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ABSTRACT

The article describes an approach to modelling and forecasting non-linear non-stationary time series for various purposes using
Bayesian structural time series. The concepts of non-linearity and non-stationarity, as well as methods for processing non-linearity’s
and non-stationarity in the construction of forecasting models are considered. The features of the Bayesian approach in the
processing of nonlinearities and nonstationary are presented. An approach to the construction of probabilistic-statistical models based
on Bayesian structural models of time series has been studied. Parametric and non-parametric methods for forecasting non-linear and
non-stationary time series are considered. Parametric methods include methods: classical autoregressive models, neural networks,
models of support vector machines, hidden Markov models. Non-parametric methods include methods: state-space models,
functional decomposition models, Bayesian non-parametric models. One of the types of hon-parametric models is Bayesian structural
time series. The main features of constructing structural time series are considered. Models of structural time series are presented.
The process of learning the Bayesian structural model of time series is described. Training is performed in four stages: setting the
structure of the model and a priori probabilities; applying a Kalman filter to update state estimates based on observed data;
application of the “spike-and-slab” method to select variables in a structural model; Bayesian averaging to combine the results to
make a prediction. An algorithm for constructing a Bayesian structural time series model is presented. Various components of the
BSTS model are considered and analysed, with the help of which the structures of alternative predictive models are formed. As an
example of the application of Bayesian structural time series, the problem of predicting Amazon stock prices is considered. The base
dataset is amzn_share. After loading, the structure and data types were analysed, and missing values were processed. The data are
characterized by irregular registration of observations, which leads to a large number of missing values and “masking” possible
seasonal fluctuations. This makes the task of forecasting rather difficult. To restore gaps in the amzn_share time series, the linear
interpolation method was used. Using a set of statistical tests (ADF, KPSS, PP), the series was tested for stationarity. The data set is
divided into two parts: training and testing. The fitting of structural models of time series was performed using the Kalman filter and
the Monte Carlo method according to the Markov chain scheme. To estimate and simultaneously regularize the regression
coefficients, the spike-and-slab method was applied. The quality of predictive models was assessed.
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INTRODUCTION future states of a real complex system based on time
series remains a research challenge, mainly due to
the non-linear and non-stationary dynamic behaviour
of the system and their various variants in the
systems under study. The problem of taking into
account and processing nonlinearities and
nonstationary in time series forecasting is one of the

Forecasting of complex systems is one of the
important areas of modern science of data analysis
and processing [1, 2], [3]. One of the most
developed and researched areas is forecasting based
on time series. Time series data reflect the dynamic
behaviour and cause-and-effect relationships of the main tasks of constructing adequate predictive

main processes in a complex system and provide  magels of the process under study. Models of this
basic material for making forecasts and studying the  tyne should include a complete representation of the

development Of the SyStem. However, the baSiS fOI’ dynamics of nonlinear and non_stationary Systems
most forecasting methods is models of linear and  pased on observed real data.

stationary processes. But the effective prediction of One of the methods for processing

nonlinearities and nonstationary is the Bayesian
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This approach means that a variety of methods
are used to solve the following problems:

— construction of probabilistic-statistical models
of various types (assessment of the structure and
parameters) using statistical data and expert
assessments;

— calculation of the final results based on the
created model according to the problem statement:
estimates of forecasts, control actions, estimates of
variables and parameters at the output of filters,
pattern recognition, finding solutions for managing
the processes and objects under study, etc.;

— analysis of the correctness of the obtained
results according to the corresponding sets of
statistical quality criteria.

The methodology of the Bayesian approach
includes the following methods: recursive Bayesian
estimation:  filtering, forecasting, = smoothing
variables; hidden Markov models; optimal recursive
Kalman filters (KF); granular (particle) filters (GF);
static Bayesian networks (BN); dynamic Bayesian
networks (DBN); Markov localization (ML) models;
Bayesian maps; Bayesian method of data processing
and decision making based on hierarchical models;
Bayesian regression, generalized linear models;
Bayesian structural time series.

The model Bayesian structural of time series
(BSTS) was proposed by E. Harvey [4] as a theory
of structural models of time series. Unlike traditional
statistical ARIMA models, structural time series
models consist of unobservable components such as
trends and various seasonality components. In
addition, models can naturally be extended to
include explanatory variables and work with
multivariate time series. In the analysis of time
series in the case of missing observations, state-
space models and methods and recursive equations
using the Kalman filter are used [5]. State-space
models are based on Markov processes, since each
state depends on the previous state. Accordingly, the
future state is calculated based on the present. The
model parameters are calculated iteratively, and this
allows the development of high-dimensional models.
From a technical point of view, state-space models
and the Kalman filter play a key role in the statistical
processing of structural time series models. The
structural time series model uses the Markov Chain
Monte Carlo (MCMC) sampling algorithm for
posterior distribution modelling, which smoothest
the predictions obtained using a large number of

potential underlying models [6]. The MCMC
approach using the Gibbs algorithm limits the
preselection, it needs to be paired with probability or
the Metropolis-Hastings algorithm to speed up
convergence in multivariate models.

The article considers an approach to modelling
and predicting non-linear non-stationary processes
based on Bayesian structural time series.

ANALYSIS OF LITERARY DATA

Most of the prediction methods described in the
literature assume linearity and/or stationarity of the
underlying dynamic behavior of the system [7], or
consider simple forms of non-stationarity such as
well-defined trends and variations. However, real
systems exhibit mostly non-linear and non-stationary
behavior, which greatly complicates obtaining
accurate predictions.

