Міністерство освіти і науки України
Національний університет «Одеська політехніка»
Кафедра іноземних мов
Методичні вказівки до практичних занять з англійської мови

за спеціальністю

121 «Інженерія програмного забезпечення»
Одеса

Одеська політехніка
2022
Міністерство освіти і науки України

Національний університет «Одеська політехніка»
Кафедра іноземних мов

Методичні вказівки до практичних занять з англійської мови

за спеціальністю

 121 «Інженерія програмного забезпечення»,
 для студентів І курсу

Затверджено

на засіданні кафедри

іноземних мов

Протокол № 7
від 15 березня 2022
Одеса

Одеська політехніка
2022
Методичні вказівки до практичних занять з професійної англійської мови за спеціальністю 121 «Інженерія програмного забезпечення» для студентів І курсу/ Укл.: Л.Ю. Цапенко, О.В.Гвоздь, О.В. Лебедєва– О. Одеська політехніка :, 2022.- 63 с.

Автори:
Л.Ю. Цапенко, кандидат філол. наук, доцент

О.В.Гвоздь, ст..викладач

О.В.Лебедєва, ст.викладач.

Передмова

Метою “Методичних вказiвок” є формування впродовж 78 годин аудиторних занять у студентів (вхідний рівень володіння мовою – В1) вмiнь та навичок читання за тематикою спеціальності 121 «Інженерія програмного забезпечення» на І курсі навчання ІКС (вихідний рівень володіння мовою – В2). За рахунок тренування і виконання читання текстів і комунікативних завдань студенти зможуть досягти практичного володіння англійською мовою за фахом.

Практичне володіння іноземною мовою в рамках даного курсу припускає наявність таких умінь, які дають можливість:

· вільно читати оригінальну літературу іноземною мовою у відповідній галузі знань;

· оформляти витягнуту з іноземних джерел інформацію у вигляді перекладу або резюме;

· робити повідомлення і доповіді іноземною мовою на теми, пов'язані з науковою роботою майбутнього фахівця;

· вести бесіду за фахом.

Кожний урок складається з тексту й комплексу мовних вправ, які розраховані на удосконалення навичок активізації словарного і граматичного мінімуму професійного спрямування.

“Методичні вказiвки” забезпечують підготовку до міжнародного усного спілкування англійською мовою для спеціальних цілей, а саме - оволодіння лексичними, граматичними і стилістичними навичками, а також умінням читати, перекладати, згортати і розгортати усну англомовну інформацію наукового функціонального стилю, що передбачено вимогами Програми вивчення іноземних мов у нефілологічному ВНЗ.

Змiст
6Lesson 1

9Lesson 2

12Lesson 3

15Lesson 4

18Lesson 5

20Lesson 6

23Lesson 7

27Lesson 8

30Lesson 9

33Lesson 10

36Lesson 11

39Lesson 12

42Lesson 13

45Lesson 14

48Lesson 15

52References

53Keys

Lesson 1

SOFTWARE ENGINEERING

Software engineering is an engineering branch associated with the development of software product using well-defined scientific principles, methods and procedures. The outcome of software engineering is an efficient and reliable software product.

Software project management has wider scope than software engineering process as it involves communication, pre and post delivery support etc. Let us first understand what software engineering stands for. The term is made of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which serves some computational purpose. Software is considered to be a collection of executable programming codes, associated libraries and documentations. Software, when made for a specific requirement is called a software product.

Engineering on the other hand, is all about developing products, using well-defined, scientific principles and methods. The outcome of software engineering is an efficient and reliable software product.

Characteristics of software

· Software should achieve a good quality in design and meet all the specifications of the customer.

· Software does not wear out i.e. it does not lose the material.

· Software should be inherently complex.

· Software must be efficient i.e. the ability of the software to use system resources in an effective and efficient manner.

· Software must be integral i.e. it must prevent from unauthorized access to the software or data.

Software engineering is a detailed study of engineering to the design, development and maintenance of software. Software engineering was introduced to address the issues of low-quality software projects. Problems arise when a software generally exceeds timelines, budgets, and reduced levels of quality. It ensures that the application is built consistently, correctly, on time and on budget and within requirements. The demand of software engineering also emerged to cater to the immense rate of change in user requirements and environment on which application is supposed to be working.

A software product is judged by how easily it can be used by the end-user and the features it offers to the user. An application must score in the following areas:
1) Operational: This tells how good a software works on operations like budget, usability, efficiency, correctness , functionality, dependability, security and safety.

2) Transitional: Transitional is important when an application is shifted from one platform to another. So, portability, reusability and adaptability come in this area.

3) Maintenance: This specifies how good a software works in the changing environment. Modularity, maintainability, flexibility and scalability come in maintenance part.

Software Development Lifecycle or SDLC is a series of stages in software engineering to develop proposed software application, such as:

1) Communication

2) Requirement Gathering

3) Feasibility Study

4) System Analysis

5) Software Design

6) Coding

7) Testing

8) Integration

9) Implementation

10) Operations and maintenance

11) Disposition

Software engineering generally begins with the first step as a user-request initiation for a specific task or an output. He submits his requirement to a service provider organization. The software development team segregates user requirement, system requirement and functional requirements. The requirement is collected by conducting interviews of a user, referring to a database, studying the existing system etc. After requirement gathering, the team analyses if the software can be made to fulfill all the requirements of the user. The developer then decides a roadmap of his plan. System analysis also includes an understanding of software product limitations. As per the requirement and analysis, a software design is made. The implementation of software design starts in terms of writing program code in a suitable programming language. Software testing is done while coding by the developers and thorough testing is conducted by testing experts at various levels of code such as module testing, program testing, product testing, in-house testing and testing the product at user’s engagement and feedback.
Exercise 1. Look up new words given below in your dictionary and memorise them.

Outcome, pre and post delivery, support, computational purpose, specific requirement, inherently, unauthorized access, score, shift, software development lifecycle, submit, implementation, feedback

Exercise 2. Ask questions to the given answers.

1) __
It is an efficient and reliable software product.

2) ___
 No, it isn't. Software does not wear out.
3) ___
It is judged by how easily it can be used.

4) ___

A series of stages in software engineering to develop proposed software application.
5) ___

The developer decides a roadmap.
Exercise 3. Fill in the gap with an appropriate word.

engineering libraries management computational code process executable

Software project 1 ___________ .has wider scope than software engineering 2 ______ as it involves communication, pre and post delivery support etc. The term is made of two words, software and 3 ______. Software is more than just a program 4 _____. A program is an executable code, which serves some 5_______ purpose. Software is considered to be collection of 6 ______ programming code, associated 7 _______ and documentations.

Exercise 4. Choose the correct verb forms.

1. When the first digital computers (appears- has appeared -appeared) in the early 1940s, the instructions to make them operate (was- were - have been) wired into the machine.

2. Practitioners quickly(were realizing- realized -have realized) that this design was not flexible and (come up -came up- were coming up) with the "stored program architecture" or von Neumann architecture.
3. In 1984, the Software Engineering Institute (established -was established -is establishing) as a federally funded research and development center.

4. The widespread lack of best practices for software at the time (was perceiving -perceived -was perceived) as a "software crisis"

Exercise 5 Read the text and put the following sentences in correct order.

1. The result of the conference is a report that defines how software should be developed.

2. Programming languages started to appear in the early 1950s and this was also another major step in abstraction.

3. The conference was attended by international experts on software who agreed on defining best practices for software grounded in the application of engineering.

4. David Parnas introduced the key concept of modularity and information hiding in 1972 to help programmers deal with the ever increasing complexity of software systems.

5. The origins of the term "software engineering" have been attributed to different sources, but it was used in 1968 as a title for the World's first conference on software engineering, sponsored and facilitated by NATO.
Exercise 6 Compose a story on one of the topics (up to 100 words):
· Software engineering
· Characteristics of software
Lesson 2
PROFESSIONAL SOFTWARE DEVELOPMENT

Lots of people write programs. People in business write spreadsheet programs to simplify their jobs, scientists and engineers write programs to process their experimental data, and amateurs write programs for their own interest and enjoyment. However, the vast majority of software development is a professional activity where software is developed for specific business purposes, for inclusion in other devices, or as software products such as information systems, CAD systems, etc. Professional software, intended for use by someone apart from its developer, is usually developed by teams rather than individuals. It is maintained and changed throughout its life. Software engineering is intended to support professional software development, rather than individual programming. It includes techniques that support program specification, design, and evolution, none of which are normally relevant for personal software development.

Many people think that software is simply another word for computer programs. However, when we are talking about software engineering, software is not just the programs themselves but also all associated documentation and configuration data that is required to make these programs operate correctly.

A professionally developed software system is often more than a single program. The system usually consists of a number of separate programs and configuration files that are used to set up these programs. It may include system documentation, which describes the structure of the system; user documentation, which explains how to use the system, and websites for users to download recent product information. This is one of the important differences between professional and amateur software development. If you are writing a program for yourself, no one else will use it and you don’t have to worry about writing program guides, documenting the program design, etc. However, if you are writing software that other people will use and other engineers will change then you usually have to provide additional information as well as the code of the program.
Software engineers are concerned with the developing software products (i.e., software which can be sold to a customer). There are two kinds of software products:

1. Generic products. These are stand-alone systems that are produced by a development organization and sold on the open market to any customer who is able to buy them. It also includes so-called vertical applications designed for some specific purpose such as library information systems, accounting systems, or systems for maintaining dental records.

2. Customized (or bespoke) products. These are systems that are commissioned by a particular customer. A software contractor develops the software especially for that customer. In generic products, the organization that develops the software controls the software specification. For custom products, the specification is usually developed and controlled by the organization that is buying the software. However, the distinction between these system product types is becoming increasingly blurred.
More and more systems are now being built with a generic product as a base, which is then adapted to suit the requirements of a customer. Quality is therefore not just concerned with what the software does. Rather, it has to include the software’s behavior while it is executing and the structure and organization of the system programs and associated documentation. This is reflected in so-called quality or non-functional software attributes.

