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1. Introduction

One of the main trends in the development of technol-
ogy in the modern world is the increasing introduction of 
artificial intelligence approaches in all areas of human ac-
tivity. One of the areas where significant success has been 
achieved is the recognition of objects in images. This is due 
to the high practical effectiveness of modern methods of 
object recognition in such areas as, for example, unmanned 
vehicles, medicine, and robotic production. Requirements 
for the quality of object recognition are constantly growing 
due to the growing need for practical use. However, the main 
direction of improving the indicators is the development of 
deeper and deeper neural networks, the training of which is 
carried out on increasingly large data sets and requires an 
increasing amount of calculations. Initially, the best results 
were demonstrated by deep convolutional neural networks, 
such as described in [1], which in 2012 showed the best re-
sults on the ImageNet dataset [2] that contained more than 
15 million images. The number of configurable weights in 
that network exceeds 60 million. The next stage in improv-
ing the performance of neural networks was the development 
of architectures called transformers [3]. One of the most effi-

cient variants of this architecture, ViT-Huge, contains more 
than 632 million customizable weights. Among the datasets 
on which that neural network was trained was JFT [4] con-
taining 303 million images. For many practical applications, 
it is not possible to form such a large set of data. Some relief 
of the situation is transfer training [5] when a neural net-
work already trained on a data set is taken and completed 
on a set of data related to the required application. However, 
the amount of computation to find the output signals of such 
a neural network remains as large, which makes it difficult 
to use them in practice. Relevant for practice is the develop-
ment of such classifier architectures, which, with high clas-
sification quality, require a small amount of calculations and 
can be quickly trained on a small amount of data.

Simultaneously with the development of new architec-
tures of neural networks with an increasing amount of calcu-
lations, it turned out that these neural networks have a lot of 
redundancy. It is possible to reduce the number of weighting 
coefficients by an order of magnitude without losing the 
resulting recognition quality [6] or even with its slight im-
provement [7]. This explains the emergence of new neural 
network architectures, which, with a significantly smaller 
number of tunable weights, provide comparable quality of 
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Object recognition in images is used in many areas 
of practical use. Very often, progress in its application 
largely depends on the ratio of the quality of object 
recognition and the required amount of calculations. 
Recent advances in recognition are related to the 
development of neural network architectures with a 
very significant amount of computing that are trained 
on large data sets over a very long time on state-of-
the-art computers. For many practical applications, 
it is not possible to collect such large datasets for 
training and only computing machines with limited 
computing power can be used. Therefore, the search 
for solutions that meet these practical restrictions is 
relevant. This paper reports an ensemble classifier, 
which uses stacking in the second stage. The use of 
significantly different classifiers in the first stage and 
the multilayer perceptron in the second stage has 
made it possible to significantly improve the ratio of 
the quality of classification and the required volume 
of calculations when training on small data sets. The 
current study showed that the use of a multilayer 
perceptron in the second stage makes it possible to 
reduce the error compared to the use of the second 
stage of majority voting. On the MNIST dataset, the 
error reduction was 29‒39 %. On the CIFAR-10 dataset, 
the error reduction was 13‒17 %. A comparison of 
the proposed architecture of the ensemble classifier 
with the architecture of the transformer-type classifier 
demonstrated a decrease in the volume of calculations 
while reducing the error. For the CIFAR-10 dataset, an 
error reduction of 8 % was achieved with a calculation 
volume of less than 22 times. For the MNIST dataset, 
the error reduction was 62 % when winning by the 
volume of calculations by 50 times
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Ensuring the effectiveness of stacking in the second 
stage of the ensemble classifier requires the use of classifiers 
at the first stage that implement various algorithms. The sec-
ond requirement for first-stage classifiers is a high quality of 
classification with a relatively small number of adjustable co-
efficients. Such requirements are met by a number of classi-
fier structures. In [8], MLP-Mixer is proposed, the architec-
ture of which is built exclusively on perceptrons (MLP). The 
input images are divided into a lattice of fragments. Further, 
the data are sequentially processed by N MixerLayer blocks. 
Each of these blocks contains two groups of perceptrons. The 
perceptrons of the first group process the vertical rows of 
fragments, and the other group of perceptrons processes the 
results of the work of the first group of perceptrons horizon-
tally. At the output of the classifier, a fully connected layer 
is used according to the classical scheme, which generates 
support signals for each of the feature classes.