The main concept that characterizes real data is
the concept of non-linearity. In this case, the non-
linear time series y(t) is a signal coming from a non-
linear dynamic process. In other words, this is a
partial solution of a nonlinear stochastic differential
(or difference) equation of the following form

dx/dt = F(x, 6,¢). 1)

This equation controls the development of the
process states x(t) from the initial state x(0), where
@- is the process parameter vector and &£- is the
system noise. The solution of equation (1) is
represented as X(t) = ¢(x(0), t). Here, ¢ (x(0), t) is
called a flow or state transition function. Many real
systems demonstrate such non-linear stochastic
dynamics, and the solutions of such systems, called
non-linear time series, demonstrate non-Gaussian,
multimodality, time irreversibility, and other
properties [8].

Most real non-linear dynamic systems operate
in transient (non-stationary) conditions. From a
statistical point of view, stationarity of time series
y(t) requires that the joint distribution of each dataset
[yt + =), y(t + »), ..., y(t + «)] be invariant 7 (i =
1,2, ..,k) for any k. Even under non-stationary
conditions, the dynamics of a complex system can
be viewed as a union of much simpler piecewise
transitional or near-stationary behaviors. Most often,
non-stationarity is explained by certain deterministic
and stochastic tendencies in the moments.
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Various non-linear and non-stationary time
series forecasting methods presented in the literature
are considered and classified based on how they are
applied to predict time series data for real-world
problems [1, 2], [3, 8], [9, 10], [11, 12]. Prediction
methods can be classified based on prerequisites or
approaches to overcome non-stationarity and non-
linearity, as they assume the following features: a
known trend shape, piecewise stationarity of signals,
progressively varying parameters, or decompo-
sability of a signal into stationary segments in the
transformed domain, and they are either parametric
or non-parametric, depending on whether the
predictor takes a certain form or is built solely in
accordance with the data (for example, the number
of latent variables may vary).

Parametric models. The parametric prediction
model defines an explicit functional form with a
finite number of parameters 6 to describe the
relationship between input data consisting of internal
and external variables and their autoregressive
(retarded) (lag) terms, and output data consisting of
future values of the internal variable y(t + 1). Model
parameters are estimated from time series
implementations.  Parametric  models include:
classical autoregressive models, neural networks,
models of support vector machines,

Classical autoregressive models. This group
includes models such as autoregressive (AR) or
autoregressive moving average (ARMA), which are
the most widely studied due to their application in
modeling stationary processes. But they are usually
unable to accurately predict the development of a
non-linear and non-stationary process. Models such
as autoregressive integrated moving average
(ARIMA) based on the evolution of increment Ay; =
Yi+1- yrOr A%y, are sometimes used to remove/reduce
first order non-stationarity. However, the difference
tends to increase high-frequency noise in the time
series, and more effort is required to determine the
order of the ARMA model. To incorporate non-
linearity into the ARMA framework, advanced
models such as thresholding AR (TAR) models [9,
10], self-excited AR (SETAR) models [11], and
smooth transition AR (STAR) models [12] are used.
They were developed for non-linear forecasting.
However, these methods are generally limited to
non-linear stationary time series forecasting using

local linearity assumption with an
autoregressive structure.

Neural networks. Neural networks (NN) are
used for non-linear time series forecasting in many
applications [13, 14], [15, 16], [17]. These models
do not require preliminary assumptions about the
form of nonlinearity and are universal
approximations [16]. Non-linear feed-forward neural
network (FNN) models parameterized with the back-
propagation algorithm have been used to predict
non-linear time series [18]. They are known to
outperform traditional statistical methods such as the
regression approach and the Box-Jenkins approach
in a functional approximation and assume that the
dynamics underlying the time series are independent
of time. Feedforward neural networks FNNs with
recurrent feedback connections have also been
considered for time series forecasting [17]. Dynamic
recurrent neural network models (RNN) make it
possible to predict non-linear time series that occur
in various areas [19, 20]. In [18], neural network
models (RPNN) with recurrent functions were
studied for predicting nonlinear signals.

Models of support vector machines. Support
Vector Machine (SVM) model based forecasting
methods use a class of generalized regression
models such as Support Vector Machine Regression
(SVR) and SVM Least Squares (LS-SVM) [22],
which are parameterized using convex quadratic
programming methods [23]. The SVM displays the
input data x;, which may consist of autoregressive
terms of internal and exogenous variables. The
scalar product of templates is expressed as a linear
combination of the specified kernel functions, on the
basis of which SVM are subdivided into linear,
Gaussian, polynomial, based on a multilayer
perceptron, or radial basis function (RBF) and the
corresponding classifiers are built. A linear
repressors is then built by structural risk
minimization (upper bound on the generalization
error), resulting in a better generalization than
traditional methods [24]. In [25], the use of SVM for
predicting chaotic time series was studied. They
showed that SVM have higher prediction accuracy
than NN models and use fewer parameters. In [25],
predictors based on the least squares (LS) and RBF
method were considered and a local SVM (defined
in the reconstructed state space) was developed for
predicting chaotic time series. Such SVM models
can provide higher accuracy for long-term

implicit
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forecasting compared to local polynomial predictors
based on LS and RBF.