Exercise 1. Look up new words given below in your dictionary and memorise them.
Spreadsheet programs, specific business purposes, to be intended for, to be relevant for, to set up programs, associated configuration, data, generic products, distinction, stand-alone systems, to suit requirements, non-functional software attributes.
Exercise 2. Give the words that have similar meanings (synonyms).
1.to simplify 2.to process 3. to develop 4. to intend 5.to include 6. to support

a. to assist b. to facilitate c. to work on d. to modernize e. to plan f. to involve

Exercise 3. Give the words that have contractive meanings (antonyms).
1. distinction 2. blurred 3.to increase 4.to include 5.differences 6.correctly 7.separate

Exercise4. Fill in the gap with an appropriate word

controlled develops products commissioned system software

These are systems that are 1________ by a particular customer. A software contractor 2 ________ the software especially for that customer. In generic 3________, the organization that develops the software controls the 4 ______ .specification. For custom products, the specification is usually developed and 5______ by the organization that is buying the software. However, the distinction between these 6 _______ product types is becoming increasingly blurred.

Exercise 5. Match the left part with the right.

	1. The system usually consists of a number of separate programs and configuration ...
	a. about writing program guides, documenting the program design, etc.

	2. It may include system documentation, which describes the structure of the system; user documentation,
	b. change then you usually have to provide additional information as well as the code of the program.

	3. This is one of the important differences between
	c. files that are used to set up these programs.

	4. If you are writing a program for yourself, no one else will use it and you don’t have to worry
	d. which explains how to use the system, and websites for users to download recent product information.

	5. However, if you are writing software that other people will use and other engineers will
	e. professional and amateur software development.

Exercise 6. Compose a story on one of the topics:
· Professional software development

· Two types of software products
Lesson 3
SOFTWARE ENGINEERING AND THE WEB

The development of the World Wide Web has had a profound effect on all of our lives. Initially, the Web was primarily a universally accessible information store and it had little effect on software systems. These systems ran on local computers and were only accessible from within an organization. Around 2000, the Web started to evolve and more and more functionality was added to browsers. This meant that web-based systems could be developed where, instead of a special-purpose user interface, these systems could be accessed using a web browser. This led to the development of a vast range of new system products that delivered innovative services, accessed over the Web. These are often funded by adverts that are displayed on the user’s screen and do not involve direct payment from users.
As well as these system products, the development of web browsers that could run small programs and do some local processing led to an evolution in business and organizational software. Instead of writing software and deploying it on users’ PCs, the software was deployed on a web server. This made it much cheaper to change and upgrade the software, as there was no need to install the software on every PC. It also reduced costs, as user interface development is particularly expensive. Consequently, wherever it has been possible to do so, many businesses have moved to web-based interaction with company software systems.
The next stage in the development of web-based systems was the notion of web services. Web services are software components that deliver specific, useful functionality and which are accessed over the Web. Applications are constructed by integrating these web services, which may be provided by different companies.
In principle, this linking can be dynamic so that an application may use different web services each time that it is executed. In the last few years, the notion of ‘software as a service’ has been developed. It has been proposed that software will not normally run on local computers but will run on ‘computing clouds’ that are accessed over the Internet. A computing cloud is a huge number of linked computer systems that is shared by many users.
The advent of the web, has led to a significant change in the way that business software is organized. Before the web, business applications were mostly monolithic, single programs running on single computers or computer clusters. Communications were local, within an organization. Now, software is highly distributed, sometimes across the world. Business applications are not programmed from scratch but involve extensive reuse of components and programs. This radical change in a software organization has, obviously, led to changes in the ways that web-based systems are engineered.

 1. Software reuse has become the dominant approach for constructing web-based systems.

When building these systems, you think about how you can assemble them from pre-existing software components and systems.

2. It is now generally recognized that it is impractical to specify all the requirements for such systems in advance. Web-based systems should be developed and delivered incrementally.

3. User interfaces are constrained by the capabilities of web browsers. Web forms with local scripting are more commonly used. Application interfaces on web-based systems are often poorer than the specially designed user interfaces on PC system products. The fundamental ideas of software engineering apply to web-based software in the same way that they apply to other types of software system.
Exercise 1. Look up new words given below in your dictionary and memorise them.

special-purpose, user interface, vast range, deploying, web-based interaction, computing cloud, monolithic applications, reuse of components, dominant approach, pre-existing, software components, local scripting.

Exercise 2. Ask questions to the given answers.

1. ___

The development of the World Wide Web has had a profound effect on all of our lives.

2. ___

Development of web browsers that could run small programs and do some local processing.
3. ___

It has moved to web-based interaction with company software systems.

4. ___

They are software components that deliver specific, useful functionality and which are accessed over the Web.
5. __

Software reuse.
Exercise 3. Fill in the gap with an appropriate word.
web commonly interfaces products software poorer
User 1______ are constrained by the capabilities of 2 ______ browsers. Web forms with local scripting are more 3______ used. Application interfaces on web-based systems are often 4_______ than the specially designed user interfaces on PC system 5______. The fundamental ideas of software engineering apply to web-based 6________ in the same way that they apply to other types of software system.
Ex.4 Choose the correct verb forms.

1. These systems (is running-ran-has been running) on local computers and were only accessible from within an organization.

2. Around 2000, the Web started to evolve and more and more functionality (added-was added-will be added) to browsers.

3. This meant that web-based systems could be developed where, instead of a special-purpose user interface, these systems (could access -could be accessed -could be accessing) using a web browser.

4. This (was leading -will lead -is leading -led) to the development of a vast range of new system products that delivered innovative services, accessed over the Web.

5. These are often funded by adverts that (displayed -are displayed -will be displayed) on the user’s screen and do not involve direct payment from users.

Exercise 5 Put the following words in the correct order to make sentences..
1. Although frequently engineers web developers software intersect ways professions differ important two in and.
2. come web Software rigorous technical engineers background, developers web- based platforms specialize a in from while
3. web software Few professions tech frequently confused developers engineers are than more and.
4. reality titles job products In, two different skills, work relate environments, and end these to.

5. software hardware operating Software engineers meet create specifications products systems, networks, of the that and.
6. engineers have software word software organizing processing, Thanks information, games to we for and.

7. developers maintain build Web websites web-related platforms applications and for and other.
Exercise 6. Compose a story on one of the topics:

· Profound effect of World Wide Web on our lives.

· Web services.
Lesson 4
SOFTWARE PROCESSES
A software process is a set of related activities that leads to the production of a software product. However, business applications are not necessarily developed in this way. New business software is now often developed by extending and modifying existing systems or by configuring and integrating off-the-shelf software or system components.

There are many different software processes but all must include four activities that are fundamental to software engineering:

1. Software specification. The functionality of the software and constraints on its operation must be defined.

2. Software design and implementation. The software to meet the specification must be produced.

3. Software validation. The software must be validated to ensure that it does what the customer wants.

4. Software evolution. The software must evolve to meet changing customer needs. In some form, these activities are part of all software processes.

There are also supporting process activities such as documentation and software configuration management. When we describe and discuss processes, we usually talk about the activities in these processes such as specifying a data model, designing a user interface, etc., and the ordering of these activities. However, as well as activities, process descriptions may also include:

1. Products, which are the outcomes of a process activity. For example, the outcome of the activity of architectural design may be a model of the software architecture.

2. Roles, which reflect the responsibilities of the people involved in the process. Examples of roles are project manager, configuration manager, programmer, etc.

3. Pre- and post-conditions, which are statements that are true before and after a process activity has been enacted or a product produced.

Software processes are complex and, like all intellectual and creative processes, rely on people making decisions and judgments. Processes have evolved to take advantage of the capabilities of the people in an organization and the specific characteristics of the systems that are being developed. For business systems, with rapidly changing requirements, a less formal, flexible process is likely to be more effective. Sometimes, software processes are categorized as either plan-driven or agile processes.

Plan-driven processes are processes where all of the process activities are planned in advance and progress is measured against this plan. In agile processes planning is incremental and it is easier to change the process to reflect changing customer requirements. As Boehm and Turner discuss, each approach is suitable for different types of software. Generally, you need to find a balance between plan-driven and agile processes. Although there is no ‘ideal’ software process, there is scope for improving the software process in many organizations. Processes may include outdated techniques or may not take advantage of the best practice in industrial software engineering. Indeed, many organizations still do not take advantage of software engineering methods in their software development.

Software processes can be improved by process standardization where the diversity in software processes across an organization is reduced. This leads to improved communication and a reduction in training time, and makes automated process support more economical. Standardization is also an important first step in introducing new software engineering methods and techniques and good software engineering practice.

Exercise 1. Look up new words given below in your dictionary and memorise them.

off-the-shelf software, implementation, software validation, to ensure, to include, outdated techniques, to take advantage of , agile process, plan-driven processes, outdated techniques, take advantage of, diversity, reduction.

Exercise 2. Put a tick(✓) if the sentence is right and a cross (×)if it is wrong. Correct the mistakes.
1. Software processes are complex and, like all industrial processes, rely on machines and technology.

2. Processes have evolved to take advantage of the capabilities of the people in an organization and the specific characteristics of the systems that are being developed.

3. For business systems, with rapidly changing requirements, a less formal, flexible process is likely to be more effective.

4. Sometimes, software processes are categorized as either plan-driven or agile processes.

5. Plan-driven processes involve planning is incremental and it is easier to change the process to reflect changing customer requirements.

