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ABSTRACT 

 
The article describes an approach to modelling and forecasting non-linear non-stationary time series for various purposes using 

Bayesian structural time series. The concepts of non-linearity and non-stationarity, as well as methods for processing non-linearity’s 

and non-stationarity in the construction of forecasting models are considered. The features of the Bayesian approach in the 

processing of nonlinearities and nonstationary are presented. An approach to the construction of probabilistic-statistical models based 

on Bayesian structural models of time series has been studied. Parametric and non-parametric methods for forecasting non-linear and 

non-stationary time series are considered. Parametric methods include methods: classical autoregressive models, neural networks, 

models of support vector machines, hidden Markov models. Non-parametric methods include methods: state-space models, 

functional decomposition models, Bayesian non-parametric models. One of the types of non-parametric models is Bayesian structural 

time series. The main features of constructing structural time series are considered. Models of structural time series are presented. 

The process of learning the Bayesian structural model of time series is described. Training is performed in four stages: setting the 

structure of the model and a priori probabilities; applying a Kalman filter to update state estimates based on observed data; 

application of the “spike-and-slab” method to select variables in a structural model; Bayesian averaging to combine the results to 

make a prediction. An algorithm for constructing a Bayesian structural time series model is presented. Various components of the 

BSTS model are considered and analysed, with the help of which the structures of alternative predictive models are formed. As an 

example of the application of Bayesian structural time series, the problem of predicting Amazon stock prices is considered. The base 

dataset is amzn_share. After loading, the structure and data types were analysed, and missing values were processed. The data are 

characterized by irregular registration of observations, which leads to a large number of missing values and “masking” possible 

seasonal fluctuations. This makes the task of forecasting rather difficult. To restore gaps in the amzn_share time series, the linear 

interpolation method was used. Using a set of statistical tests (ADF, KPSS, PP), the series was tested for stationarity. The data set is 

divided into two parts: training and testing. The fitting of structural models of time series was performed using the Kalman filter and 

the Monte Carlo method according to the Markov chain scheme. To estimate and simultaneously regularize the regression 

coefficients, the spike-and-slab method was applied. The quality of predictive models was assessed. 
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INTRODUCTION 

Forecasting of complex systems is one of the 

important areas of modern science of data analysis 

and processing [1, 2], [3]. One of the most 

developed and researched areas is forecasting based 

on time series. Time series data reflect the dynamic 

behaviour and cause-and-effect relationships of the 

main processes in a complex system and provide 

basic material for making forecasts and studying the 

development of the system. However, the basis for 

most forecasting methods is models of linear and 

stationary processes. But the effective prediction of  
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future states of a real complex system based on time 

series remains a research challenge, mainly due to 

the non-linear and non-stationary dynamic behaviour 

of the system and their various variants in the 

systems under study. The problem of taking into 

account and processing nonlinearities and 

nonstationary in time series forecasting is one of the 

main tasks of constructing adequate predictive 

models of the process under study. Models of this 

type should include a complete representation of the 

dynamics of nonlinear and non-stationary systems 

based on observed real data. 

One of the methods for processing 

nonlinearities and nonstationary is the Bayesian 

approach.  
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This approach means that a variety of methods 

are used to solve the following problems: 

– construction of probabilistic-statistical models 

of various types (assessment of the structure and 

parameters) using statistical data and expert 

assessments;  

– calculation of the final results based on the 

created model according to the problem statement: 

estimates of forecasts, control actions, estimates of 

variables and parameters at the output of filters, 

pattern recognition, finding solutions for managing 

the processes and objects under study, etc.; 

– analysis of the correctness of the obtained 

results according to the corresponding sets of 

statistical quality criteria. 

The methodology of the Bayesian approach 

includes the following methods: recursive Bayesian 

estimation: filtering, forecasting, smoothing 

variables; hidden Markov models; optimal recursive 

Kalman filters (KF); granular (particle) filters (GF); 

static Bayesian networks (BN); dynamic Bayesian 

networks (DBN); Markov localization (ML) models; 

Bayesian maps; Bayesian method of data processing 

and decision making based on hierarchical models; 

Bayesian regression, generalized linear models; 

Bayesian structural time series. 

The model Bayesian structural of time series 

(BSTS) was proposed by E. Harvey [4] as a theory 

of structural models of time series. Unlike traditional 

statistical ARIMA models, structural time series 

models consist of unobservable components such as 

trends and various seasonality components. In 

addition, models can naturally be extended to 

include explanatory variables and work with 

multivariate time series. In the analysis of time 

series in the case of missing observations, state-

space models and methods and recursive equations 

using the Kalman filter are used [5]. State-space 

models are based on Markov processes, since each 

state depends on the previous state. Accordingly, the 

future state is calculated based on the present. The 

model parameters are calculated iteratively, and this 

allows the development of high-dimensional models. 

From a technical point of view, state-space models 

and the Kalman filter play a key role in the statistical 

processing of structural time series models. The 

structural time series model uses the Markov Chain 

Monte Carlo (MCMC) sampling algorithm for 

posterior distribution modelling, which smoothest 

the predictions obtained using a large number of 

potential underlying models [6]. The MCMC 

approach using the Gibbs algorithm limits the 

preselection, it needs to be paired with probability or 

the Metropolis-Hastings algorithm to speed up 

convergence in multivariate models. 

The article considers an approach to modelling 

and predicting non-linear non-stationary processes 

based on Bayesian structural time series. 

ANALYSIS OF LITERARY DATA 

Most of the prediction methods described in the 

literature assume linearity and/or stationarity of the 

underlying dynamic behavior of the system [7], or 

consider simple forms of non-stationarity such as 

well-defined trends and variations. However, real 

systems exhibit mostly non-linear and non-stationary 

behavior, which greatly complicates obtaining 

accurate predictions. 