Hidden Markov Models. Most of the models
discussed above involve batch processing, where the
model is set up and periodically updated using
batches of historical data. However, dimensionality
limitation due to excessive computational resources,
memory requirements, and large data sizes prevent
their applicability to many real-world problems,
especially for online process monitoring. A variety
of sequential prediction models such as hidden
Markov models (HMM) [26] have been explored to
overcome this limitation. Some HMM have been
used to predict non-linear time series such as
extended Kalman filters (EKF) [27] and particle
filter (PF) models [28, 29].

Nonparametric models. Parametric models can
make accurate predictions when the models are set
correctly, but they become suboptimal when the
underlying dynamics are unknown or undetectable.
In addition, the problem of model displacements
persists because the dynamics of most complex real
systems are inherently non-linear and non-
stationary. Non-parametric models can provide a
complete representation of dynamics based on
observed data, do not impose any structural
assumptions, and simplify modeling efforts.
Consequently, the accuracy of modeling and
forecasting for non-linear and non-stationary time
series is improved. However, compared to
parametric models, non-parametric models typically
require large datasets from which information about
the underlying relationships can be efficiently
derived. The most well-known non-parametric
models for predicting non-linear and non-stationary
time series are state-space neighborhoods, Bayesian
non-parametric and  functional decomposition
models.

State-space based models. State-space-based
approaches predict future values by selectively
resampling historical observations, with the basic
assumption being that future behavior changes
smoothly, i.e. observations similar to the target may
have similar outcomes. These models are suitable
for predicting the dynamics of complex systems due
to their simplicity and accuracy [30].

In the nearest neighbor resampling (KNN)
approach in [31] with multiple predictor variables,
each predictor was assigned an influence weight to
identify nearest neighbors. [32] explored a number
of approaches based on the KNN method for
predicting chaotic time series, for example, the zero-
order approximation (single nearest neighbor),
nearest neighbors (multiple neighbors), and the

model distance weighted approximation (weighted
average distance of several neighbors).

For most complex dynamical systems, it is not
possible to observe all relevant variables. The state
space reconstructed from the time-delay embedding
has a strong resemblance to the base state space, as
noted in [33] and a new way to predict non-linear
time series was proposed [34]. In [24, 35], [36], a
local linear model of the reconstructed state space
was developed for predicting chaotic time series.
The predicted value of the current observation was
obtained from the most recent w nesting vectors.
Next, k nearest neighbors were determined within
the window width w based on the recurrent property
of the reconstructed state space.

In [37], a local polynomial regression model
was investigated using neighbors and future
evolutions in the reconstructed state space. An
ensemble model was then implemented based on the
nearest neighbor model by selecting a set of
parameter combinations for the local regression
model. This ensemble approach reduced the
parameter uncertainties.

Functional decomposition model. Among the
non-parametric models of nonlinear and non-
stationary forecasting in the literature, attention has
recently been paid to functional expansion models.
The advantages of this type of model include local
characteristic time scales and the use of an adaptive
framework that does not require a parametric
functional form. These models can be used to
capture drifts and non-linear modes of any non-
linear and non-stationary processes. Most of the
models in this category are mixed or hybrid models
that use the decomposition technique. Among the
non-parametric decomposition methods, empirical
mode decomposition (EMD) [38] can decompose
non-stationary time series into a finite number of
components called intrinsic mode functions (IMF),
so that the evolution of each IMF can be explored
individually using different time scales through
classical time. Series prediction methods such as AR
or ARMA models [39, 40]. Since EMD allows the
original time series to be ideally reconstructed using
IMF and to isolate the trend and noise components
from the non-stationary process [41], this improves
the accuracy of long-term forecasting.

In [42] presented a two-stage EMD model and
applied it for long-term forecasting of solvency
SCores.

Bayesian nonparametric models. Bayesian
modeling is the process of incorporating prior
information to visualize the subsequent inference,
i.e. estimating the conditional distribution p(& |y) of
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the latent model or parameters & given the observed
time series y(t) [43]. Unlike other Bayesian methods,
Bayesian non-parametric models assume that the
hidden structure here grows with the data. In other
words, Bayesian non-parametric models look for one
model from an infinite set of possibilities (that is, 6
can be infinite-dimensional) whose complexity (the
number of estimated parameters) adapts according to
the data. Among Bayesian nonparametric models,
Gaussian process (GP) models have been most
widely studied for time series forecasting [44]. The
GP model provides not only a point estimate, but
also a full forecast distribution. However, models
(MP) have two major limitations, namely the
computational cost of running the inverse matrix and
the assumption of a stationary covariance function.
Many attempts to solve these problems have been
explored in the literature. Of all the solutions, the
non-stationary covariance functions introduced to
overcome stationarity assumptions [45, 46] are only
suitable for simple non-linear and non-stationary
forms such as linear trends and require additional
fitting parameters.

One of the types of Bayesian non-parametric
models are Bayesian structural models of time series
(BSTS) [6]. BSTS models have a number of features
and allow you to perform simulations taking into
account any prior distributions: the BSTS model
works with many other options (for example,
asymmetric priors); BSTS models can be combined
with Bayesian model averaging methods to eliminate
the uncertainty associated with model selection; in the
BSTS model, you can choose variables yourself. The
article [47] describes in detail the Bayesian principles
of time series analysis and considers various
macroeconomic examples. Paper [48] describes a
Bayesian structural hour series approach to predicting
the unemployment rate from Google search
processing data. A feature of the problem under
consideration is that information on unemployment is
published periodically with a delay, and search
queries are processed continuously. The authors
attempted to predict the unemployment rate using a
combination of Bayesian structural time series and
ensemble methods. The article [49] describes the
principles of averaging the Bayesian model, which
are used in various methods of data analysis. The
article shows that averaging the Bayesian model
allows you to get rid of the uncertainty caused by the
choice of a non-optimal model. The presented
examples make it possible to accurately assess the
uncertainty in the forecasts made.