6. In agile processes all of the process activities are planned in advance and progress is measured against this plan

Exercise 3. Match English words with their definitions.
	1. Web browser
	а. processes where all of the process activities are planned in advance and progress is measured against this plan.

	2.Web server
	b. the process of replacing a product with a newer version of the same product.

	3.Plan-drivenprocesses
	c. a computer system that processes requests via HTTP, the basic network protocol used to distribute information on the World Wide Web.

	4.Upgrading
	d. a software application for retrieving, presenting and traversing information resources on the World Wide Web

Exercise 4. Give the words that have similar meanings (synonyms).

1.lead 2.extend 3.modify 4.design 5.reduce

a. alter b. project c. broaden, widen d. guide, result e. shorten, cut

Exercise 5. Choose the correct verb forms.

1.Processes(must- might have -may) include outdated techniques or (must not- might not have -may not) take advantage of the best practice in industrial software engineering.

2.Indeed, many organizations still (didn't take- hadn't taken -do not take) advantage of software engineering methods in their software development.

3.Software processes can be improved by process standardization where the diversity in software processes across an organization (is reduced -has been reduced- are reducing).

4. This leads to improved communication and a reduction in training time, and (is making-makes-made) automated process support more economical.

5.Standardization (is -has been -was) also an important first step in introducing new software engineering methods and techniques and good software engineering practice.

Exercise 6. Speak on one of the topics:
· Software process.

· Four fundamental activities of software engineering.

· Plan-driven and agile processes
Lesson 5
SOFTWARE DESIGN AND IMPLEMENTATION

The implementation stage of a software development is the process of converting a system specification into an executable system. It always involves a processes of a software design and programming, but if an incremental approach to development is used, may also involve refinement of the software specification. A software design is a description of the structure of the software to be implemented, the data models and structures used by the system, the interfaces between system components and, sometimes, the algorithms used. Designers do not arrive at a finished design immediately but develop the design iteratively. They add formality and detail as they develop their design with constant backtracking to the correct earlier designs.

Most software interfaces with other software systems. These include the operating system, database, middleware, and other application systems. These make up the ‘software platform’, the environment in which the software will execute. Information about this platform is an essential input to the design process, as designers must decide how best to integrate it with the software’s environment. The requirements specification is a description of the functionality the software must provide and its performance and dependability requirements. If the system is to process existing data, then the description of that data may be included in the platform specification; otherwise, the data description must be an input to the design process so that the system data organization to be defined. The activities in the design process vary, depending on the type of system being developed. For example, real-time systems require timing design but may not include a database so there is no database design involved. There are four activities that may be a part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the principal components (sometimes called sub-systems or modules), their relationships, and how they are distributed.

 2. Interface design, where you define the interfaces between system components. This interface specification must be unambiguous. With a precise interface, a component can be used without other components having to know how it is implemented. Once interface specifications are agreed, the components can be designed and developed concurrently.

3. Component design, where you take each system component and design how it will operate. This may be a simple statement of the expected functionality to be implemented, with the specific design left to the programmer. Alternatively, it may be a list of changes to be made to a reusable component or a detailed design model. The design model may be used to automatically generate an implementation.

4. Database design, where you design the system data structures and how these are to be represented in a database. Again, the work here depends on whether an existing database is to be reused or a new database is to be created. These activities lead to a set of design outputs.

The detail and representation of these vary considerably. For critical systems, detailed design documents setting out precise and accurate descriptions of the system must be produced. If a model-driven approach is used, these outputs may mostly be diagrams. Where agile methods of the development are used, the outputs of the design process may not be separate specification documents but may be represented in the code of the program.

Exercise 1. Look up new words given below in your dictionary and memorise them.

Executable, system specification, incremental, refinement, iteratively, backtracking, middleware, unambiguous, concurrently, to be implemented, agile model, be represented, model-driven approach.
Exercise 2. Answer the following questions.

1. How do the designers develop the design?

2. What do the activities in the design process depend on?

3. In what situations can a component be used without other components?

4. What may a component design be?

5. What lead to a set of design outputs?

Exercise 3. Give the words that have similar meanings (synonyms).
1. arrive 2. include 3. component 4. data 5.generate 6. precise

a. create b. come c. exact d. consist of e. constituent f. information

Exercise 4. Give the derivatives to the following words.

1.implement 2.develop 3.convert 4.describe 5.add 6.require 7.represent 8.function 9.specific

Exercise 5. Fill in the gap with an appropriate word.

Is program be designed development system models
The 1 _________ are developed in sufficient detail so that the executable system can 2 ____ generated from them. The development of a 3 ________to implement the system follows naturally from the 4 ________design processes. Although some classes of program, such as safety-critical systems, are usually 5 __________ in detail before any implementation begins, it 6 ______ more common for the later stages of design and program 7 __________to be interleaved.
Exercise 6. Compose a story on one of the topics:

· Design process for information systems.

· Software design and implementation.
Lesson 6
SOFTWARE EVOLUTION

The flexibility of software systems is one of the main reasons why more and more software is being incorporated in large, complex systems. Once a decision has been made to manufacture hardware, it is very expensive to make changes to the hardware design. However, changes can be made to software at any time during or after the system development. Even extensive changes are still much cheaper than corresponding changes to system hardware. Historically, there has always been a split between the process of a software development and the process of a software evolution (a software maintenance). People think of a software development as a creative activity in which a software system is developed from an initial concept through to a working system. However, they sometimes think of a software maintenance as dull and uninteresting. Although the costs of maintenance are often several times the initial development costs, maintenance processes are sometimes considered to be less challenging than an original software development. This distinction between development and maintenance is increasingly irrelevant. Hardly any software systems are completely new systems and it makes much more sense to see development and maintenance as a continuum. Rather than two separate processes, it is more realistic to think of a software engineering as an evolutionary process where software is continually changed over its lifetime in response to changing requirements and customer needs.

Change is inevitable in all large software projects. As new technologies become available, new design and implementation possibilities emerge. Therefore, whatever a software process model is used, it is essential that it can accommodate changes to the software being developed. Change adds to the costs of a software development because it usually means that work that has been completed has to be redone. This is called rework. For example, if the relationships between the requirements in a system have been analyzed and new requirements are then identified, some or all of the requirements analysis has to be repeated. It may then be necessary to redesign the system to deliver the new requirements, change any programs that have been developed, and re-test the system.

There are two related approaches that may be used to reduce the costs of rework:

1. Change avoidance, where the software process includes activities that can anticipate possible changes before significant rework is required. For example, a prototype system may be developed to show some key features of the system to customers.

2. Change tolerance, where the process is designed so that changes can be accommodated at relatively low cost. This normally involves some form of incremental development. Proposed changes may be implemented in increments that have not yet been developed. If this is impossible, then only a single increment (a small part of the system) may have to be altered to incorporate the change.

Two ways of coping with change and changing system requirements are discussed here. These are:

1. System prototyping, where a version of the system or part of the system is developed quickly to check the customer’s requirements and the feasibility of some design decisions. This supports change avoidance as it allows users to experiment with the system before delivery and so refine their requirements.

2. Incremental delivery, where system increments are delivered to the customer for comment and experimentation. This supports both change avoidance and change tolerance. It avoids the premature commitment to requirements for the whole system and allows changes to be incorporated into later increments at relatively low cost.

Exercise 1. Look up new words given below in your dictionary and memorise them.

Manufacture, hardware, system prototyping, extensive, initial concept, emerge, software maintenance, challenging, incremental delivery, inevitable, irrelevant, avoidance, increment, to be altered, feasibility.
Exercise 2. Ask questions to the given answers.

1) ___
 No, changes can be made to software at any time during or after the system development.
2) ___
The distinction between development and maintenance is increasingly irrelevant.
3) ___
 It may then be necessary to redesign the system to deliver the new requirements, change any programs that have been developed, and re-test the system.
4) __
There are two related approaches that may be used to reduce the costs of rework.
5) ___
Change avoidance and change tolerance.

Exercise 3. Fill in the gap with an appropriate word and word combination.

Technologies changes requirements has to implementation costs software process be redone identified
As new 1_______ become available, new design and 2_________ possibilities emerge. Therefore, whatever 3___________ model is used, it is essential that it can accommodate 4____________to the software being developed. Change adds to the 5_______of software development because it usually means that work that has been completed has to 6_________. This is called rework. For example, if the relationships between the 7___________in a system have been analyzed and new requirements are then 8_________, some or all of the requirements analysis 9______be repeated.

Exercise 4. Choose the correct verb forms.

1. The flexibility of software systems is one of the main reasons why more and more software (was being incorporated - is being incorporated - is being incorporating) in large, complex systems.
2. However, they sometimes (thought –think – are thinking) of software maintenance as dull and uninteresting.
3. It (must –may –might) then be necessary to redesign the system to deliver the new requirements, change any programs that have been developed, and re-test the system.
4. System prototyping, where a version of the system or part of the system (is developed – are developed – were developed) quickly to check the customer’s requirements and the feasibility of some design decisions.
Exercise 5. Read the text and put the following sentences in the correct order.

1. People think of a software development as a creative activity in which a software system is developed from an initial concept through to a working system.
2. Hardly any software systems are completely new systems and it makes much more sense to see development and maintenance as a continuum.
3. Although the costs of maintenance are often several times the initial development costs, maintenance processes are sometimes considered to be less challenging than original software development.
4. Historically, there has always been a split between the process of a software development and the process of a software evolution (a software maintenance).
5. However, they sometimes think of software maintenance as dull and uninteresting.