Paper [15] proposes the architecture of CCT (Com-
pact Convolutional Transformer). It simultaneously uses 
blocks of transformers [3] and convolutional neural net-
works (CNN). It is shown that with the correct choice of 
dimensionalities, high-quality classification is ensured with 
a small number of tunable coefficients both on large data sets 
and on small MNIST and CIFAR-10. In [16], to build the 
EANet network (External Attention Transformer), three 
types of blocks were used: MLPs, external attention blocks, 
and transformers. The mechanism of external attention 
proposed in this architecture takes into consideration the 
correlations between all data samples and makes it possible 
to get a high-quality classification with a small volume of 
calculations. A similarly high ratio of classification quality 
and calculation volume characterizes the FNet network [17]. 
It also has a transformer in its architecture but, in addition, 
it uses the Fourier transform.

Unlike MLP-Mixer where fragments of the input image 
are mixed using horizontal and vertical processing, in the 
FNet network these fragments are mixed using the Fourier 
transform. At the output of FNet are fully connected layers 
(perceptron), which form support output signals for all classes 
of objects. It should be noted that in deep convolutional neural 
networks, spatial connections are searched simultaneously 
throughout the image at the same time. The main driving 
motive in the development of more computationally efficient 
neural networks is the understanding of the redundancy of 
convolutional networks. Therefore, the search for spatial con-
nections is not carried out throughout the image at once but by 
splitting the image into a lattice of fragments and searching for 
connections between them. In [18], it is proposed to use channel 
projections and spatial projections with multiplicative gating 
for this purpose. These neural networks are called gMLP be-
cause they are built on the basis of layers of MLP with gating. 
At the input of gMLP, as well as in previous networks, the 
image is divided into a lattice of fragments, in the middle, there 
are L blocks in series, and the output signals of class support are 
formed by means of a fully connected perceptron.

The architecture of the SwinTr neural network (Swin-
Transformer) is based on the search for spatial connections 
using the self-attention mechanism only inside each of the 
shifted windows [19]. The use of this network on various 
data sets showed high classification quality with a relatively 
small amount of calculations. This is because self-attention 
is calculated only inside the windows, and not throughout 
the image, as is done in the standard architecture of the 
transformer [3].

object recognition in images, compared to more resource-in-
tensive neural networks [8]. The effective integration of such 
neural networks into ensemble classifiers [9] is an important 
scientific direction since it opens up new opportunities for 
constructing classifiers with a better ratio of classification 
quality and calculation volume.

2. Literature review and problem statement

Conditionally, the structure of the ensemble classifier 
can be represented in the form of two stages. In the first 
stage, we have M separate classifiers, at the outputs of which, 
for each input signal x, a vector of output signals is obtained.

In the second stage, the results of individual classifiers 
are combined to derive a more accurate result [10]. Methods 
of constructing the second stage of the ensemble classifier 
are divided into methods of weighing and meta-learning. 
Weighting methods show good results when classifiers in 
the first stage perform the same task and have comparable 
results. The simplest of these methods is majoritarian voting. 
In this case, the output signal of each of the classifiers of the 
first stage is defined as the output number with the maxi-
mum value. The output signal of the second stage is defined 
as the result of finding the maximum number of matches of 
the output signals of the classifiers of the first stage.

A large number of different modifications of this meth-
od are known, which include weighting by characteristics, 
methods for optimizing the linear combination of basic clas-
sifiers (wagging), the use of the naïve Bayesian approach, 
entropy weighting, and many others [10]. However, these 
methods are used mainly in economics, and when recogniz-
ing objects in images, the majoritarian rule 2 out of 3, 3 out 
of 4, 3 out of 5, etc. is typically applied. In other words, if the 
number of coinciding solutions of primary classifiers is more 
than half the number of classifiers, then this decision is taken 
as a final solution, otherwise, a random value is taken [11].