Various methods of applying Bayesian
structural time series make it possible to use them to

build models taking into account various prior
distributions, reduce uncertainty when choosing a
model, and work with different types of distributions
[49, 50], [51, 52], [53, 54], [55].

The article will consider the practical aspects of
the application of Bayesian structural time series in
forecasting financial indicators (stock prices).

PURPOSE AND TASKS OF RESEARCH

The purpose of the article is to study the
features of the application of Bayesian structural
time series to solve the problems of modeling and
predicting nonlinear and non-stationary processes.
The objectives of the article are: to determine the
approach to building probabilistic-statistical models
based on Bayesian structural models of time series,
as well as to analyze the various components of the
BSTS model, with the help of which the structures
of alternative predictive models are formed.
Determine the quality of predictive models and
make a forecast based on the most effective model.
Obtain  experimental  confirmation of the
effectiveness of the proposed approach.

FEATURES OF BUILDING
STRUCTURAL MODELS OF TIME SERIES

Structural time series models have three key
features for modeling non-linear non-stationary
processes:

e  The ability to determine the uncertainty in
forecasts, in connection with which then to quantify
future risks.

e  Transparency, to understand the mechanism
of the model.

e Ability to include external information for
known factors when there is no relationship in
existing data.

The structural time series model can be
described by a pair of equations [51]. The first, the
observation equation, relates the observed data y; to
a vector of latent variables a;, which is called the
“state”. The second, the transition equation,
describes how the latent state evolves over time:

yt = Zzat + Et’ Et"’N(O, Ht)’ (2)
1,~N(0,Qn). ()

The model matrices Z;, T;, and R; are structural
parameters. They usually contain a mixture of
known values (often O and 1) and unknown
parameters. The transition matrix T, iS a square
matrix, and the matrix R can be rectangular if some
of the state transitions are deterministic. The
presence of R; in equation (3) makes it possible to
work with the full-rank variance matrix Q;, since

er1 = Teae + Reny,,
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any linear dependencies in the state vector can be
moved from Q; to R,. Often when implemented, H;
is a positive scalar. The residuals €; and 7, are

independent of each other and have a normal
distribution with mean 0. It is generally accepted
that a model that can be described by equations (2)
and (3) is in the form of a state space. A fairly large
class of models can be expressed in state-space
form, including all varieties of ARIMA and
VARMA models.

The main advantages of the state-space time
series model are its modularity and flexibility. The
independent state components can be combined by
combining their Z, observation vectors and placing
other model matrices as elements of a diagonal
matrix. When designing a model, this gives you
considerable flexibility in choosing the components
to model the trend, seasonality, regression effects,
and, if necessary, other state components.

Structural time series models are one of the
families of state space models. In structural models,
the time series is represented as a sum of unobserved
components, which can be interpreted as a trend,
seasonality, predictor effects, etc.

These components serve as a kind of “building
blocks” that can be combined in accordance with the
problem being solved and the characteristics of the
data.

As an example, we present the basic structural
model of a time series with predictors as follows
[51]:

Ye = U T ¢ +[))Txt + €,
Ut = M1 + 61 + Uy,

T = —Z Tr_g T Wy,

s=1

where p, is the current trend level of the model, and
6; is the trend growth factor. The seasonal
component z; can be considered as a set of S dummy
variables with dynamic coefficients limited by zero
mathematical expectation during a full cycle of S
seasons. The independent components of the
Gaussian random noise are combined into the
vector i, = (ug, v, we). The matrix Qr is diagonal
with diagonal entries and o2, 02, 6.2 and Hr is the
scalarg?. The parameters in equation (3) are the
variances o2 , o2, 02, 02 and the regression
coefficients . They are subject to evaluation based
on the original data. Thus, the presented model
contains  trend, seasonality and regression
components. Vector x;, is a set of independent
factors (predictors).

Bayesian Structural Time Series (BSTS) is
related to the linear Gaussian model that is used in

Kalman filters. The BSTS model is based on more
complex mathematical principles than those used in
the linear Gaussian model. The main difference is
that Bayesian structural time series allows you to use
existing components to build more complex models
that reflect known facts or interesting hypotheses
about the system. They can be used to design the
structure of the model and train on the available data
to evaluate the parameters of the model and see how
well the model describes and predicts the behaviour
of the system.

An approach to modelling and forecasting
based on Bayesian structural time series is proposed,
consisting of the following stages:

1. Creation and training of a time series. The
learning process for a High Degree Bayesian
Structural Time Series model consists of four steps:

* Setting structures and a priori probabilities.

* Application of the Kalman filter for state
estimation.

» Application of the tongue-and-plate sampling
method in the design model.

* Bayesian averaging to combine the results to
make a prediction.

The flexibility of the BSTS model based on
selected modular components is evident in the first
two steps. What follows is a learning model for data
acquisition using a Bayesian method whose
parameters change over time.

