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Abstract— The new criterion for selecting the frequencies of 
the test polyharmonic signals is developed. It allows uniquely 
filtering the values of multidimensional transfer functions – 
Fourier-images of Volterra kernel from the partial component of 
the response of a nonlinear system. It is shown that this criterion 
significantly weakens the known limitations on the choice of 
frequencies and, as a result, reduces the number of interpolations 
during the restoration of the transfer function, and, the more 
significant, the higher the order of estimated transfer function. 

Keywords— frequency limitations; nonlinear system; 
polyharmonic signals; Volterra kernels; frequency characteristics 

I.  INTRODUCTION 
Nowadays, integro-power Volterra series are widely used to 

model complex nonlinear dynamical systems [1]. The problem 
of constructing a model (identification) of a system in the form 
of Volterra series consists in determining of multidimensional 
weighting functions – Volterra kernels or multidimensional 
transfer functions – Fourier transforms of Volterra kernels 
based on data of experimental input-output system tests in the 
time [2-4] or frequency [4-8] domain. 

In [4], the method of nonparametric identification of 
nonlinear dynamical system in the frequency domain using 
polyharmonic signals as test actions is considered. In this case, 
the multidimensional amplitude- and phase-frequency 
responses of system are found. At determining of 
multidimensional amplitude- and phase-frequency responses it 
is necessary to impose certain limitations on choice of the 
frequencies of test polyharmonic signals and, consequently, the 
transfer functions values at these "forbidden" points in the 
multidimensional frequency space can be obtained only by 
application of the interpolation procedure. In practical 
implementation of the method, it is necessary to minimize the 
number of such uncertainty points in the multidimensional 
transfer functions definition interval, i.e. strive to provide a 
minimum of limitations on the choice of test signal 
frequencies. 

The new frequency selections less restrictive than existing 
[4-7] are proposed. They significantly reduce the number of 
uncertainty points. 

II. MAIN PART 
In general, the "input-output" ratio for continuous nonlinear 

dynamical system with zero initial conditions can be 
represented as the integral power Volterra series [1–3]: 
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where ( )tx  and ( )[ ]txy  — input and output signals of the 
system, respectively; ( )nnw ττ ,...,1  — weighting function, or 
Volterra kernel of nth order, that is symmetric with respect to 
real variables τ1, …,τn; ( )[ ]txyn  — nth partial component of 
response of the system; t — current time.  

The construction of a model of a nonlinear dynamical 
system in the form of Volterra serie consists in choosing the 
type of test actions x(t) and development of an algorithm that 
would allow for the measured output signals y(t) derive the 
partial components ( )[ ]txyn  [9], and to determine using them 
the Volterra kernel wn(τ1,…,τn) or its Fourier–images 
Wn(jω1,…,jωn) respectively for modelling of the system in time 
or frequency domain. 

Fourier–image of the Volterra kernel of nth order [2]: 
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where nF  — n–dimensional Fourier transform. 
Nonlinear system model based on the VS in frequency 

domain can be represented as: 
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where 1−
nF  – inverse n-dimensional Fourier transform; 

( )ijX ω  – Fourier-image of the input signal.  



Nonlinear dynamical system identification in the frequency 
domain comes to determination at set frequency of the values 
of the amplitude and phase of multidimensional transfer 
function – Multidimensional amplitude- and phase-frequency 
responses, which represent the modulus and phase of the 
multidimensional Fourier transform of nth order Volterra kernel 
respectively, 
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where Re and Im – the real and imaginary parts of the 
complex function of n-variables, respectively. 

In frequency domain, the test polyharmonic actions are 
used for identification. They are represented as such signals 
[4]: 
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                                   (6) 
where n – order of estimated transfer function; kkA ω,  and 

kϕ  — respectively, the amplitude, frequency and phase of 
the kth harmonic. To simplify the calculations, amplitudes 

kA  are assumed to be identical, and phases kϕ  – to be 
equal to zero. 