The use of meta-learning at the second stage involves 
using not only the output numbers of the first stage classifi-
ers with maximum values but all the output signals of these 
classifiers. The most popular approaches from this group are 
boosting, bagging, and stacking [10]. The success of sec-
ond-stage training depends significantly on the diversity of 
models in the first stage. Boosting and bagging imply the use 
of the same algorithm at the first stage, the variety of models 
is obtained by forming different subsets from the entire data 
set and training each of the models on its data set. Stacking 
involves the use of different algorithms for different models, 
each of which is trained on a full set of input data. Paper [12] 
shows that meta-learning provides better performance than 
majoritarian voting. However, very small datasets were used 
for comparison in the cited work and simple linear regression 
was used for stacking. In this regard, the use of a neural 
network for staking is of interest. To train a neural network, 
larger datasets than in those [12] are needed but their size 
should be comparable to that which can be provided in a large 
number of practical applications.  Some of the most popular 
datasets that meet these conditions are MNIST [13] and 
CIFAR-10 [14]. MNIST is a set of 60,000 black-and-white 
images of handwritten digits for training and 10,000 images 
for testing; each image has a size of 28×28 pixels. CIFAR-10 
is a set of 50,000 color images of 10 classes of objects, such as 
an airplane, horse, dog, etc., and 10,000 images for testing; 
each image has a size of 32×32 pixels.
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It should be noted that the neural network architec-
tures proposed in works [8, 15–19] are aimed primarily at 
classifying objects in large data sets. The characteristics of 
these networks when working with small data sets as part of 
ensemble classifiers have not been investigated.

CCT, EANet, FNet, gMLP, MLP-Mixer, and SwinTr 
neural networks implement original algorithms, which are 
significantly different from each other and from the classical 
convolutional neural network (CNN). Therefore, at the first 
stage of the ensemble classifier, it is advisable to use these 
networks and CNN, provided that architecture with a small 
number of configurable coefficients is used.

Thus, at present, a large number of neural networks have 
been developed that are characterized by the high quality 
of classification of objects in images with a relatively small 
amount of tunable coefficients that work according to sig-
nificantly different algorithms. This opens up the possibility 
of using them at the first stage of the ensemble classifier, 
which implements the stacking mechanism at the second 
stage. However, the use of these networks as part of ensemble 
classifiers is unexplored. In addition, it seems appropriate to 
investigate the possibility of using all the output signals of 
these networks at the second stage of the ensemble classifier 
within the framework of the stacking mechanism, and not 
only the maximum ones. To implement stacking, it seems 
promising to use a neural network, which, firstly, will allow 
the most complete use of all the outputs of the primary neu-
ral networks of the first stage, and secondly, can be trained 
specifically for the necessary data sets for practice.

3. The aim and objectives of the study

The aim of this work is to build an ensemble classifier 
that uses modern neural networks at the first stage and im-
plements the stacking mechanism at the second stage using a 
multilayer perceptron. The classifier should have a relatively 
small amount of computation and the ability to learn from 
small datasets MNIST and CIFAR-10. This will make it pos-
sible to use such a classifier in many practical applications.

To accomplish the aim, the following tasks have been set:
– to determine the impact of the use of a multilayer 

perceptron at the second stage of the ensemble classifier on 
the quality of classification and compare it with the use of 
majoritarian voting at the second stage;  

– to compare the characteristics of the constructed en-
semble classifier and transformer.

4. The study materials and methods

The generalized architecture of the ensemble classifier, 
which uses a multilayer perceptron to implement stacking at 
the second stage, is shown in Fig. 1. In the first stage, it con-
tains M classifiers, each of which receives an input image x. 
At the output of each of these classifiers, a vector is obtained

( ) ( ) ( ) ( )( )1 2, ,...,  ,i i i ikP x p x p x p x=   (1)

where i is the number of the classifier, 
k is the number of data classes, 
pij(x)) is the support of the i-th classifier that the signal x 

belongs to the j-th class.

When using majoritarian voting, the maximum is select-
ed from all the output signals of each of the first stage clas-
sifiers, and the number of this output is taken as the signal 
class x, which determined the corresponding classifier

( ) ( ){ }{ }arg max .i ijj
y x p x=   (2)

The output signal of the second stage of the ensemble 
classifier when using majoritarian voting [10]

( ) ( )( )
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1
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0 if  ,
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y c
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( ) { }1 2, ,..., kdom y c c c=  is a set of class labels.

For certainty, we will further assume that in majoritar-
ian voting, the output signal of the ensemble classifier is 
determined by (3) if the number of matches is greater than 
half the number of classifiers in the first stage. Otherwise, a 
random class number is taken as the output signal.

Neural networks used as classifiers of the first stage 
of the ensemble classifier are given in Table 1. The soft-
ware implementation and all parameters of the first stage 
classifiers are taken from [20]. All classifiers have been 
trained on MNIST and CIFAR-10 sets over 50 epochs. 
The results of training and the number of weighting co-
efficients are given in Table 1. The number of data classes 
in both sets k=10.