6. This distinction between development and maintenance is increasingly irrelevant.

7. However, they sometimes think of software maintenance as dull and uninteresting.

Exercise 6. Compose a story on one of the topics:
· Software evolution

· The flexibility of software systems

Lesson 7
Writing Software Design Documents

When you take on a new project, before you even open Xcode or Visual Studio, you need to have clear and agreed-upon design goals. And these goals should be established in a specification document. If the client hasn’t written one, you should write it, and submit it to them for review before you even open your IDE. And if you encounter a client who says, “We don’t have time for design documents”, you should walk away from the project because you have trouble ahead. The specification need not be particularly lengthy; it can be just a few pages, but at the very least it should lay out the user interface, include wireframes (if there’s a UI component), and set completion milestones.

Without this document, you’ll end up in a loop of acrimonious equivocation, clients disputing what they told you or what you told them, angrily sending cut-and-pastes of previous communications, interpreting and arguing until the time comes when the client demands that you make changes to bring the application into conformance with “what they actually asked for,” and expects you to make those changes without pay.

We all want satisfied clients. We all want a friendly working relationship. And we all want the pride of a job well-done. But these can’t be achieved if there’s any vagueness about what the job actually is. If your client says that a design document is too much extra work, it’s your job to explain to them that the real extra work will emerge when revisions need to be made due to some sort of misunderstanding. If the client still insists that you advance without such a document, you should accept the fact that you have an unworkable relationship and walk away.

User Interface
Many clients will send you perfect illustrations created in a graphic editor by a graphic designer who is not a programmer. But the problem is: these illustrations say nothing about animations, control states (e.g., Is this button disabled? Does it disappear when unusable?), or even what actions to perform when a button is pressed. Before you start writing the code behind these illustrations, you should be able to answer all of those questions. Specifically, you should know:

Are controls always visible and/or enabled? Under what conditions do their states change? What transitions occur between these states and views? And how should they be animated?

If it’s up to you to generate the UI for the client’s concurrence, do the same in reverse: use a wireframe tool and create a complete set of screen layouts, including any variants that the views show in different application states. This can be exhaustive and tedious work, but you won’t regret it—it can save you from re-writing huge amounts of code and re-creating interfaces due to a minor misunderstanding with major implications. If you’re creating a dual application (e.g., for both iPhone and iPad), create separate wireframes for both.

Screen dimensions are important too. There are (as of writing) three sizes of iPhone screens. Separate wireframes for 3.5” and 4” screens are probably excessive, but you may have to make them; in most cases, you can simply change proportions.

If your client supplies you with graphics, make sure that they are correctly sized with the proper aspect ratios; morphing any bitmap that has text or objects (like circles) will introduce distortions. If they don’t match, tell the client to re-create them with matching sizes. Don’t presume that you can stretch a 3.5” splash screen into a 4” splash and just roll with it.

So these are key questions to ask in the application design document:

· What does the application do, and how quickly does it do it?

· What are possible failure conditions and how are they handled?

· What one-time operations are done at the first execution (i.e., after installation)?

· If the user creates entries of any kind (e.g., bookmarks), what are the limitations?

Exercise 1. Look up new words given below in your dictionary and memorise them.

 At least, design documents, establish, , submit, encounter, milestone, loop, equivocation, dispute, achieve, emerge, occur, concurrence, in reverse, due to, major implications, wireframe, dimension, excessive, ratio, distortion.
Exercise 2. Answer the following questions

1. What is the first step to do when you take on a new project?
2. Where should these goals be established?

3. What does the specification need to include?

4. What are the consequences if you don't have a design documents?
5. What is the problem with illustrations created in a graphic editor?

6. What should you do if your client supplies you with graphics?

7. What are key questions to ask in the application design document?

Exercise 3. Match a line in A with the line in B

	1. design
	a. document

	2. user
	b. application

	3. specification
	c. relationship

	4. bring into
	d. goals

	5. dual
	e. dimensions

	6. screen
	f. interface

	7. make
	g. conformance with

	8. friendly
	h. sure

Exercise 4. Match the paragraphs with the titles. Write questions for each paragraph.
What to include in your software design documents

The overall structure of SDDs is fairly consistent across projects. As you create your own software design document, be sure to include these elements.

1._____________________
At the beginning of your SDD, be sure to include the title of your project, the authors (of the document, not the software), and the reviewers (typically non-engineering stakeholders).

2. ________________________

With this section, you’re trying to answer a simple question: What does the software do? Of course, to answer this question thoroughly, you’ll need to dig a little deeper. In your functional description, you should cover error handling, one-time startup procedures, user limitations, and other similar details.

3. ___________________________

There’s a good chance your coding project is going to be an application, which means it will have a user interface. (If your project is a library or something similar, there won’t be an interface.) As clients, UX designers, and programmers discuss and plan the user interface, it’s easy for the lines to get crossed. If the client doesn’t adequately communicate their vision, your teams might build out the user interface only to have the design shot down.

4. __________________
Instead of approaching your project as a single drawn-out process, you might find it helpful to break it down into more manageable pieces. (This is true for the project’s timeline and the code itself.) At the most macro level, you have an overarching goal: You should think what problem your software is addressing and who will be using it.
5. ___________________________________

As you begin to break the project into smaller features and user stories, you’ll want to rank them according to priority. To do this, plot each feature on a prioritization matrix, a four-quadrant graph that helps you sort features according to urgency and impact. The horizontal axis runs from low to high urgency; the vertical axis runs from low to high impact.

Based on the quadrant each feature falls into, decide whether to include it in your minimum viable product (MVP). Features in the upper-right quadrant (high urgency, high impact) should be included in your MVP. With features in the bottom-right (high urgency, low impact) and upper-left (low urgency, high impact) quadrants, use your discretion to decide if they are a part of your MVP. Features in the bottom-left quadrant (low urgency, low impact) should not be included in your minimum viable product.

6. _____________________________

You’re building software to address a problem, but yours might not be the first attempt at a solution. There’s a good chance a current (or existing) solution is in place—you’ll want to describe this solution in your SDD. You don’t need to get into the tiny details, but should at least write up a user story:

7. ____________________________

The milestones section of your SDD should provide a general timeframe for non-engineering stakeholders. This section is far more detailed and is mostly for the benefit of your engineering teams. In your timetable, include specific tasks and deadlines as well as the teams or individuals to which they’re assigned.

Timeline

Goals and milestones

Prioritization

Functional description

User interface

Current and proposed solutions

Title, authors, and reviewers

Exercise 5. Give definitions for the following words: Speak on one of the topics.

1. Design Documents

2. Milestones

3. User Interface

Lesson 8
Software Requirements Specification
Clear, concise, and executable requirements help development teams create a proper product. How do we organize and present these requirements? That's where a Software Requirements Specification (SRS) comes in. But what is an SRS, and when should you use one?

A software requirements specification (SRS) is a document that describes what the software will do and how it will be expected to perform. It also describes the functionality the product needs to fulfill all stakeholders (business, users) needs.

An SRS can be simply summarized into four Ds:

· Define your product's purpose.
· Describe what you're building.
· Detail the requirements.
· Deliver it for approval.
Why do we use an SRS document?

An SRS gives you a complete picture of your entire project. It provides a single source of truth that every team involved in development will follow. It is your plan of action and keeps all your teams — from the development to the maintenance — on the same page.

This layout not only keeps your teams in sync but it also ensures that each requirement is hit. It can ultimately help you make vital decisions on your product’s lifecycle, such as when to retire an obsolete feature.

The time it takes to write an SRS is given back in the development phase. It allows for better understanding or your product, team, and the time it will take to complete.

Software Requirements Specification vs. System Requirements Specification

A software requirements specification (SRS) includes in-depth descriptions of the software that will be developed.

A system requirements specification (SyRS) collects information on the requirements for a system.

“Software” and “system” are sometimes used interchangeably as SRS. But, a software requirement specification provides greater detail than a system requirements specification.

How to Write an SRS Document

Writing an SRS document is important. But it isn’t always easy to do. Here are four steps you can follow to write an effective SRS document.

1. Define the Purpose with an Outline

Your first step is to create an outline for your software requirements specification. This may be something you create yourself. Or you may use an existing SRS template.

If you’re creating this yourself, here’s what your outline might look like:

1. Introduction
 1.1 Purpose

 1.2 Intended Audience

 1.3 Intended Use

 1.4 Scope

 1.5 Definitions and Acronyms

2. Overall Description
 2.1 User Needs

 2.2 Assumptions and Dependencies

3. System Features and Requirements
 3.1 Functional Requirements

 3.2 External Interface Requirements

 3.3 System Features

 3.4 Nonfunctional Requirements

This is a basic outline and yours may contain more (or fewer) items.

 2. Describe What You Will Build

Your next step is to give a description of what you’re going to build. Is it a new product? Is it an add-on to a product you’ve already created? Is this going to integrate with another product? Why is this needed? Who is it for? Understanding these questions on the front end makes creating the product much easier for all involved.

3. Detail Your Specific Requirements

In order for your development team to meet the requirements properly, we MUST include as much detail as possible. This can feel overwhelming but becomes easier as you break down your requirements into categories. Some common categories are: Functional Requirements and External Interface Requirements
4. Deliver for Approval

We made it! After completing the SRS, you’ll need to get it approved by key stakeholders. This will require everyone to review the latest version of the document and approve it.

Exercise 1. Look up new words given below in your dictionary and memorise them.

executable, fulfill, stakeholder, approval, entire, maintenance, layout, an obsolete feature, create an outline, template, acronyms, assumption, meet the requirements, overwhelming, scope.
Exercise 2. Put a tick(✓) if the sentence is right and a cross (×)if it is wrong. Correct the mistakes.
1. A software requirements specification (SRS) is a document that describes what the software and hardware will do and how it will interact with other programs.

