 

y=x.^3+0.4.*x.^2+0.8.*x-1; 

plot2d(x,y)  

 

Let us find another solution to the equation x4 – 18x2 + 0,6 = 0. The solution to 

this task is presented in a different way from the previous examples only in the way 

of determining the polynomial: 
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Figure 6.2 – Graphic solution of the equation x3 + 0,4x2 + 0,8x – 1 =0. 

 
x=poly(0,'x'); 

y=x.^4-18.*x.^2+.6; 

roots(y) 

 ans  = 

  - 4.2387032   

    4.2387032   

  - 0.1827438   

    0.1827438   

 

As you can see from the answer, the polynomial has four roots. The graph of 

this function y= x4 – 18x2 + 0,6 is shown in fig. 6.3. 
 

x=-6:0.1:6; y=x.^4-18.*x.^2+0.6; 

plot2d(x,y) 

 

Figure 6.3 – Graphic solution of the equation x4 – 18x2 + 0,6 = 0. 

 

6.2 Transcendental equations. 
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The equation f(x) = 0, in which the unknown is included in the argument of 

transcendental functions, is called a transcendental equation. Transcendental 

equations include exponential, logarithmic and trigonometric. In the general case, an 

analytical solution to the equation f(x) =0 can be found only for a narrow class of 

functions. Most often, this equation has to be solved by numerical methods. 

The numerical solution of the nonlinear equation is carried out in two stages. 

At the beginning, the roots of the equation are separated, that is find rather close 

intervals, which contain only one root. These intervals are called root isolation 

intervals and can be determined by plotting the function f(x) or by any other method. 

Methods for determining the root isolation interval are based on the following 

property: if a continuous function f(x) on the interval [a, b] has changed sign, that is, 

f(a)f(b) < 0, then it has at least one root. At the second stage, the separated roots are 

clarified, or, in other words, the roots are found with a given accuracy.  

To solve transcendental equations in Scilab use the function: 

 
fsolve(x0,f) 

 

here: x0 is initial approximation; 

f is the function describing the left side of the equation f(x) = 0. 

Let's look at the application of this function by examples. 

Let's find a solution to the equation: 

 

 

Let us determine the isolation interval of the root of the given equation. We 

will use the graphic method of separating the roots. If the expression on the right side 

of the equation is represented as the difference of two functions f(x) – g(x)= 0 then 

the abscissa of the point of intersection of the lines f(x) and g(x) is the root of this 

equation. In our case, this are f(x) = ((x – 1)2)1/3 and g(x) = ((x)2)1/3. In fig. 6.4 it can 

be seen that the root of this equation lies in the interval [0; 1]. 

Figure 6.4 –  Graphic solution of the task. 

  .01
3 23 2

 xx
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We choose zero as the initial approximation, define a function describing the 

equation, and solve it: 

 
deff('[y]=f1(x)','y1=((x-1)^2)^(1/3),y2=(x^2)^(1/3),y=y1-y2') 

fsolve(0,f1)  

 ans  = 

    0.5000000 

Let's solve one more equation ex/5 – 2(x – 1)2 = 0. The graphic solution is 

shown in fig.6.5. It shows that the graph of the function f(x) crosses the abscissa axis 

three times, that is the equation has three roots. 
x=-1:0.1:6; 

y=exp(x)/5-2.*(x-1).^2; 

plot2d(x,y); 

 

 

 

 

 

 

 

Figure 6.5 – Graphic solution of the equation ex/5 – 2(x – 1)2 = 0. 

 

By sequentially calling the fsolve function with different initial 

approximations, we get all the solutions of the given equation: 

 
clear 

deff('[y]=f(x)','y=exp(x)/5-2*(x-1)^2') 

x(1)=fsolve(0,f);x(2)=fsolve(2,f);x(3)=fsolve(5,f) 

x  = 

    0.5778406   

    1.7638701   

    5.1476865  

 

In addition, the initial approximations can be specified as a vector, and then the 

function can be called once: 

 
deff('[y]=f(x)','y=exp(x)/5-2.*(x-1).^2') 

x=fsolve([0;2;5],f) 

x  = 

    0.5778406   

    1.7638701   

    5.1476865 

 

Let's calculate the roots of the equation sin(x) – 0,4 = 0 in the range [-5;5]. 
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The equation graph is shown in fig. 6.6. 

 

Figure 6.6 – Graphic solution of the equation sin(x) – 0,4 = 0. 

 
x=-5*%pi:0.1:5*%pi; 

y=-0.4+sin(x) 

plot(x,y) 

 

And the program for solving the equation is: 

 
deff('[y]=fff(x)','y=-0.4+sin(x)'); 

V=[-5*%pi:%pi:5*%pi]; X=fsolve(V,fff) 

X  = 

  - 16.11948  - 12.154854  - 9.8362948   

  - 5.8716685  - 3.5531095    0.4115168   

    2.7300758    6.6947022    9.0132611   

    12.977887    15.296446   

 

Let's find the solution to the transcendental equation x5 – x3 + 1 = 0 for 

which we will plot a graph, the program for its plotting has the form: 

 
x=[-1.5:0.1:1.5]; 

y=x.^5-x.^3+1; 

plot2d(x,y) 

 

From the graph of the function y = x5 – x3 + 1 (fig. 6.7) it can be seen that 

the equation has one solution in the interval from – 1,5 to – 1 
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Figure 6.7 – Graphic solution of the equation x5 – x3 + 1 = 0. 

 

Let's solve this problem using the fsolve function. Let's type the program in 

the SciNotes editor: 

 
deff('[f]=y(x)','f=x.^5-x.^3+1') 

X=fsolve(-1.5,y) 

 

After starting the program in the console window, we get the answer:  
X  = 

  - 1.2365057  

This could be limited, but the equation may have imaginary roots. Let's check 

this using the roots function by adding one more line at the end of the last program: 

 

roots(poly([1 0 0 -1 0 1],'x','c')) 

 

From the answer it is clear that the transcendental equation has 5 roots, one of 

which is real and four are imaginary: 
 

ans  = 

  - 1.2365057                

    0.9590477 + 0.4283660i   

    0.9590477 - 0.4283660i   

  - 0.3407949 + 0.7854231i   

  - 0.3407949 - 0.7854231i 

 

Thus, we can conclude that the way to solve transcendental equations using the 

roots function gives a more reliable result than using the fsolve function. 
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7 NUMERICAL INTEGRATION AND DIFFERENTIATION. 

 

Various numerical algorithms are implemented in the integration and 

differentiation functions in Scilab. 

 

7.1 Integration by the method of trapezoids. 

 

In Scilab, numerical integration by the method of trapezoids is implemented 

using the inttrap([x,]s) function. This function calculates the area of a shape 

under the graph of the function y(x), which is described by a set of points (x, y). 

Function call sequence: 

 
v = inttrap([x,] s) 

 

here: x is the data vector along the X coordinate in ascending order. The default is 1: 

size(s,'*'); 

s is a vector of data along the Y coordinate. 

v is the value of the integral. 

The function calculates: s(i)=f(x(i)), x0=x(1), and x1=x(n), here f is the function 

described by a set of experimental values. The function is interpolated linearly 

between grid points. 

As an example of using the function, let calculate a definite integral: 

 

 

 

 

This integral can be easily reduced to a tabular one: 

 

 

 

 

 

and is easily calculated using the Newton – Leibniz formula: 

 

 

 

The program for calculating the integral will look like: 

 

a=5;b=13; 

I=1/3*(2*b-1)^(3/2)-1/3*(2*a-1)^(3/2) 

I  = 

    32.666667 

Now we will apply the method of trapezoids to find a given definite integral. In 

accordance with this method, to calculate the integral by method of trapezoids, the 
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integration section is divided into a certain number of equal segments, each of the 

obtained curvilinear trapezoids is replaced by a rectilinear one, and the approximate 

value of the integral is calculated as the sum of the areas of these trapezoids.  

Let's consider several options for solving this problem. In the first case, the 

integration interval is divided into segments with a step of one, in the second 0.5 and 

in the third 0.1. It is easy to see that the more points of the partition, the more 

accurate the value of the required integral. The program for these variants is as 

follows: 
a=5;b=13; 

x=a:b;y=sqrt(2*x-1); 

inttrap(x,y) 

 ans  = 

    32.655571   

 

h=0.5; x=a:h:b; y=sqrt(2*x-1); 

inttrap(x,y) 

 ans  = 

    32.66389   

 

h=0.1; x=a:h:b; y=sqrt(2*x-1); 

inttrap(x,y) 

 ans  = 

    32.666556 

 

Below is an example of using the inttrap function with one argument. 

As you can see, in the first case, the value of the integral calculated using this 

function is inaccurate and coincides with the value obtained by the 

inttrap(x,y) function on the interval [5; 13] with step 1. That is, we found 

the sum of the areas of eight rectilinear trapezoids with base h = 1 and sides 

given by the vector y. 

In the second case, when trying to increase the accuracy of integration, the 

value of the integral increases significantly. The fact is that, having reduced the 

step of dividing the integration interval to 0.1, we increased the number of 

elements of the vectors x and y, and the use of the inttrap(y) function will 

lead to the calculation of the sum of the areas of eighty trapezoids with base h = 1 

and lateral sides given by the vector y. Thus, in the first and second examples, 

the areas of completely different figures are calculated.  
 

a=5;b=13; 

x=a:b; y=sqrt(2*x-1); 

inttrap(y) 

 ans  = 

    32.655571   

 

h=0.1; x=a:h:b; y=sqrt(2*x-1); 
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inttrap(y) 

 ans  = 

    326.66556 

 

Using the inttrap function, you can process experimental data. Suppose we 

need to determine the integral of some dependence, the formula for which is 

unknown, but the results of changing the values of the function from its parameter are 

known. 

 
x 0.000 0.314 0.628 0.442 1.256 1.571 1.885 2.199 2.513 2.827 3.141 

y 0.000 0.309 0.583 0.809 0.951 1.000 0.951 0.809 0.588 0.309 0.000 

 

The program and the result are as follows: 

 
x=[0.000 0.314 0.628 0.442 1.256 1.571... 