Fig. 1.	The	generalized	architecture	of	ensemble	classifier

Table	1

Parameters	of	first-stage	classifiers

Neural net-
work

MNIST CIFAR-10

Accuracy of 
classification

Number of 
weighting 

factors

Accuracy of 
classifica-

tion

Number of 
weighting 

factors

CNN 0.9929 34826 0.7687 343306

CCT 0.9879 406987 0.8021 408139

EANet 0.8517 358090 0.6788 355530

FNet 0.9881 992010 0.7572 582410

gMLP 0.9876 1271818 0.7405 862218

MLP-Mixer 0.9574 629258 0.7674 219658

SwinTr 0.9711 147034 0.7128 151386
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Because a small number of signals are received in the 
second stage of the ensemble classifier, a multilayer percep-
tron with one hidden layer was chosen as a neural network 
at the second stage. This makes it possible to get comparable 
results when increasing the number of classifiers at the first 
stage.

When using a multilayer perceptron ensemble classifier 
in the second stage, the output signals of the first stage clas-
sifiers are preliminarily normalized. The normalizer brings 
the output signals of each of the classifiers separately to the 
range [−1, 1] as follows

( ) ( ){ }max ,i ijj
a x p x=   (4)

( ) ( ) ( )/ ,n
ij ij ip x p x a x=   (5)

where i is the number of the classifier, i=1,...,M, 
pij(x) is the j-th output of the i-th classifier. 
The input of the multilayer perceptron receives a signal 

vector

( ) ( ) ( ) ( )( )11 1,..., ,..., .n n n n
k MkP x p x p x p x=   (6)

Multilayer perceptron (MLP) contains 3 layers [21]:
– input layer; dimensionality, k×M; 
– hidden layer; dimensionality (k–1)×M, Relu activation 

function; 
– output layer; dimensionality k, softmax activation 

function.
The decision on the class to which the input signal be-

longs is made according to the rule

( ) ( )( ){ }arg max ,lj
class x z x=   (7)

where zl(x) is the signals at the MLP output (l=1,...,k) at the 
input image x.

MLP training uses the Adam optimizer, a gradient 
averaging parameter for training batch_size=128. During 
MLP training, first-stage classifiers were not trained 
but we simply calculated Pi(x) vectors using pre-trained 
weighting factors. For each variant, the MLP was trained 
100 times, starting each time with random values for the 
weightings according to Xavier’s initialization [22]. The 
maximum achieved classification quality was selected for 
use in the comparison.

The number of adjustable weighting coefficients in the 
MLP, depending on the number of classifiers in the first 
stage, is given in Table 2.

Table	2

Number	of	adjustable	weights	in	MLP

Number of classifiers in the 
first stage

2 3 4 5 6

Number of adjustable weights 
in MLP

630 830 1540 2450 3560

The study program was written in Python using the 
Num.py, Tensorflow, and Keras libraries, and run on the 
Colab cloud platform [23]. MLP training involved data for 
training. Classification quality was defined as the ratio of 

the number of correctly recognized images to the total num-
ber of images in the test suite of 10,000.

5. Results of studying the ensemble classifier with a 
multilayer perceptron in the second stage 

5. 1. Determining the influence of the use of a mul-
tilayer perceptron on the second stage of the ensemble 
classifier on the quality of classification

The results of using only two classifiers for the MNIST 
dataset at the first stage are given in Table 3, and for  
CIFAR-10 ‒ in Table 4. Based on these results, the best pair 
was selected for use in the first stage and the best third clas-
sifier was selected for use in the first stage. For the top three 
classifiers, the best fourth classifier was selected, etc. The 
results for the MNIST dataset are given in Table 5, and for 
CIFAR-10 ‒ in Table 6.

Table	3

Ensemble	classifier	classification	quality	when	using	two	
classifiers	in	the	first	stage	and	MLP	in	the	second	stage	for	

the	MNIST	dataset

First-stage 
classifiers

CNN CCT EAT FNet gMLP MLP-Mixer

CCT 0.9947 – 0.9890 0.9909 0.9919 0.9903

EAT 0.9934 0.9890 – 0.9858 0.9888 0.9681

FNet 0.9934 0.9909 0.9858 – 0.9910 0.9858

gMLP 0.9938 0.9919 0.9888 0.9910 – 0.9890

MLP-Mixer 0.9934 0.9903 0.9681 0.9858 0.9890 –

Swin Tr 0.9932 0.9893 0.9736 0.9868 0.9901 0.9774

Table	4

Quality	of	ensemble	classifier	classification	when	using	two	
classifiers	in	the	first	stage	and	MLP	in	the	second	stage	for	