2. Modeling and forecasting. When solving the
problem of predicting a data set, several alternative
BSTS models are used, based on the results of data
analysis and processing. Each model is completed
with components that can reflect the nature of data
changes.

The BSTS models are built according to the
following algorithm:

* A set of model components.

* If there are no predictors in the model, then
the list of prior probabilities corresponds to the prior
distribution of the standard distribution of residuals.
If the model is with predictors, then the a priori
search is carried out using the spike and slab
method.

* Setting the number of iterations of the MCMC
algorithm and parameters of the random number
generator (for reproducibility of calculation results).

* Building BSTS models.

» Assessment of the quality of the model and
verification of its adequacy: according to the metric,
the speed of fitting models and its components,
checking the autocorrelation in the residuals of the
models.

All ready-made alternative BSTS models are
used for comparison and evaluation in order to select
the most appropriate model for the original dataset.
The selected models are used for forecasting. The
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table 1 presents the various components of the BSTS
models, using the structure of alternative predictive
models [49-52].

FORECASTING USING BAYESIAN
STRUCTURAL TIME SERIES

As an example of the application of Bayesian
structural time series, the problem of forecasting the

prices of Amazon shares is considered. The base
dataset is amzn_share, which contains the company's
stock price values at the close of trading from
January 1, 2016 to May 26, 2019.

The data is part of a multivariate time series and
was taken from https://finance.yahoo.com/.

Table 1. Specification of model components

No. | Component name Presentation Form Application features
Ve = U + €, A typical non-stationary process
1 | Local level Ue = Up_q + Us, corresponding to the process “random walk
€.~N(0,02), u,~N(0,02). | with noise”.
Model parameters ¢,, ..., ¢ are subject to
Component of the Ve = U t €, I | | P fo th
2 | autoregressive b =P 4 e +u estimation. For large va ues of p, the
orocess tN © l=21) i t_I:l © t’z) “spike-and-slab” method is used to
€~ ,0¢ ), U™~ , 09, ). :
t € t u regularize the parametersg,, ..., ¢p.
Ye = ’_T_t ;_ ‘v T The process of “random walk ” describes
Local Linear Trend He = -1 T 01 T e |yt the dynamics of the average level of
3 6t =8t—1+vt1 . - .. .
Component €,~N(0, 02) the time series y,,, and the coefficient of its
P rowth 6.
u~N(0,02), v~N(0,2) | 9
Random fluctuations of this component
o te obey the Student's distribution, and not
:yt ’_T_ta t’_l_ " Gaussian. The component is well suited for
Robust local linear He = He-1 T 01 T U | ohort term forecasts based on time series, in
4 6t - 5t_1 + vt, - - -
trend component 2 which there are sharp jumps in the average
e~N(0,05), level. This will make it possible to obtain
~N(0,02),v,~N(0,52) ol -
Ue rTulrEt more reliable forecasts in the presence of
anomalous observations.
The growth rate of the average level of the
Ve = U + €4, series develops in accordance with AR1.
Component of a Ur = Ue—q + Op_q + Ug, The process described by this component is
5 | semi-local linear 6 =D+ ¢x (6;— L more stable than the random walk process,
trend D) + v, €,.~N(0,02), which makes the model with this
u,~N(0,02),v,~N(0,52) | component more suitable for calculating
long-term forecasts.
Ye T Vet € To model processes with clearly defined
amplitude and frequency, the seasonal
Z Ye-s + W, component is used, which is presented as a
6 | Seasonal component . .
) sum of elementary trigonometric
Et"’N (0 ), components (cos and sin) with time-varying
we~N(0, 03) coefficients.
= + €, . .
Companent of Ye = Baw NG The list of events important for the process
7 holidays” and other €,~N(0,02) . . o .
. t 1EES is formed using auxiliary functions
important events La~N(0,0?)
Source: compiled by the authors
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After loading, the structure and data types were
analyzed, and missing values were processed. The
data are characterized by irregular registration of
observations, which leads to a large number of
missing values and “masking” possible seasonal
fluctuations. This makes the task of forecasting
rather difficult.

To restore gaps in the amzn_share time series,
the linear interpolation method was used. The first
three missing observations were removed. In Fig. 1,
the original row with filled in missing values is
visualized.

price

ds »

Fig. 1. Visualizing Amazon Stock Prices
Source: https://finance.yahoo.com/
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Fig. 2. ACF and PACF functions for
time series

Source: compiled by the authors

Using a set of statistical tests (ADF, KPSS, PP),
the original series was tested for stationarity. The
result of the check was the conclusion about the non-
stationarity of the process, which is reflected by a set
of observed values of the time series. The non-
stationarity of the process is confirmed by the nature
of the values of the sample autocorrelation functions
ACF and PACF (Fig. 2).

An important condition for building reliable
predictive models based on the method of Bayesian
structural time series is the definition and
identification of the structure of the time series. The
STL method was used to decompose the original
series into its constituent components. Fig. 3 shows
the results of the decomposition of the original series
using the STL method.

data
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Fig. 3. STL decomposition of the time series of
Amazon stock prices
Source: compiled by the authors

Viewing the data made it possible to determine
the principles of modeling. First of all, it is
necessary to take into account the dominant role of
the trend present in the data (Fig.3), which
represents non-linear and non-stationary behavior.
There are also patterns that reflect the seasonal
behavior of the data (Fig.3) to be reflected in the
models. However, their influence is much less.