1.885 2.199 2.513 2.827 3.141]; 

y=[0.000 0.309 0.583 0.809 0.951 1.000... 

0.951 0.809 0.588 0.309 0.000]; 

inttrap(x,y) 

 ans  =  2.0740015  

 

7.2 Integration by quadrature. 

 

The trapezoid methods are special cases of Newton – Cotes quadrature 

formulas, which have the form: 

 

 

 

 

here: Нi are some constants called Newton – Cotes constants. 

If for this integral we take n = 1, then we get the method of trapezoids, and for 

n = 2 – the Simpson method. These methods are called lower order quadrature 

methods. For n > 2, higher order Newton – Cotes quadrature formulas are obtained. 

The computational algorithm of quadrature formulas is implemented in Scilab by the 

function:  

 
integrate(fun, x, a, b, [,er1 [,er2]]) 

 

here: fun is a function that sets the integrand in symbolic form; 

x is variable of integration, also specified as a symbol; 

a and b are limits of integration, real numbers; 

er1 is real number (absolute error limit), default value 1e-8; 

er2 is real number (relative error limit), default value: 1e-14. 

Now calculate the integral: 
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The program and answer will look like: 

 
integrate('(2*x-1)^0.5','x',5,13) 

 ans  = 

    32.666667 

 

7.3 Integration of an external function. 

 

The most universal integration command in Scilab is:  

 
[I,err]=intg(a, b, name [,er1 [,er2]]) 

 

here: name is the name of the function that defines the integrand (here the function 

can be specified as a set of discrete points (like a table) or using an external 

function); 

a and b are limits of integration; 

er1 and er2 - absolute and relative error of calculations (dispensable 

parameters). 

Let's calculate the integral from the previous task, the solution will have the 

form: 
deff('y=G(x)','y=sqrt(2*x-1)'); 

intg(5,13,G) 

 ans  = 

    32.666667  

 

Let's look at another example by calculating the integral: 

 

 

 

 

The solution will look like: 

 
function y=f(t) 

     y=t^2/sqrt(3+sin(t)) 

     endfunction; 

[I,er]=intg(0,1,f) 

er  =  

   1.933D-15 

 I  =  

   0.1741192 
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7.4 Calculation of the derivative. 

 

The operation of calculating the derivative of a function at a point, which is 

very common in mathematical analysis, is solved in Scilab using the command: 

 
numderivative(f, x) 

 

here f is the name of the function, x is the point at which the derivative is calculated. 

For example, we will calculate the derivative f’(x) of the function f(x) = 

(x+3)2+2x at the point x = 2. 

The program and the result will look like: 

 
deff('y=f(x)','y=(x+3).^2+2*x'); 

pr_ot_y=numderivative(f,2) 

 pr_ot_y  = 

    12.000000 

 

To check the calculation of the derivative, we take the first derivative of the 

function f(x), which will be equal to f’(x) = 2(x+3)+2. Substitute the value x = 2 into 

this equation and get the value f’(x) = 12, which coincides with the one found above. 

When calculating a function of one variable at several points at once, the result 

of the numderivative command will be a matrix on the main diagonal of which 

the desired values are located. 

Example. Calculate the derivative of the function f’(x)=(x+3)2+2x at the points 

[1; 1.8; 2.5]. To solve this task, add two lines to the program which was typed above 

and we will get the following result and immediately we will check the calculation of 

the derivative: 
x0=[1 1.8 2.5]; 

pr_ot_y=numderivative(f,x0) 

 pr_ot_y  = 

  

   10.    0.      0.    

    0.    11.6    0.    

    0.    0.      13. 

// Check 
deff('y=f1(x)','y=2*(x+3)+2'); 

f1(x0) 

 ans  = 

    10.    11.6    13. 

 

Although, to be honest, this check is useful only for educational purposes when 

you are mastering Scilab. When taking derivatives of complex functions, when taking 

a derivative is quite difficult, checking is completely unnecessary and even harmful, 

since it requires large intellectual costs. 



 138 

 

7.5 Calculation of the partial derivative. 

 

The numderivative command can handle partial derivatives easily as well. 

For example, let the function f(x1,x2,x3) = x1
2x2 + x2

2x3 + x3
2x1 be given. Calculate the 

partial derivatives дf/дx1, дf/дx2, дf/дx3. The program will look like this: 

 
function f=fCHP(x) 

f=x(1).^2*x(2)... 

+x(2).^2*x(3)... 

+x(3).^2*x(1) 

endfunction 

 x=[1 2 3]; 

numderivative(fCHP,x) 

 ans  = 

    13.    13.    10. 

 

Questions for self-examination for the eleventh lecture: 

1. What is called an algebraic equation and a polynomial? 

2. What is the poly function for? 

3. What is the roots(p) function used for? 

4. What is called a transcendental equation? 

5. What is the fsolve function for? 

6. What is called a system of equations? 

7. What is the inttrap function for? 

8. How can the experimental data be processed using the inttrap function? 

9. What is the integrate function for? 

10. What is the intg command for? 

11.What is the numderivative command for? 

12. How to calculate the partial derivative? 

 

Lecture 12 

The purpose of the lecture is to learn how to write down the text of a program 

and subsequently launch it for execution, master the input-output functions, learn 

how to use the assignment operator, conditional operator, selection operator and the  

loop operator while. 

 

8 PROGRAMMING IN Scilab. 

 

Scilab has a powerful object-aware programming language built in. We will 

look at the possibilities of structured programming, then visual programming in the 

Scilab environment will be discussed. 

As noted earlier, work in Scilab can be carried out not only in the command 

line mode, but also in the so-called program mode. Recall that to create a program (a 

program in Scilab is sometimes called a script) you need: 
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1. To call the SciNotes text 

editor window. This can be done in 

two ways (fig. 8.1): 

І - Select the "Applications" option 

in the main menu of the Scilab 

console and select the "SciNotes" 

option from the drop-down menu; 

ІІ – On the Scilab console toolbar, 

click LMB on the icon      . 

2.In the SciNotes text editor 

window, to type the program text 

(fig. 8.2). 

3. Save the text of the 

program, for which in the main 

menu of the SciNotes window select 

the option «File» and in the drop-

down window select the option 

«Save» or «Save as» and in the opened standard save window in its window «File 

name: » write the name of the file which will be saved, and in the «Files type:» 

window - the «sce» file extension. 

4. After that, the program can be called by selecting the «File» option in the 

main menu of the SciNotes window and selecting the «Open» option in the drop-

down window. Or select the «File» option in the main menu of the Scilab console and 

select the «Open a file» option in the drop-down window. 

 

8.1 Basic operators of SciLab language. 

 

8.1.1 Input and Output functions in Scilab. 

 

To organize the 

simplest input in Scilab, you 

can use the 

x=input(’title’) or 
result=x_dialog(label

s,val) functions. 

The input function is 

necessary if, during the 

execution of the program, 

you need to enter different 

values of variables, for 

example, depending on the 

results of previous 

calculations. The input 

function prints on the 

command line Scilab prints out the hint title and waits until the user to enter a value, 

І. Call SciNotes 

ІІ. Call SciNotes 

Figure 8.1 – To call the SciNotes. 

Figure 8.2 – SciNotes window with program 

text. 
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which is returned as a result in the variable x. 

For example: Let's enter the following string into the command line: 

 

-->x=input("Number of iterations = ") 

 

and press the [Enter] key. The following line appears in the console window: 

«Number of iterations = |» and after the «=» sign, will be a blinking 

cursor. If you now enter, for example, the number 3 and press the [Enter] key, then 

into the console window will be displayed: 

 x  = 

    3. 

This value of the variable x can then be used in the further work of the 

program. 

The function for entering a multi-string value is: 

 
result=x_dialog(labels,val) 

 

here: labels is dialog line; 

val is a number, vector, or matrix which are entered using the keyboard in the 

pop-up dialog box; 

result is a number, vector or matrix used in further calculations. If you click 

the [OK] button in the pop-up window, the 

program will use the val value. If you click 

on the [Cancel] button, the function will 

return an empty set [] to the program. 

Let's look at an example of how the 

x_dialog function works. Let the program 

contain three different commands. When it is 

launched, three windows will be displayed 

sequentially on the computer screen (fig. 8.3). 

gain=x_dialog('Value of 

gain ?','0.235') 

x_dialog(['Method';'Enter 

sampling period'],'1') 

m=x_dialog('Enter a 3x3 

matrix',... 

['[0 0 0';'0 0 0';'0 0 

0]']) 

 

The results of each of the three 

commands, respectively, will look like: 

gain  =  

  "0.235"  Figure 8.3 – Data entry windows. 
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ans  = 

  "1" 

m  =  

  "[0 0 0" 

  "0 0 0"  

  "0 0 0]" 

 

The input function converts the input value to a numeric data type, and the 

x_dialog function returns a string value. Therefore, when using the x_dialog 

function to enter numeric values, the returned string must be converted to a number 

using the evstr function. You can suggest the following form of using the 

x_dialog function to enter numeric values: 

 
X = evstr(x_dialog(labels,val)). 

 

If you enter a program like this: 

 

m=evstr(x_dialog('Enter a 3x3 matrix',... 

['[0.10 0.13 10.0';'150 230 450';'15 0.12 0]'])),  

 

then we will get a matrix which is consisting of numbers: 
 

m  = 

    0.1     0.13    10.    

    150.    230.    450.   

    15.     0.12    0.   

 

For text output into console window, you can use the disp function of the 

following structure: 
 

disp(x1,[x2,...xn]) 

 

here: x1,[x2,...xn] is a number, vector or string. 

For example: 

 
-->disp([1 2],3) 

   1.   2. 

   3. 

-->disp("a",1,"c") 

"a" 

   1. 

  "c" 
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8.1.2 Assignment operator. 

 

The assignment operator has the following structure: 

 

а = b, 

 

here а is the name of a variable or array element, b is a value or expression. 

As a result of the execution of the assignment statement to the variable а, the 

value of the expression b is assigned. 