The main concept that characterizes real data is 

the concept of non-linearity. In this case, the non-

linear time series y(t) is a signal coming from a non-

linear dynamic process. In other words, this is a 

partial solution of a nonlinear stochastic differential 

(or difference) equation of the following form 

dx/dt = F(x,,).    (1) 

This equation controls the development of the 

process states x(t) from the initial state x(0), where 

 - is the process parameter vector and  - is the 

system noise. The solution of equation (1) is 

represented as x(t) = (x(0), t). Here,  (x(0), t) is 

called a flow or state transition function. Many real 

systems demonstrate such non-linear stochastic 

dynamics, and the solutions of such systems, called 

non-linear time series, demonstrate non-Gaussian, 

multimodality, time irreversibility, and other 

properties [8]. 

Most real non-linear dynamic systems operate 

in transient (non-stationary) conditions. From a 

statistical point of view, stationarity of time series 

y(t) requires that the joint distribution of each dataset 

[y(t + 1), y(t + 2), …, y(t + k)] be invariant i (i = 

1,2, …,k) for any k. Even under non-stationary 

conditions, the dynamics of a complex system can 

be viewed as a union of much simpler piecewise 

transitional or near-stationary behaviors. Most often, 

non-stationarity is explained by certain deterministic 

and stochastic tendencies in the moments. 
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Various non-linear and non-stationary time 

series forecasting methods presented in the literature 

are considered and classified based on how they are 

applied to predict time series data for real-world 

problems [1, 2], [3, 8], [9, 10], [11, 12]. Prediction 

methods can be classified based on prerequisites or 

approaches to overcome non-stationarity and non-

linearity, as they assume the following features: a 

known trend shape, piecewise stationarity of signals, 

progressively varying parameters, or decompo-

sability of a signal into stationary segments in the 

transformed domain, and they are either parametric 

or non-parametric, depending on whether the 

predictor takes a certain form or is built solely in 

accordance with the data (for example, the number 

of latent variables may vary). 

Parametric models. The parametric prediction 

model defines an explicit functional form with a 

finite number of parameters θ to describe the 

relationship between input data consisting of internal 

and external variables and their autoregressive 

(retarded) (lag) terms, and output data consisting of 

future values of the internal variable y(t + 1). Model 

parameters are estimated from time series 

implementations. Parametric models include: 

classical autoregressive models, neural networks, 

models of support vector machines, 

Classical autoregressive models. This group 

includes models such as autoregressive (AR) or 

autoregressive moving average (ARMA), which are 

the most widely studied due to their application in 

modeling stationary processes. But they are usually 

unable to accurately predict the development of a 

non-linear and non-stationary process. Models such 

as autoregressive integrated moving average 

(ARIMA) based on the evolution of increment yt = 

yt +1- yt or 2yt, are sometimes used to remove/reduce 

first order non-stationarity. However, the difference 

tends to increase high-frequency noise in the time 

series, and more effort is required to determine the 

order of the ARMA model. To incorporate non-

linearity into the ARMA framework, advanced 

models such as thresholding AR (TAR) models [9, 

10], self-excited AR (SETAR) models [11], and 

smooth transition AR (STAR) models [12] are used. 

They were developed for non-linear forecasting. 

However, these methods are generally limited to 

non-linear stationary time series forecasting using 

local linearity assumption implicit with an 

autoregressive structure. 

Neural networks. Neural networks (NN) are 

used for non-linear time series forecasting in many 

applications [13, 14], [15, 16], [17]. These models 

do not require preliminary assumptions about the 

form of nonlinearity and are universal 

approximations [16]. Non-linear feed-forward neural 

network (FNN) models parameterized with the back-

propagation algorithm have been used to predict 

non-linear time series [18]. They are known to 

outperform traditional statistical methods such as the 

regression approach and the Box-Jenkins approach 

in a functional approximation and assume that the 

dynamics underlying the time series are independent 

of time. Feedforward neural networks FNNs with 

recurrent feedback connections have also been 

considered for time series forecasting [17]. Dynamic 

recurrent neural network models (RNN) make it 

possible to predict non-linear time series that occur 

in various areas [19, 20]. In [18], neural network 

models (RPNN) with recurrent functions were 

studied for predicting nonlinear signals. 

Models of support vector machines. Support 

Vector Machine (SVM) model based forecasting 

methods use a class of generalized regression 

models such as Support Vector Machine Regression 

(SVR) and SVM Least Squares (LS-SVM) [22], 

which are parameterized using convex quadratic 

programming methods [23]. The SVM displays the 

input data xi, which may consist of autoregressive 

terms of internal and exogenous variables. The 

scalar product of templates is expressed as a linear 

combination of the specified kernel functions, on the 

basis of which SVM are subdivided into linear, 

Gaussian, polynomial, based on a multilayer 

perceptron, or radial basis function (RBF) and the 

corresponding classifiers are built. A linear 

repressors is then built by structural risk 

minimization (upper bound on the generalization 

error), resulting in a better generalization than 

traditional methods [24]. In [25], the use of SVM for 

predicting chaotic time series was studied. They 

showed that SVM have higher prediction accuracy 

than NN models and use fewer parameters. In [25], 

predictors based on the least squares (LS) and RBF 

method were considered and a local SVM (defined 

in the reconstructed state space) was developed for 

predicting chaotic time series. Such SVM models 

can provide higher accuracy for long-term 
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forecasting compared to local polynomial predictors 

based on LS and RBF. 