Before starting the process of building
predictive models, the initial data set was divided
into two parts: training and testing samples. The test
sample consists of 14 observations, which
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corresponds to a forecast horizon of 14 days for

short-term forecasting.

The fitting of structural time series models is
performed using the Kalman filter and the Monte
Carlo method according to the Markov chain scheme
(MCMC). To estimate and simultaneously regularize
the regression coefficients, the “spike-and-slab”
method is used. This method consists in assigning to
each regression coefficient a certain high a priori
probability that it is equal to zero (“probability of
inclusion” in the model). Using the original data and
Bayes' theorem, the inclusion probabilities are
updated. Further, during MCMC sampling of the
coefficients from the obtained posterior
distributions, most of the given values of the
coefficients turn out to be equal to zero. Such a
regularization mechanism makes it possible to
effectively select the most important predictors and
simultaneously get rid of multicollinearity, so a large
number of predictors can be included in Bayesian
structural models without the risk of overfitting.

When forming a structural model based on a
preliminary analysis of the time series, various
alternative models were considered to select the best
one. In Table. 2 shows the studied models.

Table 2. Description of predictive models

Model
name Model contents
Linear local trend component +
. annual seasonality component
Linear local trend component +
Model 2 autoregressive component
Model 3 Linear local trgnd component +
Weekly seasonality component
Linear local trend component +
Model 4 weekly seasonality component +
autoregressive component
Component of a sustainable local
Model 5 linear trend + autoregressive
component
Local level component + annual
Model 6 seasonality component
Local level  component  +
Model 7 autoregressive component
Local level component + monthly
Model 8 seasonality component

Source: compiled by the authors

One of the significant advantages of the
Bayesian structural model is the ability to analyze its
underlying components. Figure 4 shows the mean
values of the MCMC results for the trend and the
autoregressive component using the Model 5 model
as an example.

The BSTS model makes it possible to test the
seasonal components as well. For example, the

seasonal component for the days of the week is
shown in Fig.5. In weekly seasons, there is a
difference in prices by day of the week. However,
the distribution of parameters is relatively stable in
time for each day of the week.
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Fig. 4. Posterior distributions of the components
of the Model 5 model.
local linear trend. Right: autoregressive
component
Source: compiled by the authors
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Fig. 5. Posterior distributions of weekday effects
estimated using the Model 4 model.
The green lines correspond to the medians of

these distributions
Source: compiled by the authors
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On Figure 6 shows that Amazon's stock price
was slightly higher on average on Tuesday,
Wednesday, and Thursday than on other days, but
the effects of each day of the week were not always
consistent  throughout the historical period.
Nevertheless, the contribution of the seasonal
component as a whole turned out to be very
insignificant compared to the contribution of the
trend, which is also consistent with the result of the
exploratory analysis of the initial data.

An important property of a good time series
model is the absence of autocorrelation in its
residuals. For visual verification, a diagram was
used, which was built on the basis of a matrix with
model residuals and consists of range diagrams for
the posterior distributions of the autocorrelation
function. Ideally, the centers of these posterior
distributions (starting from shift 1 onwards) should
be at 0, but in the case of Model 1 this is not the
case: the cyclist is clearly visible. A similar property
of the original data was discovered during
exploratory analysis. The box plots for the Model 7
show a high degree of model fit.
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Fig. 6. Posterior distributions of the
autocorrelation function of the residuals of
Model 1 and Model 7

Source: compiled by the authors

The quality of the built BSTS models is
simultaneously analyzed using a graph that depicts
the accumulated average absolute errors of the next
step for each of the compared models (Fig. 7).
Below the graph of the accumulated error curves, the

original training data is shown, which allows you to
better understand where exactly one or another
model does not do a good job of describing the data.
On Fig.7 curve of accumulated errors Model 7 is
below the curve of other models, which further
confirms the higher quality Model 7.
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Fig. 7. An example of comparing the quality of
alternative models using the errors of the
next step.
Top: cumulative mean absolute errors of the
next step.

Bottom: training dataset
Source: compiled by the authors

Table 3 presents the values of the quality
metrics for predictive models. In the table below, the
metric residual.sd is the mean of the posterior
distribution of the standard deviation of the model
residuals, and the metric rsquare is the usual
coefficient of determination (i.e., the fraction that
the variance of the residuals is in the total variance
in the data). The remaining two metrics are
calculated using the so-called. “next step errors”,
which are calculated during model fitting as y; —
E(y¢|Ye—1,60), whereY;_; = y1,¥2, .., Ye—1, and @ is
a vector with current estimates of model parameters.
The prediction.sd metric is the standard deviation of
the next step errors calculated from the training data,
and relative.gof is the so-called Harvey's stats. The
Harvey statistic is similar to the coefficient of
determination and is calculated as R} =1-—
S

(n-2)xvar(diff(y))’
step, n is the number of observations y in analyzed
time series, and var and diff are functions for
calculating the variance and transition to differences
(differentiation) of the time series, respectively. An
assessment of the quality of predictive models is
shown in Fig.8.

where v are the errors of the next
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Table 3. Evaluation of the quality of predictive models

Model name | residual.sd | prediction.sd | rsquare relative.gof
Model 1 7.753 21.380 0.9997 -0.152
Model 2 6.472 19.952 0.9997 -0.003
Model 3 8.021 20.191 0.9997 -0.027
Model 4 6.697 20.138 0.9997 -0.022
Model 5 5.015 19.970 0.9999 -0.005
Model 6 7.838 22.117 0.9997 -0.233
Model 7 6.483 19.859 0.9998 0.002
Model 8 6.978 20.753 0.9998 -0.087

Source: compiled by the authors
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Fig. 8. Evaluation of the quality of

predictive models
Source: compiled by the authors

The adequacy of the models was assessed by
how well they described the training data. This
approach is accompanied by a high risk of choosing
an over trained model as the optimal one.
Diagnosing with next-step errors is only part of the
insurance against this, and the only objective test of
the quality of a model will always be the accuracy of
its predictions on an independent data set.