 

8.1.3 Loop conditional operator if. 

 

One of the main operators for organizing a loop and implementing branching is 

the loop conditional operator if. There are common and extended forms of the if 

operator in Scilab. The loop conditional operator if looks like:  

 
if expr1 then 

statements 1 

else 

statements 

end 

 

here: expr1 is boolean expression; 

statements 1, statements are Scilab statements or built-in functions; 

else is a function word denoting the end of the action of the condition expr1; 

end is a function word denoting the end of the loop conditional operator if. 

The if operator works according to the following algorithm: if the expr1 is 

equal to true, then the statements 1 are executed, if it is false, the 

statements are executed.  

Scilab can use next conditional operators to build logical expressions: & 

(boolean and), | (logical or), ~ (logical negation), and relational operators: < (less 

than), > (greater than), == (equal), ~= or <> (not equal), <= (less than or equal), >= 

(more than or equal). 

As a rule, when solving practical tasks, it is not enough of the choose when one 

condition is fulfilled or not. In this case, you can, create a new if operator on the 

else branch, but it is better to use the extended form of the if operator:  

 
if expr1 then 

statements 1 

elseif expri then 

statements i 

.... 

else  
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statements 

end 

 

In this case, the elseif check of the expri condition can be executed 

almost an unlimited number of times. 

For an example of using the capabilities of the if operator, we will create a 

program for solving the binary quadratic equation ax4 +bx2 + c = 0. 

To solve the biquadratic equation, it is necessary to reduce it to a quadratic 

equation by replacing y = x2 and solve it. Then, to find the roots of the biquadratic 

equation, it will be necessary to extract the roots from the founded values of y. The 

input data for this task are the coefficients of the biquadratic equation a,b,c. The 

output is the roots of the equation x1, x2, x3, x4, or the message that there are no valid 

roots. 

The algorithm consists of the following staps: 

1. Entering the coefficients of the equation a,b,c; 

2. Calculation of the discriminant of the equation d; 

3. If d < 0, then y1 and y2 are determined, otherwise the message «No roots» is 

displayed. 

4. If y1 < 0 and y2 < 0, then the message «No roots» is displayed. 

5. If y1 > and y2 > 0, then four roots are calculated by the formulas  (y1)
1/2, 

formulas  (y2)
1/2, and the values of the roots are displayed. 

6. If conditions 4) and 5) are not performed, then it is necessary to check the 

sign of y1. 

7. If y1 is non-negative, then two roots are calculated by the formula  (y1)
1/2, 

otherwise both roots are calculated by the formula  (y2)
1/2. 

Open SciNotes and type the program: 

 
// Entering the values of the coefficients 

// of the biquadratic equation. 

a=evstr(x_dialog('a=','-6')) 

b=evstr(x_dialog('b=','9')) 

c=evstr(x_dialog('c=','-1')) 

// Calculation of the discriminant. 

d=b*b-4*a*c 

//// If the discriminant is negative, 

if d<0 then 

// then output the message, 

disp('Real roots are not present'); 

else  

// otherwise, calculate the roots  

//of the corresponding quadratic 

//equation. 

disp('Real roots are x1 and x2'); 

x1=(-b+d^(1/2))/2/a 

x2=(-b-d^(1/2))/2/a 
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if (x1<0)&(x2<0) then 

// display a message about the  

//absence of valid roots. 

disp('Real roots are not present'); 

else 

if (x1>=0)&(x2>=0) then 

    // calculating of the four roots. 

disp('Four real roots'); 

y1=x1^(1/2) 

y2=-y1 

y3=x2^(1/2) 

y4=-y3 

disp(y1,y2,y3,y4); 

// Otherwise, if both conditions  

// (x1<0)&(x2<0) 

// and (x1>=0)&(x2>=0) 

// are not performed, 

else 

// then the message displayed 

disp('Two real roots'); 

// Checking the sign of the x1. 

     if x1>=0 then 

// If x1 is positive, then the calculation 

// of two roots of the biquadratic equation 

// by extracting the root 

y1=x1^(1/2); 

y2=-y1; 

disp(y1); 

disp(y2); 

// otherwise (there is only one option 

// left - x2 is positive), calculating  

//two roots of the biquadratic equation 

// by extracting the root from x2 and from x2. 

else 

y1=x2^(1/2); y2=-y1; 

disp(y1); disp(y2); 

    end //if x1>=0 then 

   end //if (x1<0)&(x2<0) then 

  end // if (x1>=0)&(x2>=0) then 

end //if d<0 then 

 

Let`s start the program for execution and select the results of entering the 

coefficients and the result of the solution from the listing of the program in the Scilab 

console. 
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a  = 

  - 6.   

 b  = 

    9.   

 c  = 

  - 1.   

"Four real roots" 

   0.3476307 

  -0.3476307 

   1.1743734 

  -1.1743734 

 

If this program is saved, then later, it can be repeatedly called by the exec 

command from the Scilab console window, specifying the path and name of the file 

to be called. For example like this: 

 
exec('C:\Users\D\Desktop\Примеры\BQE1.sce'); 

 

It is possible to find all the roots of a biquadratic equation without an if 

operator, taking advantage of the fact that Scilab defines operations on complex 

numbers: 

 
a=evstr(x_dialog('a=','-6')); 

b=evstr(x_dialog('b=','9')); 

c=evstr(x_dialog('c=','-1')); 

d=b*b-4*a*c; 

x1=(-b+sqrt(d))/2/a; 

x2=(-b-sqrt(d))/2/a; 

y1=sqrt(x1); 

y2=-y1; 

y3=sqrt(x2); 

y4=-y3; 

disp(y1,y2,y3,y4) 

 

The result of the program is as follows: 
 

   0.3476307 

  -0.3476307 

   1.1743734 

  -1.1743734 

 

8.1.4 Alternative select operator. 

 

Another way of organizing branching is the alternate select operator of the 

following structure: 
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select variable 

case value1 then  

instructions 1 

case value2 then  

instructions 2 

...   

case valuen then  

instructions n 

else 

instructions 

end 

 

here: variable is a variable which value to be analyzed; 

value1, value2 are values of the variable for which the 

corresponding set of instructions instructions 1, ..., instructions n is 

provided; 

instructions – block of valid instructions.  

The select operator works as follows: if variable is equal to value1, 

then instructions 1 are executed, if variable is equal to value2, then 

instructions 2 are executed, and so on. If there is no match, then the 

instructions following the else are executed.  

The only restriction is that each then keyword must be on the same line as the 

corresponding case keyword (three dots can be used for indication a continuation). 

According to the Code Conventions for the Scilab Programming Language it is 

recommended:  

 Start each statement on a new line.  

 Write no more than one simple statement per line.  

 Break compound statements over multiple lines.  

Of course, any algorithm can be programmed without using select operator, 

using only if operator, but using the alternate select operator makes the program 

more compact.  

Let's look at the use of the select operator using the example of solving the 

following task.  

It is necessary to print the name of the day of the week corresponding to the 

given number D of the day, provided that there are 31 days in the month and the 1st 

day is Monday. 

To solve the task, let's use the condition that the 1st day is Monday. If, as a 

result, the rest of dividing a given number D by seven is equal to one, then this is 

Monday, two is Tuesday, three is Wednesday, and so on. You can calculate the rest 

of dividing x by k using the formula x – int(x/k)x. Therefore, when constructing the 

algorithm, seven select operators must be used.  
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The solution of the task will become much easier if, when writing a program, 

you use the select operator: 

 

D=evstr(x_dialog(' Enter a number from 1 to 31','1')); 

//Calculate the rest after dividing D  

//by 7, comparing it with numbers from 0 to 6. 

select D-int(D/7)*7; 

case 1  then disp('Monday'); 

case 2 then disp('Tuesday'); 

case 3 then disp('Wednesday'); 

case 4 then disp('Thursday'); 

case 5 then disp('Friday'); 

case 6 then disp('Saturday'); 

else 

disp('Sunday'); 

end 

 

Let's save the text of the program, typed in SciNotes, for example, under the 

name "ДН .sce" and call the program for execution: 

 
exec('C:\Users\D\Desktop\Примеры\ДН.sce'); 

In the pop-up window, type, for example, the number 23. In the console window, we 

get the answer: 

 

-->exec('C:\Users\D\Desktop\Примеры\ДН.sce'); 

Tuesday    

 

8.1.5 The while loop operator. 

 

The while loop operator looks like this: 

 

while expr  

instructions  

 end 

 

here: while is keyword defining the name of the cycle; 

expr is a boolean expression, as long as it remains true, the loop will 

continue to execute; 

instructions is a sequence of commands; 

end is a keyword which is indicating the end of the loop. 
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Let's consider the work of the loop operator while using the following 

example:  
clear  

i=1; 

while i<3  

i = i + 1 

end 

i = i^2;   

disp(i,' End of cycle work'); 

 

After writing the program to a file and calling it for execution, we will get: 

i  =  

   2. 

 i  =  

   3. 

9. 

  " End of cycle work" 

 

The loop operator while is very flexible, but not very convenient for 

organizing a sequence of actions that must be performed a given number of times. 

 

Questions for self-examination for the twelfth lecture: 

1. How can the SciNotes text editor window be invoked? 

2. What is the input function for? 

3. What is the x_dialog function for? 

4. What is the evstr function for? 

5. What is the difference between the = and == operators? 

6. What is the if operator for? 

7. What logical operators do you know? 

8. What is the conditional select operator for? 

9. What the conditional while operator is for. 

 

Lecture 13 

The purpose of the lecture is to learn how to use the for loop operator, 

functions for working with files and get the simplest skills in writing SciLab 

programs. 

 

8.1.6 The non-conditional loop operator for. 

 

The loop operator for looks like this: 

 
for variable=expression [do] 
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instruction; 

instruction; 

... 

instruction; 

end 

 

here: variable is the variable through which the loop is conducted; 

expression is an expression describing the law of variation of a 

variable within the specified limits; can be a vector, matrix, list; 

instruction is any valid Scilab instructions; 

do is a keyword that separates the definition block of the loop variable 

from the block of instructions; 

end is a keyword denoting the end of the loop. 

 

It is used to organize loops on a given variable. The change of the loop variable 

variable is described by expression, however, expression can be a vector 

or a matrix. In this case, the variable variable sequentially from iteration to 

iteration takes the values of the elements of the vector or matrix from the first to the 

last, column by column. 