the	CIFAR-10	dataset

First-stage 
classifiers

CNN CCT EAT FNet gMLP MLP-Mixer

CCT 0.8165 – 0.8184 0.8066 0.8077 0.8102

EAT 0.8159 0.8184 – 0.7898 0.7799 0.7912

FNet 0.7905 0.8066 0.7898 – 0.7950 0.7984

gMLP 0.7895 0.8077 0.7799 0.7950 – 0.7890

MLP-Mixer 0.7931 0.8102 0.7912 0.7984 0.7890 –

SwinTr 0.7839 0.8162 0.7707 0.7908 0.7832 0.7917

The results given in Tables 5, 6 show that the use of 
MLP in the second stage of the ensemble classifier provides 
an error reduction for the MNIST set by 29‒39 %, and for 
the CIFAR-10 set ‒ by 13‒17 %. It should be noted that the 
quality of the classification of the ensemble classifier signifi-
cantly depends on the data set used and on the effectiveness 
of the first-stage classifiers on this data set. For the MNIST 
dataset, the first-stage classifiers had high scores, which led 
to the fact that an improvement in the quality of the classi-
fication was observed when the number of first-stage classi-
fiers increased from 2 to 4. The subsequent increase in their 
number increased the total number of tunable coefficients 
but did not lead to a decrease in the number of errors. The 
CIFAR-10 suite is more difficult to classify than MNIST. 
For it, each addition to the first stage of the next classifier 
led to a decrease in the number of errors.
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5. 2. Comparison of the characteristics of the con-
structed ensemble classifier and transformer

To compare the characteristics of the ensemble classi-
fier, one of the most effective architectures was chosen ‒ 
ViT (transformer) [3]. Its software implementation, given 
in [20], was used. The number of base blocks was taken to 
be small – 8 so that the quality of the classification was 
comparable to the quality of the classification of the clas-
sifiers used at the first stage of the ensemble classifier. ViT 
training on the MNIST and CIFAR-10 kits was carried 
out over 50 epochs. As a result, ViT ensured the quality 
of classification for MNIST 0.9859 and for CIFAR-10 – 
0.8261 with the number of adjustable weights 21724362 

and 21666762, respectively. A comparison of the results 
for MNIST is given in Table 7, for CIFAR-10 – in Table 8.

The data given in Tables 7, 8 demonstrate that the ensem-
ble classifier on the MNIST and CIFAR-10 datasets makes 
it possible to get a better classification quality with a much 
smaller amount of calculations. For the CIFAR-10 dataset, 
the best ratio was shown by an ensemble classifier using CCT, 
EAT, and MLP-Mixer neural networks at the first stage. 
With 22 times fewer weights, the classification error is 8 % 
smaller than ViT. For the MNIST dataset, the best ratio was 
shown by an ensemble classifier using CNN and CCT neural 
networks at the first stage. With 50 times fewer weights, the 
classification error is 62 % smaller than ViT.

Table	5

Quality	of	the	ensemble	classifier	classification	when	using	M	classifiers	at	the	first	stage	and	MLP	at	the	second	stage	for	the	
MNIST	dataset,	and	the	results	of	majoritarian	voting	(MV)	at	the	second	stage

First-stage classifiers M
Number of adjustable 
weights taking into 
consideration MLP

Classification 
quality when 
using MLP

Classification quality 
when using MV (MV 

rule)

Reduced error 
when using 

MLPs

CNN+CCT+gMLP 3 1 714 461 0.9954 0.9935 (2 from 3) 29 %

CNN+CCT+gMLP+FNet 4 2 707 181 0.9959 0.9935 (3 from 4) 37 %

CNN+CCT+gMLP+FNet+SwinTr 5 2 855 125 0.9959 0.9933 (3 from 5) 39 %

CNN+CCT+gMLP+FNet+SwinTr+MLP-Mixer 6 3 485 493 0.9959 0.9933 (4 from 6) 39 %

Table	6

Quality	of	the	ensemble	classifier	classification	when	using	M	classifiers	at	the	first	stage	and	MLP	at	the	second	stage	for	the	
CIFAR-10	dataset,	and	the	results	of	majoritarian	voting	(MV)	at	the	second	stage

First-stage classifiers M
Number of adjustable 
weights taking into 
consideration MLP

Classification 
quality when 
using MLP

Classification quality when 
using MV (MV rule)