2. An SRS must only define the purpose and requirements.
3. An SRS is the only source of truth that every team involved in development will follow.
4. You don't need to define who in your organization will have access to the SRS and how they should use it.
5. Product Scope describes the benefits, objectives, and goals we intend to have.
6. You must describe what you will build only if it is a completely new product.
7. You don't need to write SRS in detail.
Exercise 3. Give the derivatives of the following words
	verb
	adjective
	noun

	1. use
	
	

	2.intend
	
	

	3.develop
	
	

	4.require
	
	

	5.define
	
	

	6. contain
	
	

Exercise 4. Complete the following sentences from the words given.

1. users, interaction, documents, real-life, good, SRS account human A, for, and
2. sets, Product's, expectations, purpose, stick, documents, will, to, throughout, we, that, to, the
3. scope, objectives, goals, Product, shows, benefits, intend , product, and, we, to, have, for, this.
4. requirements, essential, product, provide, Functional, sort, functionality, are, to, the, because, they, some, of.
5. requirements, outline, External, interact, software, interface, will, with, your, how, tools, other.
Exercise 5. Speak about basic requirements for software specification.

Lesson 9

 Software Quality Assurance
Software quality assurance can be defined as an intended and systematic pattern of activities carried out to ensure that the procedures, tools, and techniques utilized during the device software development and modification can provide the desired level of confidence in the final product. Its main goal is to assure that the device’s reliability is not reduced by the software’s quality. In this regard, the software quality assurance plan (SQAP) is created during the first step of the development process, which relates to specifying the software, and it consists of the following 16 elements (sections):

Purpose - It outlines the specific purpose and scope of the particular SQAP. It lists the names of the software items that are covered by the SQAP and the intended use of the software.

Reference documents – It provides a complete list of all documents referenced elsewhere in the SQAP.

Management provides information about the organization structure that has influence and control over the software’s quality; describes that portion of the software lifecycle covered by the quality assurance plan; specifies the tasks to be performed, emphasizing on SQA activities, and the relationships between these tasks and the planned major checkpoints; indicates the sequence of the tasks and the specific organizational elements responsible for each task.

Documentation – this element of the SQAP identifies the documentation governing the software’s development, verification, validation, use, and maintenance.
Standards, practices, conventions and metrics – it relates to identifying applicable standards, practices, conventions, and metrics, as well as ways to monitor and assure compliance with each of these items.

Review and audits – this section of the SQAP defines: the technical and managerial reviews and audits to be carried out; states how both the reviews and audits are to be accomplished; defines what further actions are required and how they shall be executed and verified.

Test – it indicates any tests that are not included in the software verification and validation plan, together with the sequence of their implementation.

Problem reporting and corrective action – this element relates to describing any practices and procedures to be used for reporting, tracking, and resolving issues identified in software items and the software’s development and maintenance processes. Additionally, any specific organizational responsibilities should also be stated.

Tools, techniques and methodologies – any software tools, techniques and methodologies, supporting the software quality assurance process, should be stated here, along with their purpose and use.

Code control – this SQAP element contains information about any methods and facilities used for maintaining, storing, securing, and documenting controlled versions of the identified software throughout all phases of the software’s lifecycle.

Media control – this section describes all methods and facilities used for identifying the media for each computer product and the documentation required to store and protect it from unauthorized access, unintentional damage or degradation throughout all phases of the software’s lifecycle.

Supplier control – this part of the SQAP contains information regarding the provisions for assuring that the software provided by suppliers fulfils the established requirements. Furthermore, it states the methods to be used to ensure that the software supplier receives all requirements.

Collection, maintenance and retention of records identifies the software quality assurance documentation that needs to be retained and designates its retention period; states the methods and facilities that will be used for collecting, protecting and maintaining the SQA documentation.

Training involves any training activities that are necessary in order to meet the SQAP needs that must be stated here.

Risk management – this element contains information focused on the methods and procedures employed to identify, assess, monitor, and control risk arising during the part of the software’s lifecycle covered by the SQAP.

Additional sections – the contents of each additional section of the SQAP should be specified either directly or by reference to another document.
Exercise 1. Look up new words given below in your dictionary and memorise them.

Software quality assurance, intend, pattern, ensure, utilize, outline, govern, verification, implementation, validation, compliance with, execute, facility, retain, designate.
Exercise 2. Write questions for the following answers.
1. ___
It is intended and systematic pattern of activities carried out to ensure that the procedures, tools, and techniques utilized during the device software development.
2. ___

Software quality assurance plan (SQAP) is created during the first step of the development process.
3. ___

Purpose lists the names of the software items that are covered by the SQAP.
4. ___

Code control contains information about any methods and facilities used for maintaining, storing, securing, and documenting controlled versions of the identified software.

5. __

Supplier control states the methods to be used to ensure that the software supplier receives all requirements.

.

Exercise 3. Match a word in A with the word in B.

	A
	B

	1. final
	a. pattern

	2. systematic
	b. the needs

	3. development
	c. lifecycle

	4. provide
	d. product

	5. software
	e. audit

	6. sequence
	f. process

	7. carried out
	g. requirements

	8. unauthorized
	h. information

	9. established
	i. access

	10. meet
	g. implementation

Exercise 4. Fill in the gaps with the necessary prepositions.
1. Work is being carried ______ in software technology to assist developing countries in attaining self-reliance.
2. Implementing control measures may alter the reliability ___ application.
3. _____ this regard, innovative funding should complement official development assistance, not replace it.
4. Another factor affecting cooperation and coordination _____ other multilateral environmental agreements relates _____ resources and priorities.
5. A program ____your computer that provides information ______ software currently running ____your computer.

6. ____ principle, the user is responsible____ compliance____ the correct process variables during assembly and ____ compliance ____ the applicable safety regulations.

7. This review will focus ____ making recommendations ____address some ____the outstanding effectiveness and efficiency issues.

Exercise 5. Speak about basic sections of Software Quality Assurance.

Lesson 10
The Importance of Software Quality Assurance
As we have stated above, software quality assurance (SQA) is a methodology of checking that software development projects comply with a predefined set of standards. It takes place before, during, and after the software development life cycle.
Software quality assurance is a critical part of a successful software development process. The more intensive the quality assurance, the better your business will be in the long run. Besides meeting the general requirements of your project, your development team should meet certain standards of technical quality on which the software development industry relies. Ensuring these standards are comfortably yet rigidly met is what software quality assurance entails.

Organizations must ascertain both internal and external characteristics of a software product are up to par. External qualities describe how the software performs in real-time, while internal qualities refer to the more fundamental building blocks of the software, like the code.
Examples of what organizations examine to guarantee external quality are reliability, efficiency, maintenance cost, and reliability. Internally, organizations evaluate the complexity, structure, flexibility, readability, testability, and coding practices used in the program or programs that make up the software product.
There are two main approaches to software quality assurance:
· the defect management approach
· the attributes approach.
The defect management approach works by counting and managing defects. Defects encompass a large range of errors from poor data handling to bad code. In defect management, once your development team has identified a defect, they assign it a category given the severity of the defect. Then, the team takes specific actions to address the counted defects.
Usually, such an approach operates best with clear and concise control charts to measure and improve development process capability. Process capability determines how well processes manage to meet standards.
The quality attributes approach directs attention to a number of quality characteristics. Depending on who you ask, there are between six and a dozen or more of these characteristics. This is likely because some attributes overlap or fall under one another. For instance, suitability is a matter of functionality. And usability extends learnability. So, just these six basic attributes will cover what you need to know:
1. Functionality
2. Reliability
3. Usability
4. Efficiency
5. Maintainability
6. Portability
Not only for the consumer’s sake but for the sake of the software product itself, it is important that businesses use a credible SQA process to establish a baseline of expectations for the product.

Software quality assurance is a reliable means of producing high-quality software. There shouldn’t be much justification as to why you wouldn’t want high-quality software, but if that’s not the case consider the other reasons why improving the software quality is of the utmost importance.

First, a high-quality software product will save you time and money. As a business, providing a good that’s worth buying is one of your primary objectives.

If you’re building software, software quality assurance can confirm that your software product is worth buying.

The problem with a product that is not worth buying is that you lose money making the product, and you don’t get a dime of that money back if there’s no profit earned.

To that same end, delivering a high-quality product implies less maintenance over time because your software product will be resilient in the first place. Therefore, you can spend the least amount of time and money on upkeep, if the product needs future maintenance at all.

Altogether, software quality assurance remains a key factor in scaling your business as well as preserving a good reputation for your brand.
Exercise 1. Look up new words given below in your dictionary and memorise them.

comply with, set of standards, entail, ascertain, up to par, maintenance cost, evaluate, approach, concise control, determine, overlap, justification, worth doing, imply, preserve.
Exercise 2. Answer the following questions.

1. What is software quality assurance?

2. Why do we need software quality assurance plan?

3. What qualities are described as external?

4. What qualities are described as internal?

5. What are approaches to software quality assurance?

6. What are benefits of a high-quality software product?
7. What does a high-quality product imply?
Exercise 3. Give synonyms to the following words.

 check_______________
in the long run____________
ensure __________

evaluate___________

approach___________

Exercise 4. Underline the correct verb form in the following sentences.

History has witnessed/had witnessed many examples of software failures — from errors that has cost/have cost businesses billions of pounds to mistakes that are caused/caused human casualties. Here are/is some famous examples of software bugs that led/has led to colossal consequences.
In 2012, a case of improper deployment of software was spreading/spread turmoil across Wall Street when a well-known trading firm lost $440 million in 45 minutes. This happened/has happened/ when an old and unused internal system was incorrectly configured/being configured during trading which was executed/executed the trade of stocks at wrong prices. By the time the mistake was identified and fixed the company has already lost/had already lost $10 million a minute. What a nightmare!
In 2015, Starbucks lost millions in sales as a result of a fault during their daily system refresh which led/was leading to the shutdown of point-of-sales registers across many outlets in the United States and Canada. The coffee shops were forced/had been forced to give away free drinks till the systems were fixed/have been fix and restored. On the bright side, there was/is free coffee!
In 2017, a Frenchman filed a hefty lawsuit against Uber when a notification bug was tipping/ tipped off his wife about his affair. As a result of the bug, the app continued/has continued to push Uber notifications on the wife’s phone, even after he had logged/had been logged out of his account on her device. A small bug that cost/costed millions of euros and marital bliss!
There are /is just a few interesting examples that highlight/has highlight how a major software failure can result in diabolical situations that are far worse than having a minor bug in an app or an inconvenient design flaw. Diligent software quality assurance is/was important if you want to save/saving your software product from being in news headlines like such.
Exercise 5. Speak on the importance of software quality assurance. Give your own examples.