The predicted values are calculated for built-in
models with the best quality indicators and are
presented in Table 4. The predictions are compared
with the data from the test sample. Mean absolute
specific prediction error (MAPE), mean absolute
error (MAE), square root of root mean square error
(RMSE), and Theil U-statistics were used as metrics
for selecting the optimal model. Since BSTS models
predict a large number of possible realizations of
future values of the dependent variable, the median
values of possible realizations were used to calculate
the metrics.

As follows from the above results, the Model 7
should be considered optimal.

Fig.9 shows the visualization of predictive
values made on the basis of Model 7. The training
data is marked with a black line. The blue line shows
the most probable future values of the time series.
Around this line, semi-transparent black dots also
show other possible implementations of future
values. The green dashed lines limit the 95%

confidence interval of the predicted values. The
initial data were submitted for a time period of 90
days, they were supplemented with forecast values
for the next 14 days with quintiles of 5 % and 95 %
highlighted. The spread of forecast values increases
as the forecast period increases. Thus, the figure
depicts only the last 90 observations from the
training data. The yellow dots show data from the
test sample, which allows you to visually assess the
quality of the forecast.

Table 4. Evaluation of the quality of the forecast

Model u-
name MAPE MAE RMSE | (i tictics
Model 2 | 0.3740 | 686.4784 | 59.6242 | 0.0158
Model 3 | 0.4387 | 805.9569 | 68.7171 | 0.1822
Model 4 | 0.4164 | 763.9449 | 67.0756 | 0.0178
Model 5 | 0.3449 | 634.2707 | 52.3890 | 0.0139
Model 7 | 0.2323 | 431.2109 | 36.1843 | 0.0097

Source: compiled by the authors
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Fig. 9. Visualization of predictive values
based on Model 7
Source: compiled by the authors
FEATURES AND ADVANTAGES OF
SOLVING FORECASTING PROBLEMS
USING THE BSTS METHOD

In the presented methodology of Bayesian
structural time series, there are features that affect
the process of building a model:
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e  Possibility to specify non-standard prior
distributions.

e  Ability to select repressor using the "spike-
and-slab" method.

e  Bayesian model averaging.

Along with the presented features, the
methodology of Bayesian structural time series has
the following advantages:

e When building Bayesian models, a
distribution is obtained. Thus, the results are
returned (for example, forecasts and components) as
matrices or arrays, where the first dimension
contains the MCMC iterations

e Models allow modeling with any prior
distributions. The default linear Gaussian model is
just one variation of the classic prior distribution.
Method models work with other variants of
distributions (for example, asymmetric priors).

e  To build methodology models, it is possible
to choose variables on your own.

e Models can be combined with Bayesian
model averaging techniques to eliminate the
uncertainty associated with model selection.

These advantages are confirmed by the use of
six data sets from different application areas for
solving forecasting problems.

CONCLUSIONS

The article discusses the features of the Bayesian
approach in the processing of nonlinearities and
nonstationary in the construction of forecasting
models using Bayesian structural time series.
Parametric and non-parametric methods for
forecasting time series are considered. One of the

types of non-parametric models is Bayesian
structural time series. An approach to the
construction of probabilistic-statistical models based
on Bayesian structural models of time series is
defined. The main features of constructing structural
time series are considered. The process of learning
the Bayesian structural model of time series is
described. An algorithm for constructing a BSTS
model is presented. Various components of the
BSTS model are considered and analyzed, with the
help of which the structures of alternative predictive
models are formed. As an example of the application
of Bayesian structural time series, the problem of
predicting Amazon stock prices is considered. The
data are characterized by irregular registration of
observations, which leads to a large number of
missing values and “masking” possible seasonal
fluctuations. This makes the task of forecasting
rather difficult. To restore gaps in the amzn_share
time series, the linear interpolation method was
used. Using a set of statistical tests such as ADF,
KPSS, PP, the series was tested for stationarity. The
data set was divided into two parts: training and
testing samples. The fitting of structural models of
time series was performed using the Kalman filter
and the Monte Carlo method according to the
Markov chain scheme (MCMC). To estimate and
simultaneously regularize the regression
coefficients, the spike-and-slab method was applied.
The quality of predictive models was assessed.
Based on the most effective model, a forecast was
made for Amazon stock prices. The application of
the method of Bayesian structural time series makes
it possible to effectively build forecasts taking into
account the non-linearity and non-stationarity of the
data.
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AHOTALIS