Reduced error 
when using 

MLPs

CCT+EAT+MLP-Mixer 3 984 157 0.8401 0.8076 (2 from 3) 17 %

CCT+EAT+MLP-Mixer+FNet 4 1 567 277 0.8445 0.8178 (3 from 4) 15 %

CCT+EAT+MLP-Mixer+FNet+gMLP 5 2 430 405 0.8457 0.8200 (3 from 5) 14 %

CCT+EAT+MLP-Mixer+FNet+gMLP+SwinTr 6 2 582 901 0.8468 0.8239 (4 from 6) 13 %

Table	7

Comparison	of	ensemble	classifier	characteristics	with	ViT	for	MNIST	dataset

First-stage classifiers M
Number of weighting 
factors with respect  

to ViT
Classification quality

Error reduction com-
pared to ViT

CNN+CCT 2 0.02 0.9947 62 %

CNN+CCT+gMLP 3 0.08 0.9954 67 %

CNN+CCT+gMLP+FNet 4 0.12 0.9959 71 %

CCT+EAT+MLP-Mixer+FNet+gMLP 5 0.13 0.9959 71 %

CNN+CCT+gMLP+FNet+SwinTr+MLP-Mixer 6 0.16 0.9959 71 %

Table	8

Comparison	of	ensemble	classifier	characteristics	with	ViT	for	CIFAR-10	dataset

First-stage classifiers M
Number of weighting 
factors with respect  

to ViT
Classification quality 

Error reduction com-
pared to ViT

CCT+EAT 2 0,035 0.8184 4,5 %

CCT+EAT+MLP-Mixer 3 0,045 0.8401 8,0 %

CCT+EAT+MLP-Mixer+FNet 4 0,072 0.8445 10,5 %

CCT+EAT+MLP-Mixer+FNet+gMLP 5 0,112 0.8457 11,2 %

CCT+EAT+MLP-Mixer+FNet+gMLP+SwinTr 6 0,119 0.8468 11,8 %
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6. Discussion of results of studying the effectiveness of 
using a multilayer perceptron at the second stage of the 

ensemble classifier

The efficiency of the ensemble classifier, which uses 
stacking at the second stage, depends significantly on the 
difference in the algorithms by which the classifiers work 
at the first stage. Our study showed that for small data sets, 
the ensemble classifier makes it possible to get better charac-
teristics with a smaller amount of calculations, compared to 
conventional classifiers with the most modern architecture. 
The results obtained are determined by two factors. The 
first is the selection of a large number, significantly differ-
ent in the algorithm of work, classifiers for the first stage. 
The second is the best integration of all the output signals 
of the classifiers of the first stage due to the use of a neural 
network in the second stage. A comparison of the efficiency 
of majoritarian voting and the neural network (Tables 5, 6) 
reveals that all output signals of primary classifiers carry 
information about the class of the input signal.

The main advantage of the proposed ensemble classifi-
er is the high ratio of the quality of classification and the 
required amount of calculations. Together with the ability 
to learn from small amounts of data, this can significantly 
expand the range of practical applications where such clas-
sifiers can be used.

As a limitation of the study, it should be noted that at 
the first stage of the ensemble classifier, only 6 types of dif-
ferent neural networks were used. In the practical use of the 

results obtained, it is necessary to take into consideration 
the possibility of the emergence of new networks with a 
different architecture from those used, which can also be 
used at the first stage and provide high characteristics of 
the ensemble classifier. Further development of the pro-
posed approach primarily implies the development of new 
architectures of neural networks that provide an expan-
sion of the diversity of classifiers of the first stage. When 
using a large number of classifiers at the first stage of the 
ensemble classifier, it seems promising to study the effec-
tiveness of replacing a multilayer perceptron of the second 
stage with a more complex neural network, for example, a 
convolutional one.

7. Conclusions

1. It is shown that the use of a multilayer perceptron at the sec-
ond stage provides a reduction in classification error compared to 
majoritarian voting. On the MNIST dataset, the reduction in clas-
sification error ranged from 29 % to 39 % depending on the number 
of classifiers in the first stage. On the CIFAR-10 dataset ‒ between 
13 % and 17 %.

2. A comparison of the proposed ensemble classifier with a 
classifier having a transformer architecture demonstrated its sig-
nificant advantage. The best result on the CIFAR-10 dataset was an 
8 % reduction in classification error with a lower number of weights 
by a factor of 22. Similarly, on the MNIST dataset, the classification 
error was 62 % smaller with 50 times fewer weights.
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