Hidden Markov Models. Most of the models 

discussed above involve batch processing, where the 

model is set up and periodically updated using 

batches of historical data. However, dimensionality 

limitation due to excessive computational resources, 

memory requirements, and large data sizes prevent 

their applicability to many real-world problems, 

especially for online process monitoring. A variety 

of sequential prediction models such as hidden 

Markov models (HMM) [26] have been explored to 

overcome this limitation. Some HMM have been 

used to predict non-linear time series such as 

extended Kalman filters (EKF) [27] and particle 

filter (PF) models [28, 29]. 

Nonparametric models. Parametric models can 

make accurate predictions when the models are set 

correctly, but they become suboptimal when the 

underlying dynamics are unknown or undetectable. 

In addition, the problem of model displacements 

persists because the dynamics of most complex real 

systems are inherently non-linear and non-

stationary. Non-parametric models can provide a 

complete representation of dynamics based on 

observed data, do not impose any structural 

assumptions, and simplify modeling efforts. 

Consequently, the accuracy of modeling and 

forecasting for non-linear and non-stationary time 

series is improved. However, compared to 

parametric models, non-parametric models typically 

require large datasets from which information about 

the underlying relationships can be efficiently 

derived. The most well-known non-parametric 

models for predicting non-linear and non-stationary 

time series are state-space neighborhoods, Bayesian 

non-parametric and functional decomposition 

models. 

State-space based models. State-space-based 

approaches predict future values by selectively 

resampling historical observations, with the basic 

assumption being that future behavior changes 

smoothly, i.e. observations similar to the target may 

have similar outcomes. These models are suitable 

for predicting the dynamics of complex systems due 

to their simplicity and accuracy [30]. 

In the nearest neighbor resampling (KNN) 

approach in [31] with multiple predictor variables, 

each predictor was assigned an influence weight to 

identify nearest neighbors. [32] explored a number 

of approaches based on the KNN method for 

predicting chaotic time series, for example, the zero-

order approximation (single nearest neighbor), 

nearest neighbors (multiple neighbors), and the 

model distance weighted approximation (weighted 

average distance of several neighbors). 

For most complex dynamical systems, it is not 

possible to observe all relevant variables. The state 

space reconstructed from the time-delay embedding 

has a strong resemblance to the base state space, as 

noted in [33] and a new way to predict non-linear 

time series was proposed [34]. In [24, 35], [36], a 

local linear model of the reconstructed state space 

was developed for predicting chaotic time series. 

The predicted value of the current observation was 

obtained from the most recent w nesting vectors. 

Next, k nearest neighbors were determined within 

the window width w based on the recurrent property 

of the reconstructed state space. 

In [37], a local polynomial regression model 

was investigated using neighbors and future 

evolutions in the reconstructed state space. An 

ensemble model was then implemented based on the 

nearest neighbor model by selecting a set of 

parameter combinations for the local regression 

model. This ensemble approach reduced the 

parameter uncertainties. 

Functional decomposition model. Among the 

non-parametric models of nonlinear and non-

stationary forecasting in the literature, attention has 

recently been paid to functional expansion models. 

The advantages of this type of model include local 

characteristic time scales and the use of an adaptive 

framework that does not require a parametric 

functional form. These models can be used to 

capture drifts and non-linear modes of any non-

linear and non-stationary processes. Most of the 

models in this category are mixed or hybrid models 

that use the decomposition technique. Among the 

non-parametric decomposition methods, empirical 

mode decomposition (EMD) [38] can decompose 

non-stationary time series into a finite number of 

components called intrinsic mode functions (IMF), 

so that the evolution of each IMF can be explored 

individually using different time scales through 

classical time. Series prediction methods such as AR 

or ARMA models [39, 40]. Since EMD allows the 

original time series to be ideally reconstructed using 

IMF and to isolate the trend and noise components 

from the non-stationary process [41], this improves 

the accuracy of long-term forecasting.  

In [42] presented a two-stage EMD model and 

applied it for long-term forecasting of solvency 

scores. 

Bayesian nonparametric models. Bayesian 

modeling is the process of incorporating prior 

information to visualize the subsequent inference, 

i.e. estimating the conditional distribution p( |y) of 
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the latent model or parameters θ given the observed 

time series y(t) [43]. Unlike other Bayesian methods, 

Bayesian non-parametric models assume that the 

hidden structure here grows with the data. In other 

words, Bayesian non-parametric models look for one 

model from an infinite set of possibilities (that is, θ 

can be infinite-dimensional) whose complexity (the 

number of estimated parameters) adapts according to 

the data. Among Bayesian nonparametric models, 

Gaussian process (GP) models have been most 

widely studied for time series forecasting [44]. The 

GP model provides not only a point estimate, but 

also a full forecast distribution. However, models 

(MP) have two major limitations, namely the 

computational cost of running the inverse matrix and 

the assumption of a stationary covariance function. 

Many attempts to solve these problems have been 

explored in the literature. Of all the solutions, the 

non-stationary covariance functions introduced to 

overcome stationarity assumptions [45, 46] are only 

suitable for simple non-linear and non-stationary 

forms such as linear trends and require additional 

fitting parameters. 

