
Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 371

DOI: https://doi.org/10.15276/aait.05.2022.25

UDC 004.89

Semantic analysis and classification of malware for UNIX-like

operating systems with the use of machine learning methods

Maksym V. Mishchenko1)
ORCID: https://orcid.org/0000-0001-9769-9759; it144111@stu.cn.ua

Mariia S. Dorosh1)
ORCID: https://orcid.org/0000-0001-6537-8957; mariyaya5536@gmail.com. Scopus Author ID: 56912183600

1) Chernihiv Polytechnic National University, 95, Shevchenko Str. Chernihiv, 14035, Ukraine

ABSTRACT

The paper focuses on malware classification, based on semantic analysis of disassembled binaries sections’ opcodes with the

use of n-grams, TF-IDF indicator and machine learning algorithms. The purpose of the research is to improve and extend the variety

of methods for identifying malware developed for UNIX-like operating systems. The task of the research is to create an algorithm,

which can identify the types of threats in malicious binary files using n-grams, TF-IDF indicator and machine learning algorithms.

Malware classification process can be based either on static or dynamic signatures. Static signatures can be represented as byte-code

sequences, binary-assembled instructions, or imported libraries. Dynamic signatures can be represented as the sequence of actions

made by malware. We will use a static signatures strategy for semantic analysis and classification of malware. In this paper, we will

work with binary ELF files, which is the most common executable file type for UNIX-like operating systems. For the purpose of this

research we gathered 2999 malware ELF files, using data from VirusShare and VirusTotal sites, and 959 non malware program files

from /usr/bin directory in Linux operating system. Each malware file represents one of 3 malware families: Gafgyt, Mirai, and

Lightaidra, which are popular and harmful threats to UNIX systems. Each ELF file in dataset was labelled according to its type. The

proposed classification algorithm consists of several preparation steps: disassembly of every ELF binary file from the dataset and

semantically processing and vectorizing assembly instructions in each file section. For the setting classification threshold, the

Multinomial Naive Bayes model is used. Using the classification threshold, we define the size for n-grams and the section of the file,

which will give the best classification results. For obtaining the best score, multiple machine learning models, along with

hyperparameter optimization, will be used. As a metric of the accuracy of the designed algorithm, mean accuracy and weighted F1

score are used. Stochastic gradient descent for SVM model was selected as the best performing ML model, based on the obtained

experimental results. Developed algorithm was experimentally proved to be effective for classifying malware for UNIX operating

systems. Results were analyzed and used for making conclusions and suggestions for future work.

Keywords: Malware detection; machine learning; semantic analysis; multiclass classification; text mining; operating system

Copyright © Odessa Polytechnic National University, 2022. All rights reserved

For citation: Mishchenko M. V., Dorosh M. S. “Semantic analysis and classification of malware for UNIX-like operating systems with the use

of machine learning methods”. Applied Aspects of Information Technology. 2022; Vol.5 No.4: 371–386.

DOI: https://doi.org/10.15276/aait.05.2022.25

INTRODUCTION

Modern malware is evolving at a very fast pace,

and new cyber threats appear every day. For more

effective detection of malicious software, antivirus

programs widely use artificial intelligence methods

– both separately and in combination with other

cyber security approaches. Among the popular

approaches is the adaptation of natural language

processing (NLP) techniques to binary files or their

metadata.

The resulting vectorized texts are used for

classification using machine learning methods. For

example, in 2021, a new malware detection

© Mishchenko M., Dorosh M., 2022

algorithm using NLP and machine learning was

developed for the Microsoft 365 Defender antivirus

[1]. Its essence is to apply the word embedding

technique to fuzzy hash sums of viruses for further

classification using a multilayer perceptron. Thanks

to this algorithm, the antivirus managed to identify a

new variation of the GoldMax virus, which was later

confirmed and published.

The use of convolutional neural networks

(CNN) for the classification of malicious software is

gaining popularity. Usually, CNNs are used for

pattern recognition and working with images, but

their architecture allows processing raw bytes of any

binary files, which gave the stimulus for their

adaptation in the field of identification and

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0)

https://doi.org/#_blank
mailto:it144111@stu.cn.ua
https://doi.org/10.15276/aait.05.2022.25

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

372

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

classification of malicious software [2]. For

implementation in antivirus software, models are

usually used that analyze the file as a whole, without

analyzing the structure of each file. This makes it

possible to reduce resources for the development and

training of algorithms. At the same time, in order to

achieve high accuracy of such algorithms, it is

necessary to generate a large amount of input data,

using a large number of malicious program files as

samples. With access to antivirus software

databases, collecting a large dataset of malicious

software files is not a difficult task, but in other

cases it is one of the most difficult and long steps of

preparing for machine learning. To reduce the

amount of input data and avoid loss of machine

learning accuracy, it is necessary to increase the

number of significant features of the input data. This

can be achieved by more detailed analysis and

selection of the most important parts of the program

file.