Lesson 11
Software Quality Assurance Standards: ISO 9000; CMMI; TMMi

The ISO 9000 defines a family of standards, with the ISO 9000 and ISO 9001 being standards within the family. For the ISO 9000, there are several principles that put significant focus on a software product’s ability to meet customers’ needs. The ISO 9000 principles are as follows:
1. Customer focus
2. Leadership
3. Engagement of people
4. Process Approach
5. Improvement
6. Evidence-based decision making
7. Relationship management
Currently, the ISO 9000 is one of the more widely used criteria for the quality management systems (QMS).

There’s also the CMMI or Capability Maturity Model Integrated. This standard is popular amongst contracts for software development from the United States government. The government is deeply involved with the development of CMMI, namely the Department of Defense (DoD). Unlike the ISO 9000, CMMI hasn’t gone global yet. This standard is particularly focused on the process improvement. With CMMI, organizations measure their alignment to quality assurance based on maturity.

There are five levels to meet by this measure:
1. Initial: No processes have been followed or documented.

2. Repeatable: Some processes have been followed and repeatable.

3. Defined: The set of processes have been defined, documented, and are subject to improvement.

4. Managed: At this level, organizations use metrics to measure and control processes.

5. Optimizing: Focus on process improvement.

Testing Maturity Model (TMM) or Testing Maturity Model integration (TMMi) is based on CMMI. Launched by the TMMi Foundation in 2005, it was designed to be complementary to the CMMI. This model delineates standards for software testing. Like CMMI, TMMi uses the concept of maturity levels. Five maturity levels are:

1. Initial
2. Managed (Test Policy & Strategy. Test Planning. Test Monitoring and Control. Test Design & Execution. Test Environment)
3. Defined (Test Organization. Test Training Program. Test Lifecycle & Integration. Non-Functional Testing. Peer Reviews)
4. Measured (Test Measurement. Product Quality Evaluation. Advanced Reviews)
5. Optimization (Defect Prevention. Test Process Optimization. Quality Control)
A project isn’t successful just because it has been completed on time and within the budget. There is one other factor that is critical to success: quality. No matter how quickly and cheaply a project is completed, stakeholders are not going to be happy if the quality of the product or service doesn’t meet their expectations. So, how can a manager track the quality of their project and make sure it meets the requirements of stakeholders? Quality assurance, that’s how.

Quality assurance is a way to avoid mistakes in the project’s product or service, and thus prevent problems for your stakeholders. It’s the part of a quality management that focuses on maintaining the integrity of the product or service, which gives stakeholders the confidence that their quality requirements will be met. It is, therefore, a foundational pillar of project management.

The difference between quality assurance and quality control is subtle but significant, although both terms are often used interchangeably to describe the quality management of the project’s product or service. The difference is a matter of where the focus occurs in a project. Quality control is more concerned with quality earlier in the project process. Assurance, though, is more about the implementation of inspection and structured testing throughout every phase of the project.
Quality assurance uses a quality system that is set up to implement administrative and procedural tasks, which create goals for the product or service of the project. This provides a systematic measurement and comparison with a standard, along with a monitory of the processes and a feedback loop to make sure no errors pass through the production. Quality control, however, is primarily just focused on the process output.

Exercise 1. Look up new words given below in your dictionary and memorise them.
Customer focus, significant, alignment, maturity, pervasive, stakeholder, to track, a pillar, significant, interchangeable, quality assurance, occur, be concerned with, implementation, feedback loop, process output.

Exercise 2. Answer the following questions.

1. What are software quality assurance standards?

2. What are the ISO 9000 principles?

3. What is CMMI?

4. What is the peculiarity of CMMI?
5. Which model was designed to be complementary to the CMMI?

6. What are five maturity levels?

7. What factor is critical to success in every project?

8. How can a manager track the quality of their project and make sure it meets the requirements of stakeholders?

9. What is the difference between quality assurance and quality control?

Exercise 3. Give the derivatives of the following words.
	
	Noun
	Verb
	Adjectives

	1.
	
	define
	

	2.
	
	
	significant

	3.
	ability
	
	

	4.
	
	design
	

	5.
	leadership
	
	

	6.
	quality
	
	

	7.
	
	manage
	

	8.
	development
	
	

	9.
	
	execute
	

	10.
	
	
	advanced

Exercise 4. Fill in the gaps with the necessary words.
validate different imagine examine similarities keep code quality sure smoothly
What Is the Difference Between Quality Assurance and Testing?

Quality assurance and testing share many1. ________, especially when software development is the topic of discussion. Generally, 2. ________ assurance denotes a set of methods and activities that 3. ________ a software product’s compliance with established specifications. Software testing is a specific activity that leads to debugging. After a function or program is written in 4. ______, software developers must test their code.

Ideally, the code should run 5. ________ with no mishaps. And the idea is to work diligently at finding and fixing bugs until this occurs. As an illustration, 6. _______you’re preparing a meal. For quality assurance, there are several things that need to be in order. You should make 7. ______ that the ingredients for your chosen recipe are correct and unspoiled. In preparing the food, you should make sure you have the right settings on all your cooking equipment. For example, cooking food at high temperatures kills bacteria. The United States Department of Agriculture Cooking (USDA) recommends that steak be cooked at 145°F — which will leave you with a medium-well finish.

Even without meat, there are still certain things you 8. _______in mind for quality assurance. Or at least there are things you should be aware of. Hopefully, you know that cooking rice on a stovetop only requires a gentle simmer. Otherwise, it will be overcooked. But testing your recipe is an entirely 9. _______thing. That’s taking your big spoon to the pot to see if the flavor is right or chewing on some noodles to 10. _______ the texture.

Exercise 5. Make a presentation on Software Quality Assurance Standards.

Lesson 12

Artificial Intelligence and Expert System

Artificial intelligence (AI) is the intelligence of machines and the branch of computer science that aims to create it. In other way, Artificial Intelligence can be defined as “the study and design of intelligent agents, where an intelligent agent is a system that perceives its environment and takes actions that maximize its chances of success”.
Artificial intelligence has been the subject of optimism, but has also suffered setbacks and, today has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science. All research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools.
The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. Artificial intelligence (AI) is the field of scientific inquiry concerned with designing mechanical systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering.
Some of the most promising developments to come out of recent AI research are “expert” systems or computer programs that simulate the problem-solving techniques of human experts in a particular domain.
There is a class of computer programs, known as expert systems that aim to mimic human reasoning. The methods and techniques used to build these programs are the outcomes of efforts in a field of computer science known as Artificial Intelligence (AI). Expert systems have been built to diagnose disease (Pathfinder is an expert system that assists surgical pathologists with the diagnosis of lymph-node diseases, aid in the design chemical syntheses (Example), the prospect for mineral deposits (PROSPECTOR), translate natural languages, and solve the complex mathematical problem (MACSYMA).
 Here are a few more examples from our day to day life that use AI- Apple’s Siri, Samsung’s Bixby, Netflix recommendation engine, games like call of duty, self-driving cars, spam filtering engines, ride sharing in Uber, speech and pattern recognition, etc.
Another prominent example of an AI-based machine is Jarvis (not from Iron Man movie). Facebook’s CEO Mark Zuckerberg has built Jarvis which is currently deployed in his smart home. Jarvis is able to process language, control sensors, doors, cameras, light and thermal controls and perform face recognition.

Major Branches of AI :
· Robotics: Mechanical and computer devices that perform tedious tasks with high precision.
· Vision system: Capture, store and manipulate the visual images and pictures.
· Natural language processing: Computer understands and reacts to the command and statements to natural language like English.
· Learning system: Computer changes how it reacts or functions to the feedback provided to it.
· Neural system: Computer that can act like or simulate the functioning of the brain.
· Expert system: Programming computers to make decisions in real life situations. (ex: expert system help doctors in diagnosing the diseases)
Exercise 1. Look up new words given below in your dictionary and memorise them.

To perceive, to draw upon, heavy lifting, to come out, to simulate, domain, to mimic human reasoning, outcomes of efforts, lymph-node diseases, prospect, to deploy, tedious task.

Exercise 2. Make up your own sentences with the following words.

· to draw upon

· tedious task

· outcomes of efforts

· to deploy

· heavy lifting

Exercise 3. Make the statements negative.

1) There is a class of computer programs, known as expert systems that aim to mimic human reasoning.

2) Artificial intelligence has been the subject of optimism, but has also suffered setbacks and, today has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.
 3) The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering.
4) Facebook’s CEO Mark Zuckerberg has built Jarvis which is currently deployed in his smart home.

 5) Computer understands and reacts to the command and statements to natural language like English.
Exercise 4. Choose the correct word.
Why is artificial intelligence important?

AI is important because it can be given/give/to give enterprises insights into their operations that they may not have been aware of previously and because, in some cases, AI can perform tasks best/ the same as/better than humans. Particularly when it comes/came/has come to repetitive, detail-oriented tasks like analyzing large numbers of legal documents to ensure relevant fields is filled/are filled/to be filled in properly, AI tools often complete jobs quickly and with relatively few errors.