One of the types of Bayesian non-parametric 

models are Bayesian structural models of time series 

(BSTS) [6]. BSTS models have a number of features 

and allow you to perform simulations taking into 

account any prior distributions: the BSTS model 

works with many other options (for example, 

asymmetric priors); BSTS models can be combined 

with Bayesian model averaging methods to eliminate 

the uncertainty associated with model selection; in the 

BSTS model, you can choose variables yourself. The 

article [47] describes in detail the Bayesian principles 

of time series analysis and considers various 

macroeconomic examples. Paper [48] describes a 

Bayesian structural hour series approach to predicting 

the unemployment rate from Google search 

processing data. A feature of the problem under 

consideration is that information on unemployment is 

published periodically with a delay, and search 

queries are processed continuously. The authors 

attempted to predict the unemployment rate using a 

combination of Bayesian structural time series and 

ensemble methods. The article [49] describes the 

principles of averaging the Bayesian model, which 

are used in various methods of data analysis. The 

article shows that averaging the Bayesian model 

allows you to get rid of the uncertainty caused by the 

choice of a non-optimal model. The presented 

examples make it possible to accurately assess the 

uncertainty in the forecasts made. 
Various methods of applying Bayesian 

structural time series make it possible to use them to 

build models taking into account various prior 
distributions, reduce uncertainty when choosing a 
model, and work with different types of distributions 
[49, 50], [51, 52], [53, 54], [55]. 

The article will consider the practical aspects of 
the application of Bayesian structural time series in 
forecasting financial indicators (stock prices). 

PURPOSE AND TASKS OF RESEARCH 

The purpose of the article is to study the 
features of the application of Bayesian structural 
time series to solve the problems of modeling and 
predicting nonlinear and non-stationary processes. 
The objectives of the article are: to determine the 
approach to building probabilistic-statistical models 
based on Bayesian structural models of time series, 
as well as to analyze the various components of the 
BSTS model, with the help of which the structures 
of alternative predictive models are formed. 
Determine the quality of predictive models and 
make a forecast based on the most effective model. 
Obtain experimental confirmation of the 
effectiveness of the proposed approach. 

FEATURES OF BUILDING 
STRUCTURAL MODELS OF TIME SERIES 

Structural time series models have three key 
features for modeling non-linear non-stationary 
processes: 

 The ability to determine the uncertainty in 
forecasts, in connection with which then to quantify 
future risks. 

 Transparency, to understand the mechanism 
of the model.  

 Ability to include external information for 
known factors when there is no relationship in 
existing data. 

The structural time series model can be 
described by a pair of equations [51]. The first, the 

observation equation, relates the observed data 𝑦𝑡 to 
a vector of latent variables 𝛼𝑡 , which is called the 
“state”. The second, the transition equation, 
describes how the latent state evolves over time: 

𝑦𝑡 = 𝑍𝑡
𝑇𝛼𝑡 + 𝜖𝑡, 𝜖𝑡~𝑁(0, 𝐻𝑡),  (2) 

𝛼𝑡+1 = 𝑇𝑡𝛼𝑡 + 𝑅𝑡𝑡, 𝑡~𝑁(0, 𝑄𝑡).     (3) 

The model matrices 𝑍𝑡, 𝑇𝑡, and 𝑅𝑡  are structural 
parameters. They usually contain a mixture of 
known values (often 0 and 1) and unknown 
parameters. The transition matrix 𝑇𝑡 is a square 
matrix, and the matrix 𝑅𝑡  can be rectangular if some 
of the state transitions are deterministic. The 
presence of 𝑅𝑡   in equation (3) makes it possible to 
work with the full-rank variance matrix 𝑄𝑡 , since 
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any linear dependencies in the state vector can be 

moved from 𝑄𝑡 to 𝑅𝑡. Often when implemented, 𝐻𝑡 

is a positive scalar. The residuals 𝜖𝑡 and 𝑡 are 

independent of each other and have a normal 
distribution with mean 0. It is generally accepted 
that a model that can be described by equations (2) 
and (3) is in the form of a state space. A fairly large 
class of models can be expressed in state-space 
form, including all varieties of ARIMA and 
VARMA models. 

The main advantages of the state-space time 
series model are its modularity and flexibility. The 
independent state components can be combined by 
combining their 𝑍𝑡  observation vectors and placing 
other model matrices as elements of a diagonal 
matrix. When designing a model, this gives you 
considerable flexibility in choosing the components 
to model the trend, seasonality, regression effects, 
and, if necessary, other state components. 

Structural time series models are one of the 
families of state space models. In structural models, 
the time series is represented as a sum of unobserved 
components, which can be interpreted as a trend, 
seasonality, predictor effects, etc.  

These components serve as a kind of “building 
blocks” that can be combined in accordance with the 
problem being solved and the characteristics of the 
data.  

As an example, we present the basic structural 
model of a time series with predictors as follows 
[51]: 

𝑦𝑡 = 𝜇𝑡 + 𝑡 + 𝛽𝑇𝐱𝑡 + 𝜖𝑡 , 
𝜇𝑡 = 𝜇𝑡−1 + 𝛿𝑡−1 + 𝑢𝑡, 

                      𝛿𝑡 = 𝛿𝑡−1 + 𝑣𝑡,                       (4) 

𝑡 = − ∑ 𝑡−𝑠 +

𝑆−1

𝑠=1

𝑤𝑡, 

where 𝜇𝑡   is the current trend level of the model, and 
𝛿𝑡  is the trend growth factor. The seasonal 
component 𝑡  can be considered as a set of S dummy 
variables with dynamic coefficients limited by zero 
mathematical expectation during a full cycle of S 
seasons. The independent components of the 
Gaussian random noise are combined into the 
vector𝑡 = (𝑢𝑡, 𝑣𝑡 , 𝑤𝑡). The matrix QT is diagonal 

with diagonal entries and 𝜎𝑢
2, 𝜎𝑣

2, 𝜎𝑤
2  and HT is the 

scalar𝜎𝜖
2 . The parameters in equation (3) are the 

variances 𝜎𝜖
2 , 𝜎𝑢

2,  𝜎𝑣
2, 𝜎𝑤

2  and the regression 
coefficients β. They are subject to evaluation based 
on the original data. Thus, the presented model 
contains trend, seasonality and regression 
components. Vector 𝐱𝑡  is a set of independent 
factors (predictors). 