Thus, the motivation for carrying out this study

was the possibility of identifying malicious software

on relatively small datasets through more detailed

processing of each of the files. It was decided to

conduct a study of the content and purpose of each

section of the program file and highlight the most

significant for classification using machine learning.

Also, instead of raw bytes, it was decided to use

assembly commands of the selected program

section, performing semantic analysis, text

vectorization and further classification by machine

learning methods.

LITERATURE ANALYSIS

Malware detection and investigation can be

broadly divided into two approaches: static analysis

and dynamic analysis. [3] Static analysis includes

methods of examining bytecode, assembly binary

commands, or imported dynamic libraries (DLLs).

Dynamic analysis involves studying the behavior of

malicious software. Static analysis can be applied

both to the entire binary file and to the file’s

sections.

For example, Ian Shiel et al. in their work [4]

proposed a method of improving the fuzzy hashing

algorithm by applying it to each section of a binary

PE file. With their research, the authors solve the

problem of detecting malicious software for the

Windows OS, in which, by design, there are sections

common to all files, developers can change the order

of program sections or insert additional sections to

complicate its identification. As a result, the authors

achieved 92% more true positive (TP) detections on

unobfuscated files and 88% more TP for packaged

malware, compared to fuzzy hashing of the whole

file.

The application of Convolutional Neural

Networks (CNN) to binary files for their

classification is well researched. For example,

Edward Raff et.al.

in their study [5] used an entire binary file in the

form of a sequence of bytes, which was fed to the

input of a convolutional neural network for further

classification. One of the problems with working

with a raw byte stream has been the fact that bytes

have different meanings depending on the context.

By applying a word embedding algorithm to the byte

stream, which allowed them to highlight byte words

with similar meaning and context, they managed to

solve that problem. The developed MalConv

architecture [5] showed good generalized results on

large data datasets and can be applied to binary files

without focusing on their internal structure. A

significant drawback of the proposed solution is the

large time and computing power required to perform

convolution operations on very long data, such as

the output byte stream of a binary file.

Another example of static analysis of binary

files using CNN is the work of Fangtian Zhong et al.

[6], in which the authors proposed to transform the

input binary file into an image that is processed by a

contrast-limited adaptive histogram equalization

algorithm and classified by CNN. The resulting

model showed good results and efficiency.

The main advantage of approaches with

convolutional neural networks is the absence of the

need for domain knowledge of cyber security and

detailed study of the file structure. At the same time,

such approaches do not take into account the

peculiarities of building binary files and have high

resource costs for training and calibrating machine

learning models.

Another approach to malware analysis is to

apply word embedding techniques and semantic

analysis to the text or byte content of a file.

For example, BooJoong Kang et al. in their

study [7] applied the n-gram method to analyze and

process the operation codes of APK files. The

resulting n-grams were used for machine learning

models. The authors

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 373

achieved the best classification performance using

n=3 and n=4 n-grams.

Semantic analysis is also used in combination

with dynamic analysis of malicious software,

studying and analyzing the results of execution of

malicious files. For example, in their study [8], Bin

Qin et al. applied the TF-IDF method to the

sequence of API calls in application log files and

used this information as a dataset to identify and

classify malicious and safe software. The results of

the study proved the effectiveness of the application

of semantic analysis and the TF-IDF method to

improve the results of classification and detection of

malicious software.

FORMULATION OF THE PROBLEM

The problem of classification of malicious

software is actively researched. PE files, which are

executable files for the Windows operating system,

or APK files, which are executable files for the

Android operating system, are usually taken as the

research object. The reason for this, among others, is

the large volume of virus types developed for these

platforms. ELF files, which are executable files for

UNIX-like operating systems, are less often used as

objects for malware software research and

classification. However, there are currently quite

threatening and destructive types of malware for

UNIX-like operating systems, including the most

common Ransomware, Worm, Trojan and BotNet.

The relatively small number of works [9] [22]

investigating threats to UNIX-like operating systems

is a problem, and this work contributes to solving

this problem.

THE PURPOSE AND THE OBJECTIVES

OF THE STUDY

Malware for UNIX-like operating systems was

chosen as the object of this study.

The purpose of this research is to expand the

methods of identifying malicious software for

UNIX-like operating systems using semantic

analysis and classification by machine learning

models.

To achieve the goal of the research, several

tasks were set. First, collecting malicious and safe

binaries for UNIX-like operating systems and

labeling each file accordingly. Second, vectorization

of assembly commands of disassembled binary files

and classification of these program files according

to their label. Third, determination of feasibility of

application and comparison of accuracy and time

spent of various machine learning methods for

classification of malicious software.

RESEARCH METHODS

For the purpose of the research, we needed to

select appropriate semantic analysis methods and

machine learning models for the classification.