This has helped fuel an explosion in efficiency and opened the door to entire/entirer/entirely new business opportunities for some/any/no larger enterprises. Prior to the current wave of AI, it would have been hard to imagine using computer software to connect riders to taxis, but today Uber had/has/is become one of the largest companies in the world by doing just that. It utilizes/ utilized/ has utilized sophisticated machine learning algorithms to predict when people are likely need/to need/needing rides in certain areas, which helps proactively get drivers on the road before they're needed. As another example, Google would become/has become/becomes one of large/larger/the largest players for a range of online services by using machine learning understanding/to understand/understand how people use their services and then improving them. In 2017, the company's CEO, Sundar Pichai, pronounced/has pronounced/had pronounced that Google operates/would operate/will operate as an "AI first" company. Today's largest and most successful enterprises have used AI improve/improving/to improve their operations and gain advantage on their competitors.

Exercise 5. A) Fill in the gaps.

neural networks, applications , quickly, expensive , processes, predictions,

What are the advantages and disadvantages of artificial intelligence?

Artificial ____________ and deep learning artificial intelligence technologies are __________evolving, primarily because AI __________large amounts of data much faster and makes _____________more accurately than humanly possible. While the huge volume of data being created on a daily basis would bury a human researcher, AI ____________that use machine learning can take that data and quickly turn it into actionable information. As of this writing, the primary disadvantage of using AI is that it is ____________to process the large amounts of data that AI programming requires.
B) Put these qualities of AI in the correct column

Good at detail-oriented jobs; Reduced time for data-heavy tasks; Delivers consistent results; Limited supply of qualified workers to build AI tools;; Expensive; Requires deep technical expertise; AI-powered virtual agents are always available; Lack of ability to generalize from one task to another.

	Advantages
	Disadvantages

	
	

	
	

	
	

	
	

Exercise 6. Speak on one of the topics:
· The advantages and disadvantages of artificial intelligence
· The history of artificial intelligence
Lesson 13
Network Operations
The goal of any IT professional is to bring efficiency and stability to their IT environment. However, as an IT infrastructure of an organization becomes more complex, IT professionals find it increasingly difficult to keep up with changing technology trends while maintaining that high level of efficiency they strive for. This is where NetOps can come in handy. Its focus on automating processes and creating smooth integration between different components of your network enables you to maintain the integrity and reliability required by your users.
NetOps is an operational framework that helps to design, operate and maintain IT infrastructure. In simple words, NetOps is short for "network operations." At the same time, this term is much broader. NetOps, like DevOps (Development Operations) and SecOps, is a separate process involved in application software development. This article will introduce the NetOps landscape and agile tools for managing and orchestrating the network, outline the differences between NetOps and DevOps, and share Cprime Studios' expertise in bringing NetOps engineers to the company.

NetOps became significantly important with developing cloud technology. Moreover, it uses some DevOps tools to make the infrastructure more programmable and automated. At the same time, there is no clear definition of what is NetOps. That is why we will focus on the differences between NetOps and DevOps and define the core aspects and tools in implementing this process.

Also, there are two approaches for this kind of operation, known as NetOps 1.0 and NetOps 2.0.

1. NetOps 1.0. This is a traditional approach to managing networks. With this approach, the network team works separately from application and security teams. NetOps 1.0 is IT-driven and focused on CLI scripting. Also, it is not automated.

1. NetOps 2.0. With this approach, teams incorporate their operation core DevOps values such as network automation, network orchestration, and agility. With DevOps and SecOps, it helps businesses to achieve their goals in a short time. NetOps has faster app delivery and network functionality and stands on network modernization.

NetOps 2.0 teams need to work in cooperation with DevOps and SecOps teams to ensure fitting business aims. This approach allows DevOps and SecOps to have some control over the network. With NetOps 1.0, they depend on network engineers.

As we already mentioned, NetOps use some DevOps tools, and there are many other similarities between those two processes. As well as the differences between them can facilitate future product development. It is essential to remember that DevOps and NetOps are different stages of in-app software production and implementation. Those processes are closely related but distinct at the same time.

First, DevOps' goal is to ensure continuous and fast app development. NetOps goal is to create safe and secure network infrastructure. While DevOps is focused on automation tools that will help clients achieve business goals, NetOps concentrates on detecting network limitations and making them more scalable and flexible.

Equally important, the scope of work in DevOps is based on the app's design, remodeling, and delivery. NetOps works with maintaining and upgrading the app's network infrastructure.

Moreover, DevOps is the first stage of the development process, while NetOps is the second stage. The differences between the functions are also related to dependency on each other. DevOps is independent of NetOps, but NetOps is dependent on DevOps and SecOps. Likewise, to navigate NetOps, engineers need to know about network security. As you can see, NetOps and DevOps are not the same processes, even if they look pretty familiar at first glance.

Exercise 1. Look up new words given below in your dictionary and memorise them.

keep up with, enable, framework, broad, agile, implement, approach, facilitate, distinct, scalable, at first glance.

Exercise 2. Put a tick(✓) if the sentence is right and a cross (×)if it is wrong. Correct the mistakes.
1. It is not really difficult to keep up with changing technology trends while maintaining high level of efficiency.

2. DevOps and SecOps design, operate and maintain IT infrastructure.

3. NetOps does not have clear definition.

4. DevOps encompass a broader view of IT operations, often involving application developers as well as other IT pros.

5. SecOps is independent of NetOps.
Exercise 3. Match the words or word combinations in the left part with those in the right.
	1. app's network
	a. network limitations

	2. automation
	b. engineers

	3. detecting
	c. infrastructure

	4. network
	d. the integrity

	5. high level
	e. tools

	6. maintain
	f. technology

	7. cloud
	g. aspects

	8. core
	h. of efficiency

Exercise 4. Write the names for the abbreviations
1. IT _______________________________________

2. DevOps __________________________________

3. NetOps __________________________________

4. SecOps.__________________________________

Exercise 5. Use the word given in brackets to form a word that fits the sentence.
NetOps historically have (focus) on monitoring and running the network, while DevOps have been primarily (concern) with (build) new features and (apply). However, these two groups share a common goal, to automate as much of their work as possible, so they can focus on (improve) customer experience and service levels while reducing (operate) costs. In order to achieve that goal, both (group) need to work together on the best way to automate their tasks in order to bring (automate) to the network.

Due to (increase) dependencies and (complex) within today’s data centers, many (organize) are moving away from siloed teams toward a more (collaborate) team of NetOps and DevOps.. But what that (mean) for your day-to-day work? If you bring (develop) operations personnel (close) together, their efficiency and yours will increase (significant).

· Cost reduction. (Automate) helps keep costs low because it (allow) for the continual reusability of code across multiple platforms.

· Faster time to market. Through (continuo) integration/ delivery (CI/CD), network operations teams can continually (improvement) their product(s) using feedback from customers or automated checks based on metrics.

· Better infrastructure management. With CI/CD and automation tools, dev and ops engineers no longer need to (manual) configure and change things. Instead, focus on what needs to (change) — instead of (change) everything just because something changed.

· Improved infrastructure utilization. IT capacity isn’t just about (optimization) compute (resource), such as servers or virtual machines (VMs). It also (include) (store) as well as networks including switches, ports, routers, firewalls, etc.

· Higher customer satisfaction. When you deliver (apply) with NetOps/DevOps processes coupled with (effect) monitoring (capable), your enterprise improves its ability to anticipate its customers’ changing (require). This not only boosts your customer’s (satisfy), but also opens up new opportunities for future partnerships and new revenue streams.

Exercise 6. Make a presentation on the topic "Network operations"
Lesson 14
basic themes and ASPECTs of nEtops 2.0

NetOps 2.0 is centered around making networks agile, error-free, scalable, and secure. It braces the network infrastructure to handle the rapid pace of DevOps initiatives and the network changes that come along with them. They support speedy deployment, maintenance, and upgrade of applications across multiple environments. It revolves around the following three basic themes:

Basic Themes that Define NetOps:

Virtualization: Traditional networks are typically hardware-heavy, difficult to configure, deploy, and maintain. They’re also slow and rigid. NetOps 2.0 signals move from a physical, hardware-centric network environment to a virtualized, software-defined one that offers easier management, greater flexibility, and more agility.

Automation: Manual network processes result in delays that affect the application teams’ ability to deploy and update applications continuously. NetOps 2.0 endorses the automation of repeatable and predictable tasks, like those involved in making network configuration changes, data collection from nodes, etc.

Orchestration: Orchestration is automation on a larger scale. While automation involves some level of human intervention, orchestration takes care of processes from end-to-end. Network orchestration can be run on processes such as adding pool members in case of traffic spikes, provisioning applications on multiple environments, configuring firewall policies, etc. Network orchestration relies on predictive analysis and uses techniques like AI and data mining.
 SECURITY-CONSIDERED ASPECT

The network must be flexible, but it also must be secure. In many cases, the network can be attacked because of vulnerabilities in the infrastructure, configuration fault, or load balance. If you do not fix network security issues in time, it can cause a severe problem for the app in the future. It makes the NetOps teams work closely with SecOps to ensure the safety of the network.

ANALYTICS-DRIVEN ASPECT

To make a network-related decision, you need to have all the data about network operations. It can be data on network performance during traffic surges, the network quality, loading time of application, etc. Also, network analysis helps to have accurate predictions, optimize operations and catch the problems before they occur.

AUTOMATION-FRIENDLY ASPECT

The main principle of NetOps 2.0 is to ensure automation and orchestration of the network. It would help if you decrease the manual work of network changes, as it can be a reason for mistakes. Automation of the processes makes the network agile and protected from errors by removing the need for human attention and increasing the pace at which network services are deployed.