Bayesian Structural Time Series (BSTS) is 
related to the linear Gaussian model that is used in 

Kalman filters. The BSTS model is based on more 
complex mathematical principles than those used in 
the linear Gaussian model. The main difference is 
that Bayesian structural time series allows you to use 
existing components to build more complex models 
that reflect known facts or interesting hypotheses 
about the system. They can be used to design the 
structure of the model and train on the available data 
to evaluate the parameters of the model and see how 
well the model describes and predicts the behaviour 
of the system. 

An approach to modelling and forecasting 
based on Bayesian structural time series is proposed, 
consisting of the following stages: 

1. Creation and training of a time series. The 
learning process for a High Degree Bayesian 
Structural Time Series model consists of four steps: 

• Setting structures and a priori probabilities. 
• Application of the Kalman filter for state 

estimation. 
• Application of the tongue-and-plate sampling 

method in the design model. 
• Bayesian averaging to combine the results to 

make a prediction. 
The flexibility of the BSTS model based on 

selected modular components is evident in the first 
two steps. What follows is a learning model for data 
acquisition using a Bayesian method whose 
parameters change over time. 

2. Modeling and forecasting. When solving the 
problem of predicting a data set, several alternative 
BSTS models are used, based on the results of data 
analysis and processing. Each model is completed 
with components that can reflect the nature of data 
changes. 

The BSTS models are built according to the 
following algorithm: 

• A set of model components. 
• If there are no predictors in the model, then 

the list of prior probabilities corresponds to the prior 
distribution of the standard distribution of residuals. 
If the model is with predictors, then the a priori 
search is carried out using the spike and slab 
method. 

• Setting the number of iterations of the MCMС 
algorithm and parameters of the random number 
generator (for reproducibility of calculation results). 

• Building BSTS models. 
• Assessment of the quality of the model and 

verification of its adequacy: according to the metric, 
the speed of fitting models and its components, 
checking the autocorrelation in the residuals of the 
models. 

All ready-made alternative BSTS models are 
used for comparison and evaluation in order to select 
the most appropriate model for the original dataset. 
The selected models are used for forecasting. The 
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table 1 presents the various components of the BSTS 
models, using the structure of alternative predictive 
models [49-52]. 

FORECASTING USING BAYESIAN 
STRUCTURAL TIME SERIES 

As an example of the application of Bayesian 

structural time series, the problem of forecasting the 

prices of Amazon shares is considered. The base 

dataset is amzn_share, which contains the company's 

stock price values at the close of trading from 

January 1, 2016 to May 26, 2019.  

The data is part of a multivariate time series and 

was taken from https://finance.yahoo.com/. 

Table 1. Specification of model components 

No. Component name Presentation Form Application features 

1 Local level 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡, 
𝜇𝑡 = 𝜇𝑡−1 + 𝑢𝑡, 

𝜖𝑡~𝑁(0, 𝜎𝜖
2), 𝑢𝑡~𝑁(0, 𝜎𝑢

2). 

A typical non-stationary process 

corresponding to the process “random walk 

with noise”. 

2 

Component of the 

autoregressive 

process 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡, 
𝜇𝑡 = ∑ 

𝑖
𝑝
𝑖=1 𝜇𝑡−𝑖 + 𝑢𝑡, 

𝜖𝑡~𝑁(0, 𝜎𝜖
2), 𝑢𝑡~𝑁(0, 𝜎𝑢

2). 

Model parameters 
1

, … , 
𝑝

are subject to 

estimation. For large values of p, the 

“spike-and-slab” method is used to 

regularize the parameters
1

, … , 
𝑝

. 

3 
Local Linear Trend 

Component 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡 , 
𝜇𝑡 = 𝜇𝑡−1 + 𝛿𝑡−1 + 𝑢𝑡, 

𝛿𝑡 = 𝛿𝑡−1 + 𝑣𝑡, 

𝜖𝑡~𝑁(0, 𝜎𝜖
2), 

𝑢𝑡~𝑁(0, 𝜎𝑢
2), 𝑣𝑡~𝑁(0, 𝜎𝑣

2) 

The process of “random walk” describes 

both the dynamics of the average level of 

the time series 𝜇𝑡,, and the coefficient of its 

growth 𝛿𝑡 . 

4 
Robust local linear 

trend component 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡, 
𝜇𝑡 = 𝜇𝑡−1 + 𝛿𝑡−1 + 𝑢𝑡, 

𝛿𝑡 = 𝛿𝑡−1 + 𝑣𝑡, 

𝜖𝑡~𝑁(0, 𝜎𝜖
2),

𝑢𝑡~𝑁(0, 𝜎𝑢
2), 𝑣𝑡~𝑁(0, 𝜎𝑣

2) 

Random fluctuations of this component 

obey the Student's distribution, and not 

Gaussian. The component is well suited for 

short-term forecasts based on time series, in 

which there are sharp jumps in the average 

level. This will make it possible to obtain 

more reliable forecasts in the presence of 

anomalous observations. 

5 

Component of a 

semi-local linear 

trend 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡, 
𝜇𝑡 = 𝜇𝑡−1 + 𝛿𝑡−1 + 𝑢𝑡, 

𝛿𝑡 = 𝐷 +  × (𝛿𝑡−1 −
𝐷) + 𝑣𝑡, 𝜖𝑡~𝑁(0, 𝜎𝜖

2), 

𝑢𝑡~𝑁(0, 𝜎𝑢
2), 𝑣𝑡~𝑁(0, 𝜎𝑣

2) 

The growth rate of the average level of the 

series develops in accordance with AR1. 