As an example, consider the program: 
 

for i = 1:5  

disp(i); 

end 

 

As a result of executing the program, we will get: 
 

    1.   

    2.   

    3.   

    4.   

    5. 
 

It should be taken in mind that the number of characters used to define the 

body of any condition statement (if, while, for or select) must be limited 

to 16K. 

We have not considered all the operators of the control logic, but those that we 

have already considered are enough to create programs of significant complexity. 

 

8.2 An example of working with arrays. 

 

Control logic operators allow you to create almost any program for processing 

data or calculating various functions. Earlier, in section 3, we looked at many of the 

functions for working with arrays. Let's create another program, which is essentially a 

function for processing array elements. For example, when analyzing the obtained 
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experimental data, we found that one of the values is a slip, that is, a gross error and 

must be removed from the data array. Using the operators of the control logic, we 

will create a program that allows us to do this. To simplify the task, let us have a 

small data array that we enter into the program, defining its values programmatically. 

So we have an array x, consisting of n numbers, it is necessary to remove the element 

with the number m. 

To do this, it is enough to write element number (m + 1) in place of element 

with number m, (m + 2) - in place (m +1), ... n - in place (n - 1), and then delete the 

last n-th element. The program performing these actions will be looked like: 
 

x=[3 4 4 5 9 3 5 4]; 

disp('x = ',x); 

n=length(x); 

// Enter the number of the element  

//which will be deleted. 

m=evstr(x_dialog('m=','5')); 

// Shift all elements, starting from  

//the m-th one by one to the left. 

for i=m:n-1 

x(i)=x(i+1); 

end; 

// Removing the n-th element from an array. 

x(:,n)=[]; 

// Decrease n by 1. 

n=n-1; 

// Outputting the transformed array. 

disp('x(corrected) = ',x); 

 

Let's write the program to a file, call it for execution. After launch, a record of 

the values of the x array will appear in the console window. Let's analyze its values 

and come to the conclusion that the fifth value is a miss. Let's enter the number 5 into 

the pop-up window and get a new corrected data array: 

 
-->exec('C:\Users\D\Desktop\Примеры\ГрОш.sce'); 

"x = " 

   3.   4.   4.   5.   9.   3.   5.   4. 

"x(corrected) = " 

    3.    4.    4.    5.    3.    5.    4. 

 

8.3 Scilab functions for working with files. 
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8.3.1 File opening function mopen 

 

As in any other programming language, working with a file begins with 

opening it. To open a file in sci-language, the mopen function is intended, which 

looks like: 
[fd,err]=mopen(file,mode) 

 

here: file is a character string containing the name of the file which will be opened; 

mode is a character string that defines the required mode of access to the file, 

this parameter can have one of the following values: 

'r' – the text file is opened in read mode, the file must exist, otherwise nothing 

happens;  

't' – text file; 

'b' – a binary file;  

'rb' – the binary file is opened in read mode; 

'w' – an empty text file is opened, which is intended only for writing 

information, if this file already exists, then its contents will be destroyed; 

'wb' – an empty binary file is opened, which is intended only for writing 

information; 

'a' – opens a text file that will be used to add data to the end of the file; if the 

file does not exist, it will be created; 

'ab' – opens a binary file that will be used to append data to the end of the file; 

if the file does not exist, it will be created; 

'r+' – opens a text file that will be used in read and write mode, the file must 

already exist, otherwise nothing will work; 

'rb+' – opens a binary file that will be used in read and write mode; 

'w+' – the file is opened both for reading and for writing, if the file exists, then 

its contents will be destroyed; 

'wb+' – the created empty binary file is intended for reading and writing 

information; 

'a+' – the opened text file will be used to add data to the end of the file and 

read data, if there is no file, it will be created; 

'ab+' – the binary file being opened will be used to append data to the end of 

the file and read the data; if the file does not exist, then it will be created; 

err –  scalar, error indicator: 

 

error value: error message: 

0 no mistake 

-1 no more logical modules 

-2 can not open the file 

-3 no more memory 

-4 incorrect name 

-5 incorrect status 
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fd – open file identifier, name (code) by which the functions described below 

will refer to a real file on disk. 
 

8.3.2 The mfprintf function of writing a text to file. 

 

The function of writing a text to file looks like this: 

 
mfprintf(f, s1, s2) 

 

here: f – file identifier (the identifier value is returned by the mopen function); 

s1 – output string; 

s2 – list of output variables. 

In the output line, instead of the output variables, a conversion line of the 

following form is indicated: 

 
% [flag][width][. precision][modifier]type 

 

The values of the conversion line parameters are shown in table 8.1. 

Some of the special characters shown in table 8.2. can be used in the output 

line. 

Table 8.1 – Value of the conversion line parameters 

Parameter Assignment 
flag 

– Left alignment of a number. The right side is filled with spaces. Right 

alignment by default 
+ A «+»  or «–» sign is displayed before of the number 

 

Space sign A space sign is displayed before of a positive number, a «–» sign 

before a negative number  
# The number system code is displayed: 0 - before the octal number, 0x 

(0X) - before the hexadecimal number. 
width 

n Output field width. If n positions are not enough, then the output 

field is expanded to the minimum required. Unfilled positions are 

filled with space signs.  
0n Same as n, but blanks are filled with zeros. 

. precision 

nothing Default precision 
n For types e, E, f displaying n numbers after the decimal point  

type 
с On input the character type char, on output one byte  

d, i Decimal number with sign 
i Decimal number with sign 
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o Octal int unsigned 
u Decimal number without  sign 

x, X Hexadecimal int unsigned, along with х uses a – f symbols, 

along with Х uses A – F symbols, 
f A value with sing of the form [-]dddd.dddd 
e A value with sing of the form [-]d.dddde[+|-]ddd 
E A value with sing of the form [-]d.ddddE[+|-]ddd 

g A value with sing of the type e or f depending on value and accuracy 
G A value with sing of the type E or F depending on value and accuracy 
s Character string  

modifier 
h For d, i, o, u, x, X using short integer 

l For d, i, o, u, x, X long ussing integer 

 

8.3.3 Function mfscanf for reading data from a text file. 

 

While reading data from a file, you can use a function of the following form: 
 

A=mfscanf(f, s1) 

 

here: f is the file identifier which is returned by the mopen function; 

s1 – format string of the form: 

 
%[width][. precision]type 

 

The mfscanf function works as follows: values from the file with the f 

identifier are read into the variable A in accordance with the s1 format. When reading 

numeric values from a text file, remember that two numbers are considered separated 

if there is at least one space, tab or line break symbol between them. 

While reading data from a text file, the user can keep track of whether the end 

of the file has been reached by using the function meof(f) (f is the file identifier), 

which returns 1 if the end of the file has been reached, and 0 otherwise. 

 

Table 8.2 –  Some special characters. 

Symbol Assignment 

\b Shift the current position to the left 

\n Moving to a new line 

\r Moving to the beginning of a line without moving to a new line 

\t Horizontal tabulation 

\’ Single quote character 

\” Double quote character 

\? Symbol «?» 
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8.3.4 File close function mclose. 

 

After performing all operations with the file, it should be closed using the 

mclose function of the following structure: 
mclose(f) 

 

here f is the identifier of the file which will be closed. 

The mclose function should be used to close a file opened by the mopen 

function. If identifier f is omitted, then mclose function closes the last open file.  

Using the mclose('all') function, you can close all open files at once, 

except for the standard system files. The mclose('all') function closes all files 

opened with file('open',..) or mopen. Be careful when using mclose 

because when you use it inside a Scilab program it will also close the program itself 

and Scilab will not execute commands written after mclose('all') function. 

Let's consider an example of creating a test file. Open the SciNotes text editor 

window and write the program into it: 

 

// The text file File_write.txt stores: 

//the size of the matrix N by M; 

//the matrix A (N, M). 

//Here N is the number of matrix rows. 

N=3; 

//and M- the number of columns in the matrix. 

M=4; 

//the matrix A (N, M). 

A=[2 4 6 7; 6 3 2 1; 11 12 34 10]; 

// Open an empty file W_file.txt in write mode. 

f=mopen('C:\Users\D\Desktop\Примеры\W_file.txt','w'); 

// Write the N and M values,  

//separated by «Horizontal tabulation» sing, 

// to the file W_file.txt.  

mfprintf(f,'%d\t%d\n',N,M); 

// Write the next element of the matrix A 

// to the file W_file.txt. 

for i=1:N 

for j=1:M 

mfprintf(f,'%g\t',A(i,j)); 

end// for j=1:M 

// At the end of the writing line, 

// write the << Moving to a new line >> sing 
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// to the file. 

mfprintf(f,'\n'); 

end// for i=1:N 

mclose(f); 

 

Open the «Примеры» folder on the desktop and click on the file name 

«W_file» 

 

Figure 8.4 –  Text file which was created. 

 

Now let's create a program which will read data from this file: 

// Reading the data from the file: 

f=mopen('C:\Users\User\Desktop\Примеры\W_file.txt','r'); 

N=mfscanf(f,'%d'); 

M=mfscanf(f,'%d'); 

for i=1:N 

for j=1:M 

A(i,j)=mfscanf(f,'%g'); 

end// for j=1:M 

end// for i=1:N 

// Output the reading result on the display 

disp('N = ',N); 

disp('M = ',M); 

disp('A = ',A); 

// Close the file 

mclose(f); 

 

Let's write a program file named «Reading_a_File.sce» to the 

«Примеры» folder on the desktop.  

Let's start the program from SciNotes by typing the command: 

 
exec('C:\Users\User\Desktop\Примеры\Reading_a_File.sce'); 
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and pressed the [Ctrl] + [L] keys, we will have on the SciLab console: 
 

"N = " 

   3. 

  "M = " 

   4. 

  "A = " 

   2.    4.    6.    7.  

   6.    3.    2.    1.  

   11.   12.   34.   10. 

 

8.4 Sample program in Scilab. 

 

As an example of a sci-language program, consider the following task. 

Rewrite positive numbers from array Y into array X, and remove elements 

from array X that are less than the average. 

Below is a program for solving a task in which the use of the min1 variable in 

the program is due to the fact that Scilab has a built-in min function, using a variable 

named min will not allow using the built-in min function: 

 
// Enter the number of elements in an array Y. 