At identification of the nonlinear systems in frequency 
domain, limitations on the choice of the frequencies of test 
polyharmonic signal are necessary. For example, the partial 
component of the second order [4] 
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If to extract the harmonic components with frequency 

ω1+ω2 from this expression, and taking into account the 
symmetry of Volterra kernel [1], we practically need to derive 
only one harmonic with a doubled amplitude, then we obtain 
values for the module and the phase of the Volterra kernel 
Fourier transform of the second order. It is necessary to apply 
filtration to determine the transfer function, i.e. derive the 
harmonic with frequency ω1+ω2. To uniquely identify the 
informative harmonics, it is necessary the frequencies of the 
harmonic components in (7) to be different. It is necessary to 
impose some limitations on the choice of the frequencies of the 

test polyharmonic signal, which ensure the inequality of the 
combination frequencies in the harmonics of the output signal. 
Similar restrictions are also necessary in the case of 
determination of the nth order transfer function (n>2). The third 
partial component also contains informative and "extra" 
harmonics [4]. 

Limitations on the choice of the frequencies of the test 
polyharmonic signal, considered in [4-7] are different. 

Limitation on the choice of frequencies [5-7], which 
requires incommensurability of the frequencies of the test 
signal, i.e. the inequalities between any linear combinations of 
frequencies with arbitrary integer coefficients are equivalent to 
requiring the numerical irrationality of all frequencies except 
one: 
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where R — the set of real numbers; 

Q — the set of rational numbers; 
R\Q — difference of sets R and Q — the set of irrational 

numbers. 
The admissibility of only one rational frequency follows 

from the fact that already for two frequencies it is possible to 
choose such integer multipliers that will give the same result 
when multiplied by these frequencies. As such factors, it can be 
used the numerator and the denominator of their ratio. Indeed, 
let ω1=А and ω2=В, where А and В — rational numbers. Then 

n
m

В
А
=  — rational number; m∈Z and n∈N, where Z and N — 

respectively, the set of integers and natural numbers; and 
nω1=nА=mВ=mω2. To prove the impossibility of an even 
larger number of rationally-numerical frequencies, it is 
sufficient to consider any two sums  

It should be noted that this restriction, in addition to the 
irrationality of frequencies, also requires the irrationality of 

their ratio, i.e. ,\
2

1
21 QR∈

ω
ω

⇒≠∀
p

ppp , because otherwise this 

restriction is also violated. 

Another limitation on the frequency range [4], also requires 
an inequality between any linear combination of frequencies 
with different integer coefficients, but only for the coefficients, 
whose absolute value of sum is no more than order of 
determined transfer function, i.e. 
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Since this restriction is related to the order of the 
determined transfer function, it is weaker than the previous 
one. 

Both restrictions define only sufficient conditions for the 
frequencies selection, because the possibility of unambiguous 
frequency filtering, but not vice versa, follows from 
performance of any of them. Let us consider an example of a 
weaker restriction [4]. Let the order of the determined Volterra 



kernel is n=2. Then, in accordance with (7), the second partial 
component will contain the following combination frequency: 

ω1+ω2; 2ω1; 2ω2; ω1–ω2; –ω1+ω2; 0.                   (8) 
Assuming that any combination frequencies other than the 

first are equal, for example, the third and fourth one: 2ω2=ω1–
ω2, i.e. ω1=3ω2, then the expressions (8) take the form: 

4ω2; 6ω2; 2ω2; 2ω2; –2ω2; 0.                         (9) 
Comparing combination frequency in (9), it is easy to see 

that the first of them does not coincide with any other. Thus, if 
this restriction is violated, the possibility of unambiguous 
filtering of the harmonic with the first combination frequency 
listed in (8) remains unchanged. 

In the general case, for arbitrary n, in the partial component 
for the definition of transfer function only harmonics of one 
combination frequency are used, therefore, there is no need in 
inequality of all combination frequencies among themselves, 
i.e. weaker restrictions on the choice of frequencies are 
possible. The following theorem gives the minimum of 
restrictions. 