The process described by this component is 

more stable than the random walk process, 

which makes the model with this 

component more suitable for calculating 

long-term forecasts. 

6 Seasonal component 

𝑦𝑡 = 𝛾𝑡 + 𝜖𝑡 , 

𝛾𝑡 = − ∑ 𝛾𝑡−𝑠 +

𝑆−1

𝑠=1

𝑤𝑡 , 

𝜖𝑡~𝑁(0, 𝜎𝜖
2),  

𝑤𝑡~𝑁(0, 𝜎𝑤
2 ) 

To model processes with clearly defined 

amplitude and frequency, the seasonal 

component is used, which is presented as a 

sum of elementary trigonometric 

components (cos and sin) with time-varying 

coefficients. 

7 

Component of 

“holidays” and other 

important events 

𝑦𝑡 = 𝛽𝑑(𝑡) + 𝜖𝑡 , 

𝜖𝑡~𝑁(0, 𝜎𝜖
2), 

𝛽𝑑~𝑁(0, 𝜎2) 

The list of events important for the process 

is formed using auxiliary functions 

Source: compiled by the authors
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After loading, the structure and data types were 

analyzed, and missing values were processed. The 

data are characterized by irregular registration of 

observations, which leads to a large number of 

missing values and “masking” possible seasonal 

fluctuations. This makes the task of forecasting 

rather difficult. 

To restore gaps in the amzn_share time series, 

the linear interpolation method was used. The first 

three missing observations were removed. In Fig. 1, 

the original row with filled in missing values is 

visualized. 

 

 
 

Fig. 1. Visualizing Amazon Stock Prices 

Source: https://finance.yahoo.com/ 

 

 
Fig. 2. ACF and PACF functions for  

time series 
        Source: compiled by the authors 

Using a set of statistical tests (ADF, KPSS, PP), 

the original series was tested for stationarity. The 

result of the check was the conclusion about the non-

stationarity of the process, which is reflected by a set 

of observed values of the time series. The non-

stationarity of the process is confirmed by the nature 

of the values of the sample autocorrelation functions 

ACF and PACF (Fig. 2). 

An important condition for building reliable 

predictive models based on the method of Bayesian 

structural time series is the definition and 

identification of the structure of the time series. The 

STL method was used to decompose the original 

series into its constituent components. Fig. 3 shows 

the results of the decomposition of the original series 

using the STL method. 

 

 
 

Fig. 3. STL decomposition of the time series of 

      Amazon stock prices 
        Source: compiled by the authors 

Viewing the data made it possible to determine 

the principles of modeling. First of all, it is 

necessary to take into account the dominant role of 

the trend present in the data (Fig.3), which 

represents non-linear and non-stationary behavior. 

There are also patterns that reflect the seasonal 

behavior of the data (Fig.3) to be reflected in the 

models. However, their influence is much less. 

Before starting the process of building 

predictive models, the initial data set was divided 

into two parts: training and testing samples. The test 

sample consists of 14 observations, which 
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corresponds to a forecast horizon of 14 days for 

short-term forecasting. 

The fitting of structural time series models is 
performed using the Kalman filter and the Monte 
Carlo method according to the Markov chain scheme 
(MСMC). To estimate and simultaneously regularize 
the regression coefficients, the “spike-and-slab” 
method is used. This method consists in assigning to 
each regression coefficient a certain high a priori 
probability that it is equal to zero (“probability of 
inclusion” in the model). Using the original data and 
Bayes' theorem, the inclusion probabilities are 
updated. Further, during MCMC sampling of the 
coefficients from the obtained posterior 
distributions, most of the given values of the 
coefficients turn out to be equal to zero. Such a 
regularization mechanism makes it possible to 
effectively select the most important predictors and 
simultaneously get rid of multicollinearity, so a large 
number of predictors can be included in Bayesian 
structural models without the risk of overfitting. 

When forming a structural model based on a 
preliminary analysis of the time series, various 
alternative models were considered to select the best 
one. In Table. 2 shows the studied models. 

Table 2. Description of predictive models 

Model 
name 

Model contents 

Model 1 
Linear local trend component + 
annual seasonality component 

Model 2 
Linear local trend component + 
autoregressive component 

Model 3 
Linear local trend component + 
Weekly seasonality component 

Model 4 
Linear local trend component + 
weekly seasonality component + 
autoregressive component 

Model 5 
Component of a sustainable local 
linear trend + autoregressive 
component 

Model 6 
Local level component + annual 
seasonality component 

Model 7 
Local level component + 
autoregressive component 

Model 8 
Local level component + monthly 
seasonality component 

           Source: compiled by the authors 

One of the significant advantages of the 
Bayesian structural model is the ability to analyze its 
underlying components. Figure 4 shows the mean 
values of the MCMC results for the trend and the 
autoregressive component using the Model 5 model 
as an example. 

The BSTS model makes it possible to test the 
seasonal components as well. For example, the 

seasonal component for the days of the week is 
shown in Fig.5. In weekly seasons, there is a 
difference in prices by day of the week. However, 
the distribution of parameters is relatively stable in 
time for each day of the week. 

 

Fig. 4. Posterior distributions of the components 

of the Model 5 model.  

Left: local linear trend. Right: autoregressive 

component 
Source: compiled by the authors 

 
Fig. 5. Posterior distributions of weekday effects 

estimated using the Model 4 model.  

The green lines correspond to the medians of 

these distributions 
Source: compiled by the authors 
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On Figure 6 shows that Amazon's stock price 

was slightly higher on average on Tuesday, 

Wednesday, and Thursday than on other days, but 

the effects of each day of the week were not always 

consistent throughout the historical period. 