As it has been already mentioned, NetOps uses some DevOps tools to manage and operate networks, as these processes have related concepts and philosophies. Those tools were created to help DevOps teams set pipelines and upgraded to ensure network automation.

In the first place, several platforms help to manage the network. Those platforms have a graphic UI that makes them easy to use for engineers without broad experience in programming. At the same time, it can be expensive to use one platform for multiple network vendors.

To decide on using NetOps tools, you need to focus on the process philosophy. These are the basic principles that are necessary to note while using NetOps tools:

· Tools need to work in local, private, or hybrid cloud environments and not depend on vendors.

· Can ensure network automation, orchestration, and data analysis.

· Ensure network safety.

· It can be integrated with existing IT systems and services.

· Allow DevOps and SecOps to have access to specific network components.

· Provide real-time network performance monitoring.

· Support collaboration between NetOps, DevOps, and SecOps teams.

· Allow a quick detection of network problems.

Exercise 1. . Look up new words given below in your dictionary and memorise them.

Agile, scalable, rapid pace, to deploy, spike, rigid, to endorse, intervention, vulnerability, accurate.

Exercise 2. Answer the following questions.

1) What do the NetOps 2.0 support?
 2) How do the NetOps 2.0 signals move?
 3) What are main advantages of the NetOps 2.0?
 4) What are main aspects of the NetOps 2.0?
5) What are basic principles in using the NetOps 2.0?
Exercise 3. Put a tick(✓) if the sentence is right and a cross (×)if it is wrong. Correct the mistakes.
1) NetOps 2.0 braces the network infrastructure but can’t handle the rapid pace of DevOps initiatives and the network changes that come along with them.
2) NetOps 2.0 endorses the automation of repeatable and predictable tasks, like those involved in making network configuration changes, data collection from nodes, etc.

3) If you do not fix network security issues in time, don’t worry, it does not cause a severe problem for the app in the future. It makes the NetOps teams work closely with SecOps to ensure the safety of the network.

4) The network must be flexible, but it also must be secure.
5) In the first place, several platforms help to manage the network, they have a graphic UI that makes them easy to use for engineers without broad experience in programming.
Exercise 4. Fill in the gaps.
tech buzzword Due to this improve keys tools provides protocols to be overcome end users “network operations” embrace network between includes to provide simple As a result are deployed support inefficient automated system
To many, NetOps may seem like just another _____________, but it is a very important area relevant to a variety of roles, procedures, and __________ within an organization. From network engineers to app developers, NetOps ____________benefits for many in IT.

The term NetOps is short for ______________, but this doesn’t tell its whole story. Much like automation and DevOps, or software-defined networking, NetOps involves the skills, people, and __________deployed by an organization to deliver a network of services for its employees or____________.

It tries to help engineers meet the needs of their business and ____________network agility, and involves linking changes in a ____________ with the services and applications as and when they are deployed. This __________ analytics, automation, and some cloud-based services _______________a link between the teams that run them and the engineers that fix and maintain them.

Through NetOps, the traditional barriers that exist____________ network, operational, and data teams are expected ____________ by workplace teams. ___________, any NetOps project must reach beyond the realm of networking.

However, implementing NetOps throughout your business isn’t as ___________as turning on a switch and seeing a change happen overnight. Instead, it’s a process made up of small steps, and organisations must take this into account to ____________the ideas behind NetOps. ______________, the process involves making changes to culture and internal structures instead of a quick-fix reorganisation.

Network automation is one of the _____________to implementing a change of this nature. In this kind of structure, applications ______________with constant improvement in mind, and a network needs to _____________ new services and features quickly.

Ordinarily, one team would examine the issue before handing it on to the next, but this is______________. Engaging in this process via NetOps could bring the relevant teams together under one umbrella to create an automated process. This will involve the design, documentation, testing and operating processes involved in solving the issue. An _____________ would be able to collect diagnostic information the engineers would seek anyway and bring it together in one place.

Exercise 5. Find some more information about NetOps 2.0. Make a presentation.

Lesson 15
DEVOPS LIFECYCLE: SEVEN PHASES TO OPTIMIZE DEVELOPMENT PROCESSES

DevOps is a software process development methodology. It brings together development (Dev) and technical support operations (Ops) to improve performance through an automated system in the processes of released applications. DevOps assigns responsibilities to each participant through communication. A specialist who implements a DevOps methodology in projects is called a DevOps engineer. He or she must know different areas, be both a developer and a manager, and also a tester and a technical support specialist. They must be familiar and skilled in all areas of information technology.

There are seven phases of DevOps optimization in the development processes. Each stage offers various DevOps tools, and here we outline the most common.

1. CONTINUOUS DEVELOPMENT

The first phase of the DevOps lifecycle, continuous development, combines planning and coding. During the planning phase, you don’t generally use any kind of DevOps tools, but the maintenance of code requires some additional control. Developers often use GIT, TFS, GitLab, or Subversion to build a stable version of the application code.

2. CONTINUOUS INTEGRATION

These are frequent changes to the code that may happen every week or even every day, depending on the tasks involved. This phase is considered the main one in the DevOps lifecycle, with new code integrations constantly being written into the existing code. The most used tool here is Jenkins. With continuous deployment, it is known as CI/CD, the most known DevOps practice.

3. CONTINUOUS TESTING

Some people consider the testing phase prior to integration. Developers test for software bugs using automated and manual testing. DevOps testing tools include TestNG, Selenium and JUnit.

4. CONTINUOUS FEEDBACK

Here the team analyzes improvements made during the integration and testing phases. The customers share their thoughts about the software, and developers evaluate changes in the final product.

5. CONTINUOUS MONITORING

 The monitoring phase is the key to proper application development. Here, developers continuously monitor every functionality to ensure they are working properly. That helps to determine threats and root system errors, as well as resolve most security issues. Monitoring tools in DevOps include Nagios, NewRelic, Sensu and Splunk.

6. CONTINUOUS DEPLOYMENT

Continuous deployment is always active during the DevOps lifecycle, even after you launch an application for everyone to use and start receiving traffic. Here, you release the code to the production server/s and keep updating during the entire production process. The top DevOps tools here are Ansible, Puppet, and Chef, with Vagrant and Docker for containers.

7. CONTINUOUS OPERATIONS

CO is the last and the shortest phase of the lifecycle. Here, you automate the release and update processes.

On the whole, DevOps is an efficient way to develop an application or product. It increases efficiency and saves time by allowing users or customers to directly contribute to the product or application development process by exchanging continuous feedback.

DevOps is a promising area that continues to evolve. The versatility of DevOps specialists is highly valued, and ongoing active learning and adoption of new practices and approaches will keep you busy in the workplace. Consider DevOps phases to choose the best DevOps tools to deliver the project successfully. It is essential to find a good software development company that provides DevOps services and has solid experience in delivering DevOps solutions.

Exercise 1. Look up new words given below in your dictionary and memorise them.

development methodology, improve performance, released applications, participant, assign, implement, technical support specialist, deployment, software bugs, evaluate, root system errors, contribute to.
Exercise 2. Correct the mistakes.

1. DevOps are used to manage and operate networks.

2. DevOps engineer can be a developer or a technical support specialist.
3. During continuous development phase you don’t generally use any kind of DevOps tools.

4. Continuous testing is considered to be the main one in the DevOps lifecycle.

5. Feedback phase is used to check every functionality to ensure they are working properly.

Exercise 3. Write questions for the following answers.
1. __

He or she must know different areas, be both a developer and a manager, and also a tester and a technical support specialist.

2. __

There are seven phases of DevOps optimization in the development processes.

3. ___

Because new code integrations is constantly written into the existing code.
4. ___

Developers use automated and manual testing.

5. __

The customers share their thoughts about the software.

6. __

The top DevOps tools here are Ansible, Puppet, and Chef, with Vagrant and Docker for containers.

7. __

They increase efficiency and save time by allowing users or customers to directly contribute to the product or application development process by exchanging continuous feedback.

Exercise 4. Complete the text with a word from the list.
feedback software share approach type solutions needs methodology input automate
DevOps 1. _______ the idea that although their skill sets and daily work look different, development and IT operations teams work better together because their 2. ________determines the output of the other team. Without the 3. ________ of the operations team that uses the tool, the development team won’t evolve the most relevant 4. ______ or troubleshoot the most urgent bugs. Without the expertise of the development team, the operations team will not always know what’s possible to develop and 5. _______ in their toolkit. With a DevOps 6. _______, these disparate teams come together on an iterant basis to ensure that 7. ___________ is developed to optimize for current 8. ______ and to brainstorm for future needs. Many people falsely assume that DevOps is always a 9. ______ of software, when in reality, it’s more of a 10. _______ that supports technology development and deployment.

Exercise 5. Make a presentation on how to optimize development processes.

References

https://padakuu.com/characteristics-of-software-in-software-engineering-790-article

https://www.toptal.com/freelance/why-design-documents-matter

https://www.lucidchart.com/blog/how-to-create-software-design-documents

https://www.perforce.com/blog/alm/how-write-software-requirements-specification-srs-document

https://trio.dev/blog/software-quality-assurance

https://krazytech.com/technical-papers/artificial-intelligence

https://cprimestudios.com/blog/what-netops-do-you-need-those-engineers-your-company
https://cprimestudios.com/blog/what-aws-devops-and-why-you-should-consider-it-your-app-development
https://cprimestudios.com/blog/what-application-migration-common-strategies-best-practices
https://cprimestudios.com/blog/best-devops-tools-list-technologies-use-2021
https://cprimestudios.com/blog/what-netops-do-you-need-those-engineers-your-company
https://www.enterprisenetworkingplanet.com/management/netops-vs-devops/

https://cprimestudios.com/blog/best-devops-tools-list-technologies-use-2021
https://www.enterprisenetworkingplanet.com/guides/devops-tools/

PAGE
52