The theorem on the choice of frequencies. For the 
uniqueness of the filtration from the nth partial component of 
the harmonic response with the combinational frequency 

ω1+ω2+…+ωn                                  (10) 
it is necessary and sufficient that the latest does not equal the 
combinational frequencies of the form: k1ω1+k2ω2+…+knωn, 
where coefficients { ki | i=1,2,…, n } satisfy the conditions: 

— power of a finite set of negative coefficients (ki<0) 
can take values from 0 to ,

2



n  where [] — function of 

extraction of an integer part of a number; 
— sum of absolute values of coefficients ki is now more 

than order n of determined kernel: ;
1
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— sum of absolute values of coefficients ki is comparable 
by modulo 2 with the order n - the order of the kernel being 

determined: ), 2 mod ( 
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Proof. All the combination frequencies of the nth partial 
component can be found by substituting the expression (6) in 
the nth member of VS (1) for the test polyharmonic signal in 
complex form 
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          (11) 
After substitution 
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For further transformations, a generalization of the 
binomial formula is used [10]: 
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where { }nmsm ,0=∈N  – all possible combinations of n by 
m; 

{ }nmrsr ,1+=  – combination that complements all 
possible combinations of n by m to a permutation of n natural 
numbers. 

Since here each combination { }nmsm ,0=  corresponds 
only one complementing one, then each summand in equation 

(13) represents the sum of 
)!(!

!
mnm

nC m
n −
=  terms. We 

transform into (12) the product of n terms, each of which 
consists of 2n summand, according to the formula (13): 
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Taking into account the symmetry of the kernels 

wn(τ1,…τn) instead of combinations – { }nmsm ,0=  can be 

considered m
nC  of set of number { }m,1 , where nm ,0= . At 

m=0 these sets of combinations and numbers are empty sets. 
Then 
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After multiplying the sums in the products we obtain 
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Because of the reduction of such terms in the exponents, we 

obtain (16) 
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After the transformations we obtain  
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    (18) 
The replacement of the integrals by the corresponding 

Fourier-images Volterra kernel gives 
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After combining complex conjugate functions in expression 

(19), the nth partial component of the nonlinear dynamical 
system response 
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A special case of application of this formula when n=2 is 
known [4], and a result similar to the expression (20) is 
represented by expression (7). Thus, the frequencies in the 
partial component are expressed by the formula: 
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The coefficients in the expression (21) for combination 
frequency have the following properties: 

— the sum of the moduli of the coefficients does not 
exceed n; 

— the number of negative summands of m in 

combination frequency satisfies the inequality 0 ≤ m ≤ 




2
n ; 

— among the frequencies { }nkiki
,1=ω  possible repetitive 

frequency, i.e. in (20) it is possible to reciprocally 
"cancelation" of the same frequencies with coefficients of 
opposite sign. An example of this is the expression (7), where 
the last two summands have a degenerate combination 
frequency ω=0. Therefore, the sum of the moduli of the 
coefficients is equal to the order of the determined transfer 
function minus the doubled number of possible "cancellation", 
because at one "cancellation" two combination frequencies are 
mutually destroyed. This is equivalent to the simultaneous 
parity or oddness of the sum of the moduli of coefficients and 
order of determined transfer function, or the comparability of 
the latest by modulo 2. 

A single-valued filtration of harmonics with combination 
frequency (21) is possible only if it is not equal to the 
remaining combination frequencies in the partial component. 
According to (21), the partial component contains harmonics 
only with combination frequency, given in the statement of the 
theorem. Therefore, from single-valued filtration follows the 
inequality of combination frequency (10) to the remaining 
combinational frequencies. Thus, the necessity of the 
formulated conditions on the choice of frequencies is proved. 

The proof of the sufficiency is based on the fact that the 
combination frequency (10) inequality to another combination 
frequency from the statement of the theorem, which follows 
from (20), makes it possible to uniquely filter the harmonic 
with the desired combination frequency from the partial 
response component of the identifiable nonlinear dynamical 
system. 