Nevertheless, the contribution of the seasonal 

component as a whole turned out to be very 

insignificant compared to the contribution of the 

trend, which is also consistent with the result of the 

exploratory analysis of the initial data. 

An important property of a good time series 

model is the absence of autocorrelation in its 

residuals. For visual verification, a diagram was 

used, which was built on the basis of a matrix with 

model residuals and consists of range diagrams for 

the posterior distributions of the autocorrelation 

function. Ideally, the centers of these posterior 

distributions (starting from shift 1 onwards) should 

be at 0, but in the case of Model 1 this is not the 

case: the cyclist is clearly visible. A similar property 

of the original data was discovered during 

exploratory analysis. The box plots for the Model 7 

show a high degree of model fit. 

 

 
Fig. 6. Posterior distributions of the 

autocorrelation function of the residuals of 

Model 1 and Model 7   
Source: compiled by the authors 

The quality of the built BSTS models is 

simultaneously analyzed using a graph that depicts 

the accumulated average absolute errors of the next 

step for each of the compared models (Fig. 7). 

Below the graph of the accumulated error curves, the 

original training data is shown, which allows you to 

better understand where exactly one or another 

model does not do a good job of describing the data. 

On Fig.7 curve of accumulated errors Model 7 is 

below the curve of other models, which further 

confirms the higher quality Model 7. 

 
Fig. 7. An example of comparing the quality of 

alternative models using the errors of the  

next step.  

Top: cumulative mean absolute errors of the  

next step.  

Bottom: training dataset 
Source: compiled by the authors 

Table 3 presents the values of the quality 

metrics for predictive models. In the table below, the 

metric residual.sd is the mean of the posterior 

distribution of the standard deviation of the model 

residuals, and the metric rsquare is the usual 

coefficient of determination (i.e., the fraction that 

the variance of the residuals is in the total variance 

in the data). The remaining two metrics are 

calculated using the so-called. “next step errors”, 

which are calculated during model fitting as 𝑦𝑡 −
𝐸(𝑦𝑡|𝑌𝑡−1, 𝜃), where𝑌𝑡−1 = 𝑦1, 𝑦2, … , 𝑦𝑡−1, and θ is 

a vector with current estimates of model parameters. 

The prediction.sd metric is the standard deviation of 

the next step errors calculated from the training data, 

and relative.gof is the so-called Harvey's stats. The 

Harvey statistic is similar to the coefficient of 

determination and is calculated as 𝑅𝐷
2 = 1 −

∑
𝑣2

(𝑛−2)var(diff(𝑦))
, where ν are the errors of the next 

step, n is the number of observations y in analyzed 

time series, and var and diff are functions for 

calculating the variance and transition to differences 

(differentiation) of the time series, respectively. An 

assessment of the quality of predictive models is 

shown in Fig.8. 
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              Table 3. Evaluation of the quality of predictive models 

Model name residual.sd prediction.sd rsquare relative.gof 

Model 1 7.753 21.380 0.9997 -0.152 

Model 2 6.472 19.952 0.9997 -0.003 

Model 3 8.021 20.191 0.9997 -0.027 

Model 4 6.697 20.138 0.9997 -0.022 

Model 5 5.015 19.970 0.9999 -0.005 

Model 6 7.838 22.117 0.9997 -0.233 

Model 7 6.483 19.859 0.9998 0.002 

Model 8 6.978 20.753 0.9998 -0.087 
Source: compiled by the authors 

 
Fig. 8. Evaluation of the quality of  

  predictive models 
Source: compiled by the authors 

The adequacy of the models was assessed by 

how well they described the training data. This 

approach is accompanied by a high risk of choosing 

an over trained model as the optimal one. 

Diagnosing with next-step errors is only part of the 

insurance against this, and the only objective test of 

the quality of a model will always be the accuracy of 

its predictions on an independent data set. 

The predicted values are calculated for built-in 

models with the best quality indicators and are 

presented in Table 4. The predictions are compared 

with the data from the test sample. Mean absolute 

specific prediction error (MAPE), mean absolute 

error (MAE), square root of root mean square error 

(RMSE), and Theil U-statistics were used as metrics 

for selecting the optimal model. Since BSTS models 

predict a large number of possible realizations of 

future values of the dependent variable, the median 

values of possible realizations were used to calculate 

the metrics. 

As follows from the above results, the Model 7 

should be considered optimal. 

Fig.9 shows the visualization of predictive 

values made on the basis of Model 7. The training 

data is marked with a black line. The blue line shows 

the most probable future values of the time series. 

Around this line, semi-transparent black dots also 

show other possible implementations of future 

values. The green dashed lines limit the 95% 

confidence interval of the predicted values. The 

initial data were submitted for a time period of 90 

days, they were supplemented with forecast values 

for the next 14 days with quintiles of 5 % and 95 % 

highlighted. The spread of forecast values increases 

as the forecast period increases. Thus, the figure 

depicts only the last 90 observations from the 

training data. The yellow dots show data from the 

test sample, which allows you to visually assess the 

quality of the forecast. 

Table 4. Evaluation of the quality of the forecast 

Model 

name 
MAPE MAE RMSE 

U- 
statistics 

Model 2 0.3740 686.4784 59.6242 0.0158 

Model 3 0.4387 805.9569 68.7171 0.1822 

Model 4 0.4164 763.9449 67.0756 0.0178 

Model 5 0.3449 634.2707 52.3890 0.0139 

Model 7 0.2323 431.2109 36.1843 0.0097 
Source: compiled by the authors 

Fig. 9. Visualization of predictive values  

based on Model 7 
                  Source: compiled by the authors 

FEATURES AND ADVANTAGES OF 

SOLVING FORECASTING PROBLEMS 

USING THE BSTS METHOD 

In the presented methodology of Bayesian 

structural time series, there are features that affect 

the process of building a model: 
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 Possibility to specify non-standard prior 

distributions. 