N=input('N='); 

disp('Vvod massiva Y'); 

// Loop to input items in Y array. 

for i=1:N 

// Displaying the number of the input element 

disp('I=',i);     

// Input of the i-th element of the Y array. 

y(i)=input('Y='); 

end//for i=1:N 

// Displaying an array Y. 

disp(' Array у = ',y); 

// Variable k contains the number of positive  

//elements in array y, and as a result,  

//the number of elements in array x. 

// Initially k = 0. 

k=0; 

// Iterate over all the elements in the Y array. 

for i=1:N do 

// If the current element is positive then 

if y(i)>0 then  

// the value of the variable k is increased by 1, 

k=k+1; 

// and the element of the array Y is rewritten 

//into array X. 
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x(k)=y(i); 

end;//if y(i)>0 then 

end;//for i=1:N do 

// output of array X. 

disp(' Array X = ',x); 

// In the variable s we will store the sum 

// of the elements of the array x, in the 

//variable min1 - the minimum the value 

//in the x array, in Nmin - the number of  

//the minimum element in the x array. 

s=sum(x); 
xmean=s/k; 
[min1,Nmin]=min(x); 
// Starting from the minimum, iterate over all 
// the elements of the array, and if 
i=Nmin; 
while i<=k do 
// the current element is less than the average, 
if x(i)<xmean then 
//then remove the current element. Please note  
//that when deleting, the elements are shifted 
// by 1 to the left, and therefore 
//it is not necessary to increase i  
//by 1 and go to the next element after deletion. 
for j=i:k-1 do 
x(j)=x(j+1); 
end;//for j=i:k-1 do 
// Reducing the number of elements in an array by 1. 
x(k)=[]; 
k=k-1; 
else 
// If the deletion did not occur, then go  
//to the next element of the array. 
i=i+1; 
end;//if x(i)<s/k then 
end;//while i<=k do 
disp('Transformed array X = ',x); 

 

Let's write the program file under the name «Array_converter.sce» to the 

«Примеры» folder on the computer desktop. 

Start the program from the Scilab console window by typing the command: 

 
exec('C:\Users\D\Desktop\Примеры\Array_converter.sce'); 

 

Press the [Ctrl] key and enter the number of elements in the array in the SciLab 

console window (for example) : 
N = 7 

Sequentially, element by element, enter the array. 
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  "Vvod massiva Y" 
  "I=" 
   1. 
Y=5 
  "I=" 
   2. 
Y=6 
  "I=" 
   3. 
Y=-5 
  "I=" 
   4. 
Y=6 
  "I=" 
   5. 
Y=6 
  "I=" 
   6. 
Y=3 
  "I=" 
   7. 
Y=6 

After entering the value of the last seventh element of the Y array, the program 

will display the values of the elements of the Y array: 
 
" Array у = " 
   5. 
   6. 
  -5. 
   6. 
   6. 
   3. 
   6. 

As well as the values of array X elements with the excluded negative value and 

the values of the elements of the transformed array with the excluded number less 

than the average value of the elements: 
 
" Array X = " 
   5. 
   6. 
   6. 
   6. 
   3. 
   6. 
  "Transformed array X = " 
   5. 
   6. 
   6. 
   6. 
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   6. 

In this part of the course, the basic possibilities of programming in Scilab were 

discussed. The next chapter will consider the possibilities of building visual 

programs. 

 

Questions for self-examination for the thirteenth lecture: 

1. What is the for loop operator intended for? 

2. How can be opened a file using the mopen function? 

3. How can be written a text file using the mfprintf function? 

4. How can data be read from a file using the mfscanf function? 

5. How can the file be closed? 

 

Lecture 14 

The purpose of the lecture is to learn how to work with graphic windows using 

interface controls: buttons, labels, checkboxes. 

 

9 CREATING GRAPHIC APPLICATIONS IN THE Scilab 

 

Scilab allows you to create not only ordinary programs for automating 

calculations, but also visual applications that will run in the Scilab environment. 

Scilab allows you to create not only ordinary programs for automating 

calculations, but also visual applications that will run in the Scilab environment. 

The main object in the Scilab environment is the graphic window. 

 

9.1. Working with the graphiс window. 

 

To create an empty graphic window, use the function: 

 
F=figure() 

 

As a result of executing this command, a graphic window named 

objfigure1 will be created. By default, the first window is named objfigure1, 

the second is named objfigure2, and so on. A handle to a graphic window (a 

handle is understood as a variable that stores the address of a window or other object) 

is written to the variable F. The size and position of the window on the computer 

screen can be set using the parameter: 

 
'position',[x y dx dy] 

 

here: x y is position of the upper left corner of the window (horizontally and vertically, 

respectively) relative to the upper left corner of the screen; 

dx is horizontal size of the window (window width) in pixels; 

dy is vertical size of the window (window height) in pixels. 

Window parameters can be set in one of two ways. 
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Directly when creating a graphic window, its parameters are set. In this case, 

the call to the figure function looks like this: 
 

F=figure('Property1', 'Value1', 

..., ..., 'Propertyn','Valuen') 
 

here: ' Property1' is the name of the first parameter; 

'Value1' is the value of the first parameter; 

'Propertyn' is the name of the n-th parameter; 

'Valuen' is the value of the n-th parameter. 

The valuen will be used in quotes if the parameter value is a string, if the 

parameter value is a number, then quotes should not be used. 

For example, using the command: 
 

F=figure('position',[10 100 300 200]); 
 

will be plotted the window which is shown in fig. 9.1. 

2. After plotting a graphic window we will use the function: 
 

set(f,'Property','Value') 
 

which sets the value of the parameters; here f is a handle of a graphic window, 

'Property' is the name of the parameter, 'Value' is its value. 

 

Figure 9.1 –  First graphic window. 
 

The next two lines define the location and size of the window. The window 

(fig. 9.2) will be located approximately in the middle of the display (620,440) 

and width will be greater than the height (350,100). 

 

Figure 9.2 – The graphic window of a specific size and location. 
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f=figure(); 

set(f,'position',[620,440,350,100]) 

 

To change the title of the window, we can use the 'figure_name' parameter 

which defines the title of the window. The program below shows an example of 

creating a window which is named FIRST WINDOW (fig. 9.3). 

f=figure(); 

set(f,'position',[20,40,250,50]); 

set(f,'figure_name','FIRST WINDOW'); 

 

The same window can be obtained using the figure()function, referring to it 

once: 

 
f=figure('position',[20,40,250,50],... 

'figure_name','FIRST WINDOW'); 

The graphic window can be closed using the function: 

 
close(f) 

 

here: f is a handle of a window.  

The window is removed with help of the function: 

 
delete(f) 

 

here: f is a handle of a window.  

 

9.2 Dynamic creation of interface elements and description of the main 

functions. 

 

Scilab uses a dynamic way to create interface components. It consists in the 

fact that at the stage of program execution, certain controls (buttons, labels, 

checkboxes, etc.) can be created (and deleted) and their properties are assigned 

corresponding values. 

Figure 9.3 – Window is titled FIRST WINDOW 
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To create any interface component with specified properties, use the 

uicontrol function, which returns a handle of the component which is formed:  

 

C=uicontrol(F, ’Style’, 

’component_type’,’Property_1’,Value_1,’Property_2’, 

Value_2,..., ’Property_k’, Value_k); 

 

here: C –is a handle of the created component; 

F is a handle of  the object inside which the component will be created (most 

often this component will be a window); The first argument F of the 

uicontrol function is optional, and if it is absent, the parent (owner) of the 

component being created is the current graphic object, that is the current graphic 

window;  

'Style' is a service string which is indicating the style of the component 

which will  be created (symbolic name); 

’component_type’defines to which class the created component belongs, it 

can be PushButton, Radiobutton, Еdit, StaticText, 

Slider, Panel, Button Group, Listbox or other components, this 

property will be specified for each of the components; 

’Property_k’, Value_k) – define the properties and values of individual 

components, they will be described below specifically for each component. 

You can change certain properties of an existing interface object using the set 

function: 
set(C,’Property_1’,Value_1, 

’Property_2’,Value_2, ..., 

’Property_k’,Value_k) 

 

here: C is a handle of a dynamic component whose parameters will be changed. C can 

also be a vector of dynamic components, in this case the set function will set 

property values for all objects C(i); 

’Property_k’,Value_k –  define the parameters which will be changed 

and their values. 

You can get the value of the component parameter using the get function of 

the following structure: 
get(C,’Property’) 

 

here: C is a handle of a dynamic interface component, the parameter value of which 

needs to be found;  

’Property’ is the name of the parameter, the value of which you want to 

know. 

The function returns the value of the parameter. 

Next, we will talk about the features of creating various components. 
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9.2.1 Command button. 

 

A command button of the PushButton type is created using the 

uicontrol function, in which the ’Style’ parameter must be set to the value 

’pushbutton’. By default, it is not provided with any caption, it has a gray color 

and is located in the lower left corner of the window. The caption on the button (fig. 

9.4) can be set using the String property. For example: 

 
// Plot a window 

d=figure(); 

set(d,"position",[20,40,300,110]); 

set(d,"figure_name","Window With Button"); 

// Create a button and define a property Style. 

dbt=uicontrol(d,"Style","pushbutton","position",... 

[5,5,70,20]); 

 

There is no caption on the button. Let's create a YES caption on the button 
 

// Create a YES caption on the button 

set(dbt,"string","YES"); 
 

 

Figure 9.4 –  The button with YES caption. 

 

Now we will modify the program for creating a button by setting additional 

values of some properties: 

• location and title of the window; 

• a caption on the button; 

• location of the button. 

The text of the program is shown below, and in fig. 9.5 shows the window that 

turned out as a result of the work of this program:  

 

// Create the window. 

f=figure(); 
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// Determine the location of the window. 

set(f,"position",[0,0,250,100]) 

// Determine the name (title) of the window. 

set(f,"figure_name","Window with control button"); 

//Create a button (style - pushbutton), 

// the caption on the button is «Button», 

// the position of the button is determined 

// by the position parameter. 

Button=uicontrol("style","pushbutton","string",... 