Limitation on the choice of frequencies [5] is not applicable 
in practice, since it requires irrationality of frequencies, which 
is impossible with the use of a computer to determine transfer 
function. This follows from the limitations of the bit grid of the 
computer, i.e. using of rational numbers only. 

The limitation on the choice of frequencies given in [4] can 
be applied in practice, but as shown in (8) and (9), 
unnecessarily limits the choice of the used frequencies. 
Generally speaking, this restriction is applicable not only for 
filtering harmonics with frequencies (10), but also for any other 
harmonics in the partial component of the response. The 
application of this restriction in the determination of transfer 
function of the second order requires fulfillment of five 
inequalities satisfaction for frequencies of the input signal: 

ω1≠0, ω2≠0, ω1≠ω2, 3ω1≠ω2 и ω1≠3ω2. 
During the determination of the third order transfer 

function, it is already required to ensure the fulfillment of 45 
inequalities between the frequencies of the input signal: 

ω1≠0, ω2≠0, ω3≠0, ω1≠ω2, ω1≠ω3, ω2≠ω3, ω1≠ω2+ω3, 
ω2≠ω1+ω3, ω3≠ω1+ω2, 

2ω1≠ω2, 2ω2≠ω1, 2ω3≠ω1, 2ω1≠ω3, 2ω2≠ω3, 2ω3≠ω2, 
2ω1≠ω2+ω3, 2ω2≠ω1+ω3, 2ω3≠ω1+ω2, 

2ω1≠ω2–ω3, 2ω2≠ω1–ω3, 2ω3≠ω1–ω2, 2ω1≠–ω2+ω3, 2ω2≠–
ω1+ω3, 2ω3≠–ω1+ω2, 

3ω1≠ω2, 3ω2≠ω1, 3ω3≠ω1, 3ω1≠ω3, 3ω2≠ω3, 3ω3≠ω2, 
3ω1≠ω2+2ω3, 3ω2≠ω1+2ω3, 3ω3≠ω1+2ω2, 3ω1≠2ω2+ω3, 

3ω2≠2ω1+ω3, 3ω3≠2ω1+ω2, 
3ω1≠ω2–2ω3, 3ω2≠ω1–2ω3, 3ω3≠ω1–2ω2, 3ω1≠–2ω2+ω3, 

3ω2≠–2ω1+ω3,; 3ω3≠–2ω1+ω2, 
4ω1≠ω2+ω3, 4ω2≠ω1+ω3 и 4ω3≠ω1+ω2. 

The proposed new frequency limits are designed to isolate 
only harmonics with combination frequency (10). Their 
application will allow expanding maximally the set of 
admissible frequencies used in identification. In addition, it 
allows reducing the number of logical conditions (inequalities) 
in choosing frequencies that determine the possibility of 
unambiguous filtering of the harmonic with the required 
combination frequency. Thus, the application of this constraint 
in the determination of the second order transfer function 
requires fulfillment of not five but three inequalities between 
the frequencies of the input signal: 

ω1≠0, ω2≠0 and ω1≠ω2. 

At determining of the third order transfer function, it is 
required to provide the fulfillment of only 15 inequalities 
between the frequencies of the input signal: 

ω1≠0, ω2≠0, ω3≠0, ω1≠ω2, ω1≠ω3, ω2≠ω3, 2ω1≠ω2+ω3, 
2ω2≠ω1+ω3, 2ω3≠ω1+ω2, 

2ω1≠ω2–ω3, 2ω2≠ω1–ω3, 2ω3≠ω1–ω2, 2ω1≠–ω2+ω3, 2ω2≠–
ω1+ω3 and 2ω3≠–ω1+ω2. 



III. CONCLUSIONS 
Thus, the proved theorem on the choice of the frequencies 

of the test polyharmonic signal in the identification of 
nonlinear dynamical system using multidimensional transfer 
functions significantly weakens the known conditions [4]. The 
use of new conditions reduces the number of interpolations 
during the recovery of transfer function, and this is more 
significant, the higher the order of the estimated transfer 
function. 
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