 Ability to select repressor using the "spike-

and-slab" method. 

 Bayesian model averaging. 

Along with the presented features, the 

methodology of Bayesian structural time series has 

the following advantages: 

 When building Bayesian models, a 

distribution is obtained. Thus, the results are 

returned (for example, forecasts and components) as 

matrices or arrays, where the first dimension 

contains the MCMC iterations 

 Models allow modeling with any prior 

distributions. The default linear Gaussian model is 

just one variation of the classic prior distribution. 

Method models work with other variants of 

distributions (for example, asymmetric priors). 

 To build methodology models, it is possible 

to choose variables on your own. 

 Models can be combined with Bayesian 

model averaging techniques to eliminate the 

uncertainty associated with model selection. 

These advantages are confirmed by the use of 

six data sets from different application areas for 

solving forecasting problems. 

CONCLUSIONS 

The article discusses the features of the Bayesian 

approach in the processing of nonlinearities and 

nonstationary in the construction of forecasting 

models using Bayesian structural time series. 

Parametric and non-parametric methods for 

forecasting time series are considered. One of the 

types of non-parametric models is Bayesian 

structural time series. An approach to the 

construction of probabilistic-statistical models based 

on Bayesian structural models of time series is 

defined. The main features of constructing structural 

time series are considered. The process of learning 

the Bayesian structural model of time series is 

described. An algorithm for constructing a BSTS 

model is presented. Various components of the 

BSTS model are considered and analyzed, with the 

help of which the structures of alternative predictive 

models are formed. As an example of the application 

of Bayesian structural time series, the problem of 

predicting Amazon stock prices is considered. The 

data are characterized by irregular registration of 

observations, which leads to a large number of 

missing values and “masking” possible seasonal 

fluctuations. This makes the task of forecasting 

rather difficult. To restore gaps in the amzn_share 

time series, the linear interpolation method was 

used. Using a set of statistical tests such as ADF, 

KPSS, PP, the series was tested for stationarity. The 

data set was divided into two parts: training and 

testing samples. The fitting of structural models of 

time series was performed using the Kalman filter 

and the Monte Carlo method according to the 

Markov chain scheme (MСMC). To estimate and 

simultaneously regularize the regression 

coefficients, the spike-and-slab method was applied. 

The quality of predictive models was assessed. 

Based on the most effective model, a forecast was 

made for Amazon stock prices. The application of 

the method of Bayesian structural time series makes 

it possible to effectively build forecasts taking into 

account the non-linearity and non-stationarity of the 

data. 
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АНОТАЦІЯ 
 

У статті описано підхід до моделювання та прогнозування нелінійних нестаціонарних часових рядів для різних цілей з 

використанням байєсівських структурних часових рядів (BSTS). Розглянуто поняття нелінійності та нестаціонарності, а також 

методи обробки нелінійності та нестаціонарності при побудові моделей прогнозування. Наведено особливості байєсівського 

підходу в обробці нелінійностей та нестаціонарності. Досліджено підхід до побудови ймовірнісно-статистичних моделей на основі 

байєсівських структурних моделей часових рядів. Розглянуто параметричні та непараметричні методи прогнозування нелінійних 

та нестаціонарних часових рядів. До параметричних методів належать методи: класичних авторегресійних моделей, нейронних 

мереж, моделей опорних векторних машин, прихованих марковських моделей. До непараметричних методів належать методи: 

моделі простору станів, моделі функціональної декомпозиції, байєсівські непараметричні моделі. Одним із видів непараметричних 

моделей є байєсівські структурні часові ряди. Розглянуто основні особливості побудови структурних часових рядів. Представлено 

моделі структурних часових рядів. Описано процес навчання байєсівської структурної моделі часових рядів. Навчання 

виконується в чотири етапи: завдання структури моделі та апріорних ймовірностей; застосування фільтра Калмана для оновлення 

оцінок стану на основі спостережених даних; застосування методу “spike-and-slab” для вибору змінних у структурній моделі; 

Байєсівське усереднення для об’єднання результатів для прогнозування. Наведено алгоритм побудови моделі BSTS. 

Розглядаються та аналізуються різні компоненти моделі BSTS, за допомогою яких формуються структури альтернативних 

прогнозних моделей. Як приклад застосування байєсівських структурних часових рядів розглядається задача прогнозування курсів 

акцій Amazon. Базовим набором даних є amzn_share. Після завантаження структура та типи даних були проаналізовані, а відсутні 

значення оброблені. Для даних характерна нерегулярна реєстрація спостережень, що призводить до великої кількості пропущених 

значень і «маскування» можливих сезонних коливань. Це ускладнює завдання прогнозування. Для відновлення розривів у часових 

рядах amzn_share використовувався метод лінійної інтерполяції. Використовуючи набір статистичних тестів (ADF, KPSS, PP), ряд 

перевіряли на стаціонарність. Набір даних розділений на дві частини: навчання та тестування. Підгонку структурних моделей 

часових рядів проводили за допомогою фільтра Калмана та методу Монте-Карло за схемою ланцюга Маркова (MSMC). Для 

оцінки та одночасної регулярізації коефіцієнтів регресії застосовано метод “spike-and-slab”. Оцінено якість прогностичних 

моделей. 

Ключові слова: Байєсівський структурний часовий ряд (BSTS); прогнозування, нелінійність; нестаціонарність; прогнозна 
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