" Button","position",[50,50,70,20]) 

 

When you click on a button, a dotted rectangle appears around its caption, 

indicating that the button is in focus. The main purpose of a command button is to 

call a function that responds to a click on the button. 

 
 

Figure 9.5 – Window with control button. 

 

Clicking the button generates a CallBack event, which is specified as a 

parameter to the uicontrol function. The value of the CallBack parameter is a 

string with the name of the function called when the button is clicked. In this case, 

the uicontrol function becomes like this: 

 
Button=uicontrol(’style’, ’pushbutton’, ’string’, 

’Button’, ’CallBack’, ’Function’); 
 

Here ’Function’ is the name of the function called when the CallBack 

event occurs. 

As an example, consider a window with a button, when you click on which a 

window appears with a graph of the function y = sin(x), the program looks like this: 

 
f=figure(); 

set(f,"position",[0,0,250,100]) 

set(f,"figure_name","Grafik"); 

// Create a button that, when you click on it 

// with the mouse, calls the gr_sin function. 
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Button=uicontrol("style","pushbutton",... 

"string","Button","position",[50,50,100,20],... 

"CallBack","gr_sin"); 

function y=gr_sin() 

f2=figure(); 

set(f2,"position",[300,300,350,200]); 

x=-5:0.2:5; 

y=sin(x); 

plot(x,y); 

xgrid(); 

endfunction 

 

After starting this program, a window with a button will appear, which is 

shown in fig. 9.6, when the [Button] is clicked, the event handler and the gr_sin 

function are called, as a result a window with a chart appears. 

Figure 9.6 – The window with the button and the graphic window which is 

called. 

 

9.2.2 Label. 

 

The next most commonly used component is the label, this is a text field for 

displaying symbolic information. To define a label, the value of the 'Style' 

parameter in the uicontrol function must be set to ’text’. The component is 

intended for displaying a character string (or several lines). The text displayed on the 

label - the value of the ’String’parameter - can be changed only from the 

program. 

Let's consider an example of creating a text field (label) using the uicontrol 

function (Figure 9.7). It should take in mind that the position of the window in which 

the label text will appear (the "Position" parameter) differs from (the 
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"position" parameter) defining the position of the graphic window. The 

"Position" parameter is set as follows [x, y, l, h], where x and y are the 

coordinates of the lower left corner of the window for the location of the label, the 

origin is at the lower left corner of the graphic window, l is the length of the window, 

h is the height of the window the program for this example looks like: 

 
f=figure(); 

set(f,"position",[0,0,250,100]) 

set(f,"figure_name"," Window with label"); 

uicontrol("Style","text","Position",... 

[100,80,40,15],"String","Metka"); 

 

One of the main properties of a label is the horizontal alignment of the text, 

which is determined by the 

HorizontalAlignment property. This 

property can take one of the following 

values: 

left – alignment text to the left 

(default); 

center – center alignment of text; 

right – alignment text to the right. 

As an example, consider a window 

containing 4 text boxes with different values 

for the HorizontalAlignment 

property. The corresponding window is 

shown in fig. 9.8, the program text looks 

like: 

 

hFig=figure(); 

set(hFig,"Position",[50,50,300,200]); 

set(hFig,"figure_name"," Different labels"); 

//First label 

hSt1=uicontrol("Style","text","Position",[30,30,150,20],"String

", "Label 1"); 

set(hSt1,"BackgroundColor",[0 0.9 1]); 

set(hSt1,"HorizontalAlignment","left"); 

// Second label 

hSt2=uicontrol("Style", "text", 

"Position",[30,60,150,20],"HorizontalAlignment","center", 

"BackgroundColor", [1 0 1],"String", "Label 2"); 

// Third label 

hSt3=uicontrol("Style","text","Position",[30,90,150,20],"H

orizontalAlignment","right","BackgroundColor",[1 0.9 

0],"String","Label 3"); 

// Fourth label 

Figure 9.7 – Window with label. 

 y
 

 x l  h
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hSt4=uicontrol("Style","text","Position",[30,120,150,20],"

BackgroundColor",[1 0.75 0.75],"String","Label 4"); 

 

 
 

Figure 9.8 – Window with different labels. 

 

9.2.3 The Switch and Checkbox components. 

 

Let's look at two more components: a radio button and a check box that allow 

you to toggle between states or turn off one of the properties. 

For a checkbox, the "Style",  property takes the value 'checkbox', 

for a radio button, the "Style" property must be set to 'radiobutton'. 

 

9.2.3 Checkbox and radiobutton components. 

 

Let's look at two more components: a radio button and a check box that allow 

you to switch between states or turn on one of the properties. 

For a component to enable or 

disable a state, the Style’ property takes 

the value ’checkbox’, for a component 

to select one of a number of states, the 

Style’ property must be set to 

’radiobutton’. 

An example of creating a 

checkbox state component is shown in 

figure 9.9 and the corresponding program 

looks like this: 

 

// Create a window Figure 9.9 – Window with state 

component. 
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f = createWindow() 

f.axes_size = [400 400]; 

uicontrol(f, "style", "checkbox",... 

 "units", "normalized", "position",... 

 [0.5 0.5 0.5 0.5], "string",... 

 "Checkbox", "horizontalalignment",... 

 "center", "groupname", "grouptest"); 

 

An example of creating a component for selecting one of several states 

"radiobutton" is shown in figure 9.10, and the corresponding program looks 

like this: 

 

hFig=figure(); 

set(hFig,"Position",[50,50,250,100]); 

set(hFig,"figure_name"," Radio button "); 

R=uicontrol("Style","radiobutton","String",... 

" Selection","value",1,"Position", [75,55,100,25]); 

 

During the creation of a switch, its state must 

be set (parameter ’value’), the switch can be 

active (value ’value’ is 1) or not (value 

’value’' is 0). 

The switch can respond to the ’CallBack’ 

event and call a specific function to be executed. In 

this case, you can create a button by calling the 

following uicontrol function: 

 

hFig=figure(); 

set(hFig,"Position",... 

 [50,50,250,100]); 

set(hFig,"figure_name"," Radio button "); 

R=uicontrol("Style","radiobutton","String",... 

" Selection ","value",1,"CallBack","gr_sin",... 

"Position", [75,55,100,25]); 

function y=gr_sin() 

f2=figure(); 

set(f2,"position",[300,300,350,200]); 

x=-5:0.2:5; 

y=sin(x); 

plot(x,y); 

Figure 9.10 – Window with 

component for selection. 
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xgrid(); 

endfunction 

 

Here "gr_sin" is the name of the function that will be called when a switch 

is clicked. However, when writing a function, remember that when you click on a 

switch, its state automatically changes. 

After starting the program for execution, first a window with a switch will 

appear (fig. 9.10), and then a window with a graph (fig. 9.6). 

Now we use the switches in another program, in which using the switch you 

can select the function, the graph of which will be reproduced in the graphic window 

(fig. 9.11), when you click on the [Plot] button: 

 

// Create a graphics window. 

hFig=figure("Position",[50,50,600,400]); 

// Draw a panel for controls 

uicontrol("Style","text","BackgroundColor",[0 0.95 

0.75],"Position",[10,15,100,160]); 

// Creating radio buttons 

hRb1=uicontrol("Style","radiobutton","String","sin(x)","

value",1,"BackgroundColor",[1 0.75 0.75], 

"Position",[25,100,60,20]); 

hRb2=uicontrol("Style","radiobutton","String","cos(x)","

value",1,"BackgroundColor",[0.5 0.75 1], 

"Position",[25,140,60,20]); 

// Create a button named «Plot», which uses the «Radio»  

//handler to plot the function according to the position 

// of the radio buttons. 

Button=uicontrol("style","pushbutton","string","Plot","p

osition",[20,50,80,20],"CallBack","Radio"); 

// Create a button named «Close», which closes the 

//window using the «Final» handler. 

Button1=uicontrol("style","pushbutton","string","Close",

"position",[20,25,80,20],"CallBack","Final"); 

// «Radio» function that responds to a click on the 

// button 

function Radio() 

// Select the area where the graph axes are located 

a1=newaxes();  

a1.axes_bounds=[0.15,0,0.9,1]; 

// Determining the range of variation of the variable x 

x=-2*%pi:0.1:2*%pi; 

if get(hRb1,"value")==1 // If the first button is active, 
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y=sin(x); 

plot(x,y,"-r"); // then plotting the sinusoid 

xgrid();//Plotting a grid 

end; 

if get(hRb2,"value")==1// If the second button is active, 

y=cos(x); 

plot(x,y,"-b"); // then  plotting of the cosine curve. 

xgrid(); // Plotting a grid 

end; 

endfunction;  

// The function responsible for the [Close] button 

// and closing the window. 

function Final() 

close(hFig); 

endfunction; 

 

 
 

Figure 9.11 – Application window. 

 

In fig. 9.11 the application window is presented. When the [Plot] button is 

clicked, the area for the plots selected with the function switches will appear in the 

graphic window. If no function is selected, a blank area will be displayed in the 

graphic window when the [Plot] button is clicked. The [Close] button closes the 

application. The state of the switches changes automatically when you click on them. 

The checkbox component) is used to indicate non-alternative combinations. 

The "CallBack" event is generated and the button is automatically selected when 

you click on the square or its accompanying caption. If the checkbox is enabled, the 
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value of the "value" property is 1. Click on the checkbox automatically changes 

the state to the opposite. The use of a check box is the same as a radio button. 

 

Questions for self-examination for the fourteenth lecture: 

1. What is the function F = figure () for? 

2. What is the uicontrol function for? 

3. How can be created a button in the graphic window? 

4. How to use the button to control the program? 

5. What is the label for? 

6. How to create radio button and checkbox control components? 

 

Lecture 15 

The purpose of the lecture is to learn how to use the mechanism of interaction 

of standard Scilab components and event handlers when writing programs and use 

the least squares method when processing experimental data and solve optimization 

tasks. 

 

9.2.4 Editing window component. 

 

The interface element editing window (for that component, the 

’Style’property must take the value ’edit’) can be used for input and output of 

symbolic information. The text typed in the editing window can be corrected. When 

working with a component, you can use clipboard operations. An input procedure 

terminated by pressing the [Enter] key generates a CallBack event. 