VY crarTi OmMcaHO MiAXid A0 MOJICTIOBAHHA Ta MPOTHO3YBAaHHS HENIHIHHMX HECTAlllOHAPHUX YaCOBHX PSMIB I PI3HHUX LLUIEH 3
BUKOPHCTAHHSM 0aifeCiBCBKUX CTPYKTYpHUX 4acoBuX psaiB (BSTS). Po3risHyTo MOHATTS HEMiHIMHOCTI Ta HECTalllOHAPHOCTI, a TAKOX
MeToau OOpOOKM HEJiHIHHOCTI Ta HECTAIliOHAPHOCTI Mpu MOOYIOBI Mofenei mporHo3yBaHHsA. HaBemeHo ocoGmmBOCTI OailieCiBCBKOTO
TiIX0My B 00pOOIIi HENMHIHOCTEH Ta HecTamioHapHOCTI. JlociiKeHO MiXi/] 10 To0y/I0BH HMOBIPHICHO-CTATHCTUYHUX MOJIENCH HAa OCHOBI
0aifeCciBCHKIX CTPYKTYPHHUX MOJIeJIel YacoBHX psaiB. PO3IISIHyTO mapaMeTpryHi Ta HemapaMeTprudHi METOAH NPOrHO3YBaHHS HENHIHHIX
Ta HECTAIIOHApHUX YacOBHX psiB. [lo MapaMeTpUYHUX METO[IB HaJeXaTh METOAM: KJIACHYHNX aBTOPETPeciiiHuX MoIeleH, HeHpOHHHUX
Mepex, MOJeINel ONMOPHMX BEKTOPHMX MAIlIMH, PUXOBAHUX MApKOBCHKUX Mojeined. Jlo HemapaMeTpuIHMX METOJB HaJIeXKaTh METOM:
MOJIEJIi IPOCTOPY CTaHiB, MOAIENi (PYHKLIOHAIBHOI JEKOMIIO3HIIIi, OalieciBChKi HemapameTpuyHi Moaeni. OMHUM i3 BUIIB HeMapaMeTpUYHUX
Mozeneit € GalteciBChKi CTPYKTYPHI 4acoBi psau. PO3rIsiHyTO OCHOBHI 0COOMMBOCTI MOOYIOBH CTPYKTYPHHX YacoBUX psamdiB. [IpencraBneno
MOZeNl CTPYKTYpHHX 4YacoBHX psAmiB. OmNucaHO Mpollec HABYaHHSA Oali€CiBCBKOI CTPYKTYypHOI Moeni 4YacoBUX psniB. Hapuanus
BUKOHYETBCSI B YOTUPH €TalM: 3aBJaHHs CTPYKTYPH MOJIEN Ta alnpiOpHUX HMOBIpHOCTEH; 3acTocyBaHHs (inbTpa KanMana 11 OHOBIEHHS
OLIHOK CTaHy Ha OCHOBI CIIOCTEPEKCHHX JaHHX; 3acTOCyBaHHsS Meroxy “spike-and-slab” nys BubGopy 3MiHHHX y CTPYKTYpHiil Moneni;
BaifeciBcbke ycepemHeHHS Uil 00’€JHAHHSA pe3yNbTaTiB Il HporHo3yBaHHA. HasemeHo amropmtm moOymosu Moxemi BSTS.
Posrmsinatoreest Ta aHami3yroThes pi3HI KommoHeHTH Mozenmi BSTS, 3a momomororo sikux (OpMYIOTBCS CTPYKTYpU ajbTepHAaTHBHUX
TIPOTHO3HUX MoJienel. Sk mpuKIIas 3acTocyBaHHsI OaileCIBCBKUX CTPYKTYPHHX YacOBHX PSIIIB PO3IIIIAETHCS 3a1a4a POTHO3YBaHHS KypCiB
akiiii Amazon. bazoBum HaGopom fanux € amzn_share. TTicist 3aBaHTaXeHHsI CTPYKTypa Ta THIIM JaHKUX OyJM [poaHasi30BaHi, a BiICyTHi
3Ha4YeHHS 00po0IIeHi. 11 TaHNX XapaKkTepHa HeperyisipHa peecTpallist CIOCTEPEKEHb, IO MPU3BOAUTE [0 BEJIMKOI KITHKOCTI IPOITYIIEHUX
3HAYCHb 1 «MaCKyBaHHS» MOXIIMBHX CE30HHUX KOJIMBaHb. Lle yCKIIanHIOe 3aBIaHHs POTHO3YBAaHHSL. 711 BITHOBJICHHS PO3PHUBIB y YaCOBUX
psizax amzn_share BukoprcToBYBaBCs METOI JiHIAHOT iHTeprosLii. BukopuctoByroun Habip craructnunux tectis (ADF, KPSS, PP), psin
MepeBIpsUIA Ha cTanioHapHicTh. Hablp maHmX po3aiieHuil Ha JBI YacTWHW: HAaBYAaHHS Ta TeCTyBaHHS. IliATOHKY CTPYKTYypHHX MOJENeH
YacoBUX PSAJIB MPOBOJMIA 3a JoroMoror ¢instpa Kanvana ta meromy Monrte-Kaprno 3a cxemoro janirora Mapkosa (MSMC). s
OLIIHKKA Ta OJHOYACHOI peryssipizamii koedimieHTiB perpecii 3acrocoBano Meron “spike-and-slab”. OmineHo SIKiCTH HPOTHOCTHYHHX
MOJIETEH.

Kimiouosi cioBa: BaiieciBebknii ctpykrypHuid qacoBuii psix (BSTS); nporHo3yBaHHS, HeNiHIHHICTE, HECTAI[IOHAPHICTH, MPOTHO3HA
OIlIHKa
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