The input string is defined by the ’String’ parameter, which defines the text 

in the component. For the component to function normally, this parameter must be set 

when defining a component using the uicontrol function. You can change the 

value of this property using the set function, and read its value using the get 

function. 

The entered text can be aligned to the left or right edge of the input window if 

the corresponding value of the HorizontalAlignment property is set (by analogy 

with the Label component). If the entered text is a numerical value that should be 

used in the program, then the contents of the ’String’ property are converted to a 

numerical format using the eval function (you could also use the evstr function) 

(it will be discussed further on the example of a quadratic equation). 

As an example of working with several components, consider the following 

task. Write a program for solving a quadratic or biquadratic equation. 

The choice of the type of equation will be carried out using the radiobutton 

component. 

 
f=figure(); // Creation of a graphic object. 

// Setting the size of the window. 

set(f,"position",[0,0,700,300]) 

// Setting the title of the window. 
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set(f,"figure_name"," THE EQUATION"); 

// Creatting text fields for labels of input fields 

// for coefficients.  

//Coefficient  A =. 

lab_a=uicontrol(f,"style","text","string","A=","position"

,[50, 250, 100, 20]); 

// Coefficient B=. 

lab_b=uicontrol(f,"style","text","string","B=","position"

,[150, 250, 100, 20]); 

// Coefficient C=. 

lab_c=uicontrol(f,"style","text","string","C=","position"

,[250, 250, 100, 20]); 

// Editing field for entering the coefficient a. 

edit_a=uicontrol(f,"style","edit","string","1","position"

,[50, 230, 100, 20]); 

// Editing field for entering the coefficient b. 

edit_b=uicontrol(f,"style","edit","string","-

2","position",[150, 230, 100, 20]); 

// Editing field for entering the coefficient c. 

edit_c=uicontrol(f,"style","edit","string","-

1","position",[250, 230, 100, 20]); 

// A text field that determines the output of the results. 

textresult=uicontrol(f,"style","text","string","","positi

on",[5, 80, 650, 20]); 

// The radio button which is responsible for the  

//choice of the type of equation. 

radio_bikv=uicontrol("style","radiobutton","string"," 

Biquadratic equation?", 

"value",1,"position",[100,100,300,20]); 

BtSolve=uicontrol("style","pushbutton","string","Solve","

CallBack", "Solve","position",[50,50,120,20]); 

BtClose=uicontrol("style","pushbutton","string","Close","

CallBack", "_Close","position",[300,50,120,20]); 

// Equation solution function. 

function Solve() 

// Read the value of the variables from the  

//text fields and convert them to a numeric type. 

a=evstr(get(edit_a,"string")); 

b=evstr(get(edit_b,"string")); 

c=evstr(get(edit_c,"string")); 

d=b*b-4*a*c; 

// Check the value of the radio button  

//if the radio button is disabled, 

if get(radio_bikv,"value")==0 

// then we solve the quadratic equation, 

if d<0 

set(textresult,"string","No quadratic equation 
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solution"); 

else 

x1=(-b+sqrt(d))/2/a; 

x2=(-b-sqrt(d))/2/a; 

set(textresult,"string",sprintf("2 quadratic roots\t 

x1=%1.2f\t x2=%1.2f",x1,x2)); 

end; 

// if the radio button is on, 

else 

// then we solve the biquadratic equation. 

if d<0 

set(textresult,"string","No solution of the iquadratic 

equation"); 

else 

y1=(-b+sqrt(d))/2/a; 

y2=(-b-sqrt(d))/2/a; 

if(y1<0)&(y2<0) 

set(textresult,"string","No solution of the biquadratic 

equation"); 

elseif (y1>=0)&(y2>=0) 

x1=sqrt(y1);x2=-x1;x3=sqrt(y2);x4=-x3; 

set(textresult,"string",sprintf("4 roots of the 

biquadratic equation\t x1=%1.2f\t x2=%1.2f\t x3=%1.2f\t 

x4=%1.2f",x1,x2,x3,x4)); 

else 

if y1>=0 

x1=sqrt(y1);x2=-x1; 

else 

x1=sqrt(y2);x2=-x1; 

end; 

set(textresult,"string",sprintf("2 roots of the 

biquadratic equation\t x1=%1.2f\t x2=%1.2f",x1,x2)); 

end; 

end; 

end; 

endfunction 

// Window close function. 

function _Close() 

close(f) 

endfunction 

 

This program helps you understand the interaction mechanism of standard 

Scilab components and event handlers, so that you can use this knowledge when 

developing your own visual applications. 

 

9.2.5 Lists of strings. 
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The interface component ’listbox’  in the simplest case can be viewed as a 

window with an array of strings in it. If the length of the list more than the height of 

the window, then a vertical scroll bar that is generated automatically can be used to 

move through the list. 

 

Figure 9.11 - Window of the program for solving the equations. 

 

The list of strings is created using the uicontrol function when the 

'Style' parameter is set equal to 'listbox'. Let's consider this with a simple 

example, the window for which is shown in fig. 9.12, and the program looks like this: 

 
// Creation of a graphic window. 

f=figure(); 

// Set the size of the window. 

set(f,"position",[50,50,280,100]) 

// Creation of listbox 

h=uicontrol(f,"style","listbox","position",[10 10 100 

70]); 

// Filling out the list. 

set(h, "string", "string 1|string 2|string 3|string 

4|string 5|long string 6"); 

// Selecting 1 and 6 lines in a list 

set(h, "value", [1 6]); 
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The list allows the user to select 

one or several lines and, depending on 

the choice, perform one or another 

action. 

The selection of a row is carried 

out by clicking the left mouse button at 

the moment when the cursor points to the 

selected row. Simultaneously with the 

highlighting of the line, its number is 

entered into the ’value’ property and 

the ’CallBack’ event is generated. 

Lines in the list are numbered from 1. 

For example, let's consider the program 

for determining the day of the week by date: 

 
// Specifying the name of the graphics window 

h = figure('position', [50 50 400 400], 

'backgroundcolor', [0.7 0.9 1],"figure_name",'What day were 

you born?'); 

// Placing a label with prompting you to enter the year 

T1 = uicontrol(h, 'style','text','string','Enter the 

year:','position', [20 340 200 50],'backgroundcolor', [0.7 

0.9 1]); 

// Defining the box for entering the year 

E1 = uicontrol(h, 'style', 'edit', 

'string','1997','position', [150 350 70 30], 'fontsize', 

15,'backgroundcolor',[1 1 1]); 

// Placing a label with prompting to you  enter the month 

T2 = uicontrol(h, 'style', 'text', 'string','Select the 

month:','position', [20 260 200 50],'backgroundcolor', [0.7 

0.9 1]); 

// Creating and filling the days of the week 

L1 = uicontrol(h, 'style', 'listbox', 'position',[150 130 

120 170],'fontsize', 15,'backgroundcolor', [1 1 1]); 

set(L1, 'string', ' January | February | March | April | 

May | June | July | August | September | October | November 

| December ');  

//set(L1, 'value', [1:12]); 

// Placing a label with prompting to you  enter the day 

T3 = uicontrol(h, 'style', 'text', 'string', ' Enter the 

day:','position', [20 60 200 50],'backgroundcolor', [0.7 

0.9 1]); 

// Defining the box for entering the day 

E2 = uicontrol(h, 'style', 'edit', 'string', '15', 

'position', [150 70 70 30], 'fontsize', 15,... 

'backgroundcolor', [1 1 1]); 

Figure 9.12 – List with selected item. 
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// Create a birthday announcement window 

PrintBD = uicontrol(h, 'style', 'text', 'string', ' Day 

of the week of your birthday:','position', [20 30 200 30], 

'backgroundcolor', [0.7 0.9 1]); 

// Day of the week calculation function 

function birthday(guientries) 

       y = evstr(get(E1, 'string')) 

       m = get(L1, 'value') 

       d = evstr(get(E2, 'string')) 

    num = datenum(y, m, d); 

    [n, s] = weekday(num);  

// Outputting the result to the console 

    disp(y,m,d,' Day of the week of your birthday '+s) 

// Displaying a specific birthday in the graphic window 

DWBD = uicontrol(h, 'style', 'text', 'string', ' 

'+s,'position', [210 30 40 30],'backgroundcolor', [0.7 0.9 

1]); 

endfunction 

 

// Creating a birthday button 

P1 = uicontrol(h, 'position', [250 70 120 30],'style', 

'pushbutton','string', 'Define!','callback', 'birthday', 

'backgroundcolor', [1 1 0]); 

 

The process of creating a program can be traced by the comments provided in 

the text of the program. The program window is shown in fig. 9.13. The disadvantage 

of the program is that the day of the week is given only in English. This drawback 

can be easily eliminated using the case selection operator, which is proposed to be 

done independently. 

 

10. PROCESSING OF EXPERIMENTAL DATA 

 

10.1 Least square method 

 

The least squares method makes it possible, from experimental data, to select 

an analytical function that passes as close to the experimental points as possible. 

Suppose that as a result of the experiment, some data were obtained, which are 

displayed in the form of a table: 
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Figure 9.13 – The program for determining the day of the week by the date. 

 

xi x1 x2 x3 x4 x5 x6 … xn 

yi y1 … … … … … … yn 

 

It is required to construct an analytical relationship that most accurately 

describes the results of the experiment. 

The idea behind the least squares method is that the function Y = f(x, a0, a1, … 

ak) must be selected in such a way that the sum of the squares of the deviations of the 

measured values yi from the calculated ones Yi have to be the least: 

 

(10.1) 

 

The task is reduced to determining the coefficients ai from condition (10.1). To 

solve this task, Scilab provides the function 

 
[a,S]=datafit(F,z,с) 

 

here F is the function, the parameters of which must be selected; 
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z - matrix of initial data; 

c is the vector of initial approximations; 

a is vector of coefficients; 

S is the sum of the squares of the deviations of the measured values from the 

calculated ones. 

Let's look at the use of the datafit function using an example. 

As a result of the idling operation of the electric motor, the dependence of the 

power consumed from the network (P, in W) on the input voltage (U, in V) was 

determined (table 10.1). 

 

Table 10.1 – Experimental data. 
U, in V 132 140 150 162 170 180 190 200 211 220 232 240 251 

P, in W 330 350 385 425 450 485 540 600 660 730 920 1020 1350 

 

Using the least squares method, choose a dependence of the form P = a1 + a2U 

+ a3U
2 + a4U

3. 

 

For a more visual representation of the graph of parameter changes, we will 

reduce the parameters by a factor of one hundred, then the solution to the task with 

comments is given: 

 
//A function that calculates the difference  

//between experimental and theoretical values. 

// Before starting calculations, it is needed to define: 

//z=[x;y] - the initial data matrix - and 

//с - vector of initial values of the coefficients. 

function [zr]=G(c,z) 

zr=z(2)-c(1)-c(2)*z(1)-c(3)*z(1)^2-c(4)*z(1)^3 

endfunction 

// The initial data: 

x=[1.32 1.40 1.50 1.62 1.70 1.80 1.90 2.00 2.11 2.20 2.32 

2.40 2.51]; 

y=[3.30 3.50 3.85 4.25 4.50 4.85 5.40 6.00 6.60 7.30 9.20 

10.20 13.50]; 

// Formation of a matrix of initial data 

z=[x;y]; 

// Initial approximations vector 

c=[0;0;0;0]; 

// The solution of the task 

[a,S]=datafit(G,z,c) 

// Plotting the graph which is based on experimental data 

plot2d(x,y,-1); 

// Plotting the graph of the approximation function 

t=1.32:0.01:2.51; 

Ptc=a(1)+a(2)*t+a(3)*t.^2+a(4)*t.^3; 

plot2d(t,Ptc); 
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After starting the program in the console window, we will get: 

 
a  = 

  - 51.576664   

    95.594671   

  - 55.695312   

    11.111453  

 S  = 

    0.5287901   

 

So, as a result of the program operation, an analytical dependence of the form 

P= – 51.57 + 95.59U – 55.69U2 + 11.11U3 was selected, and the sum of the squares 

of the deviations of the measured values from the calculated S is equal to 0.53. 

And in the graphic window we get the location of the experimental points 

marked with crosses and the theoretical curve constructed according to the equation 

with the calculated coefficients (fig. 10.1). 

 

Figure 10.1 – Graphical representation of the task. 

 

In practice, quite often there is a mathematical dependence describing the 

change in a function depending on the initial data of the following form: Y= a1x a
2+ 

a3. Consider the data processing program for this case and the corresponding graph 

(fig.10.2): 

 
function [zr]=F(c,z) 

zr=z(2)-c(1)*z(1).^c(2)-c(3); 

endfunction 

x=[10.1,10.2,10.3,10.8,10.9,11,11.1,11.4,12.2,13.3,13.

8,14,14.4,14.5,15,15.6,15.8,17,18.1,19]; 

y=[24,36,26,45,34,37,55,51,75,84,74,91,85,87,94,92,96,
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97,98,99]; 

z=[x;y]; 

c=[0;0;0]; 

[a,S]=datafit(F,z,c) 

plot2d(x,y,-3); 

t=10:0.01:19; 

Yt=a(1)*t.^a(2) + a(3); 

plot2d(t,Yt); 

 

Figure 10.2 –  Graphic solution of the task. 

 

One of the most frequently used functions in the least squares method is a 

straight line described by an equation of the form y = a1+ x a2, which is called the y-

x regression line. Parameters a1 and a2 are regression coefficients. The indicator 

characterizing the linear relationship between x and y is called the correlation 

coefficient and is calculated by the formula:  

 

 

 

 

 

 

 

The correlation coefficient satisfies the relationship – 1  R  1. The less the 

absolute value of R differs from unity, the closer the experimental points are to the 
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regression line. If the correlation coefficient is close to zero, it means that there is no 

linear relationship between x and y, but a non-linear relationship may exist. 

The analogue of the correlation coefficient r for nonlinear dependencies is the 

correlation index calculated by the formula: 

The correlation index in its absolute value ranges from 0 to 1. With a functional 

dependence, the correlation index is 1. In the absence of a relationship, r = 0. If the 

correlation coefficient r is a measure of the relationship only for a linear form, then 

the correlation index R - and for a linear, and for curved. In the case of a straight-line 

connection, the correlation coefficient in its absolute value is equal to the correlation 

index. 

To calculate the regression coefficients in Scilab, the function is used: 

 
[a,b,sig]=reglin(x,y) 

 

here x and y are experimental data; 

a – a1 vector of the coefficient of the regression line y = a1 + x a2; 

b – a2 vector of the coefficient of the regression line y = a1 + x a2; 

sig is the standard residual deviation. 

Let's look at how this function works using an example. D.I. Mendeleev's 

«Fundamentals of Chemistry» provides data on the solubility of sodium nitrate 

NaNO3 depending on the temperature of the water. It is required to determine the 

solubility of sodium nitrate at a temperature of 32 degrees in the case of a linear 

relationship and find the coefficient and index of correlation, if the number of 

conventional parts of NaNO3 dissolving in 100 parts of water at the appropriate 

temperatures is shown in the table: 

 

0 4 10 15 21 29 36 51 68 

66.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1 

 
The program for this example and the results of its execution are as follows: 
 
// Experimental data 
x=[0 4 10 15 21 29 36 51 68]; 
y=[66.7 71 76.3 80.6 85.7 92.9 99.4 113.6 125.1]; 
// Calculation of the regression coefficients 
[a2,a1,sig]=reglin(x,y) 
 // Solubility at 32 degrees 
t=32; 
a1+a2*t 
// Correlation coefficient 
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r=sum((x-mean(x)).*(y-mean(y)))/... 
sqrt(sum((x-mean(x)).^2).*sum((y-mean(y)).^2)) 
// correlation index 
R=sqrt(1-sum((y-(a1+a2.*x)).^2)/sum((y-mean(y)).^2)) 
t=0:70; Yt=a1+a2.*t; 
plot2d(x,y,-3); plot2d(t,Yt) 

 
Calculation results: 
 
a2  =  
   0.8706404 
 a1  =  
   67.507794 
 sig  =  
   0.8460731 
ans  = 
   95.368287 
r  =  
   0.0002826 
R  =  
   0.9989549 

 

The data graph and the regression equation graph are shown in figure. 10.3. 

 

Figure 10.3 – The graphs of data and regression equation. 

 

10.2 Function interpolation. 

 

The simplest interpolation task is as follows. On the segment [a, b], x0, x1, 

x2,…,xn (n + 1 points in total) are given, which are called interpolation nodes, and the 

values of some function f (x) at these points: 

 

 

f(x0) = y0,  f(x1) = y1,   f(x2) = y2,   f(xn) = yn. 
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It is required to construct an interpolating function F(x) which is belonging to a 

known class and taking the same values at the interpolation nodes as f(x): 

 

F(x0) = y0,  F(x1) = y1,   F(x2) = y2,   F(xn) = yn. 

 

To solve such a task, spline interpolation is often used (from the English word 

spline - rake, ruler). One of the most common interpolation options is cubic spline 

interpolation. 

In addition, there are quadratic and linear splines. 

In Scilab, for linear interpolation is used interpln function 

 
[y]=interpln(xyd,x) 

 

here: xyd is matrix of original data; 

x is the abscissa vector; 

[y] is vector of linear spline values in points. 

The following is an example of using the interpln function. Here a linear 

spline is used to solve the task of the power which is  consumed from the network (P, 

W) : 

 
x=[132 140 150 162 170 180 190 200 211 220 232 240 251]; 

y=[330 350 385 425 450 485 540 600 660 730 920 1020 1350]; 

plot2d(x,y,-4); 

z=[x;y]; 

t=132:5:252; ptd=interpln(z,t); 

plot2d(t,ptd); 

 

A graphic solution to the task is shown in figure 10.4. 

 

Figure 10.4 – Applying a linear spline to solve a task. 

 

The construction of a cubic spline in Scilab consists of two stages: first, the 

coefficients of the spline are calculated using the function d=splin(x,y), and then 
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the values of the interpolation polynomial at the point y=interp(t,x,y,d)are 

calculated. 

The function for calculating the spline coefficients look like this: 
 

d=splin(x,y) 

 

here: x is a strictly increasing vector consisting of at least two components; 

y is a vector of the same format as x; 

d - the result of the function, the coefficients of the cubic spline. 

 

The function which is calculating the values of the interpolation polynomial has 

the form: 
Y=interp(t,x,y,k) 

 

here: x is a strictly increasing vector consisting of at least two components; 

y is a vector of the same format as x; 

Y is the result of the function, the coefficients of the cubic spline; 

t - is a vector or matrix: abscissa, on which y is unknown and must be 

estimated; 

k are the coefficients of the cubic spline. 

Let`s find the approximate value of the function for a given value of the 

argument using cubic spline interpolation at the points x1 = 0,702, x2 = 0,512, x3 = 

0,608. The values of function is set in a table: 

 

0.43 0.48 0.55 0.62 0.7 0.75 

1.63597 1.73234 1.87686 2.03345 2.22846 2.35973 

 

The program for solving the task has the form: 

 
x=[0.43 0.48 0.55 0.62 0.7 0.75]; 

y=[1.63597 1.73234 1.87686 2.03345 2.22846 2.35973]; 

plot2d(x,y,-4);// Experimental data graph. 

koeff=splin(x,y); 

X=[0.702 0.512 0.608] 

// Function value at given points. 

Y=interp(X,x,y,koeff) 

plot2d(X,Y,-3); // Plotting points on a graph. 

// Constructing a Cubic Spline. 

t=0.43:0.01:0.75; 

ptd=interp(t,x,y,koeff); 

plot2d(t,ptd); 

xgrid(); 
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A graphic illustration of the task solution is shown in fig. 10.5. 

Figure 10.5 – Cubic spline interpolation. 

 

Questions for self-examination for the fifteenth lecture: 

1. How to create an edit field for entering a number? 

2. How to create lists of strings? 

3. What function implements the least squares method? 

4. How to determine the coefficients of the linear regression equation? 

5. What is the interpln function used for? 

6 How to implement cubic spline interpolation? 
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