These problems were solved by analyzing relevant

software libraries and literature [11,12], [13,14],

[15,16], [17,18], [24]. As a result, Multinomial

Naïve Bayes, Support vector machine, stochastic

gradient descent and gradient boosting models were

selected for running the classification.

The n-gram method and the TF-IDF algorithm

were considered as methodologies for vectorization

of text data.

The problematic aspect of the research was

collecting and obtaining the information about

binary files for identifying malicious software. This

is due to the limited number of datasets available

where the raw binary ELF file is flagged as a

specific type of malware. A set of raw binary ELF

files was downloaded from the VirusShare site [19],

and labels with types for each file were placed using

the public API of the VirustTotal site [20].

The manual about the portable file formats [10]

helped to investigate the structure of executable ELF

files and their sections.

CHOOSING SEMANTIC ANALYSIS

METHODS

The first stage of the research is the semantic

analysis of the program file section. As input data

for semantic analysis, it was decided to take a

sequence of assembly commands located in different

sections of the binary file. At the output, it is

necessary to obtain numerical vectors for further

classification.

One of the basic approaches to natural language

processing (NLP) is the n-gram method [11]. This

method is aimed for creating a probabilistic model

for predicting the next phrase based on statistical

indicators. N-gram models predict word 𝑤𝑖 based on

the sequence

(1) 1{ ,..., }i n nw w   . For computing the probability of

the sequence 1, 2(,...,)nP w w w formula 1 is used.

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

374

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

1: 1: 1

1

() (|)
n

n k k

k

P w P w w 



 , (1)

where 1: 1(|)k kP w w  is conditional probability of

appearing of the word kw in the sequence of the

words 1:kw .

The n-gram method is an important step in the

processing of program code because it groups

together semantically important parts, such as an

assembly instruction and its operands.

Application of the n-gram method does not take

into account the length of the document. In longer

documents, n-grams may occur more often than in

shorter ones, while both documents may have a

common content. Therefore, in our research, n-gram

will be used as the basis for the TF-IDF method,

which takes into account the length of documents

and the frequency of words in them. TF-IDF is a

statistical indicator that allows to determine which

word is used most often in a specific document and

less often in all other documents of the collection

[14]. The indicator consists of two parts: TF (term

frequency) – word frequency calculated by

relation 2.

1

i

N

k

k

n
TF

n





,

(2)

where
in is amount of word’s appearing in the

docu-ment;
kn is amount of the k -word appearing

in the document; N is total amount of the words in

the document.

Inverse document frequency (IDF) – the

inverse value of the frequency with which the word

occurs in all documents of the collection is

calculated by relation 3.

| |
log

| |i i

D
IDF

d t



, (3)

where | |D – amount of the documents in the

collection; | |i id t – amount of the documents
id ,

which have word
it .

As a result of the product of two indicators, we

will get the TF-IDF value (4).

TF-IDF TF IDF  , (4)

where TF is term frequency; IDF is inverted

document frequency.

Therefore, the TF-IDF value is directly

proportional to the number of uses of the selected

word in the selected document, and inversely

proportional to the number of documents containing

the selected word.

In our work, we investigated the size of n-

grams from 1 to 5 and chose the one that gives the

highest accuracy for the basic classification

threshold. The generated n-grams for the selected

section of the file were used for further vectorization

by the TF-IDF method.

CHOOSING MACHINE LEARNING

MODELS

Polynomial Bayes classifier (Multinomial

Naive Bayes) was used to establish the basic

classification threshold. The main idea of this

method is to find the class to which the document

belongs with the highest probability, which is

calculated according to the Bayesian formula (5)

[16].

() (|)
(|)

()

i
i

i

P c P t c
P c t

P t
 , c C , (5)

where C – set of documents classes; it – document

of the collection.

Having proposed the hypothesis that the words

in the documents are distributed using a certain

parametric model, we can determine these parameters

using the Polynomial Bayesian classifier. For

example, based on this statement, Jiang Su et al.

solved the problem of text classification in their work

[28].

As the main classification methods, support

vector models, the gradient descent method and the

gradient boosting method were chosen.

Models based on the method of support vectors

- support vector machine or SVM, are often used for

text classification, because they are optimized for

detecting non-linear patterns in the multidimensional

space of features, which is a vectorized text [12].

The accuracy of SVM classification depends on the

selected kernel function. For comparison, 4

functions were investigated: linear, polynomial,

radial and sigmoid.

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 375

Two methods were chosen to improve training

results: gradient descent and gradient boosting. The

purpose of the gradient descent method is to find the

local minimum of the differentiated function [13].

This method is used to minimize the loss function

during model training by step-by-step

reconfiguration of model parameters.

The method of gradient boosting consists in

using the composition of models [17, 18]. In the

process of finding the local minimum of the loss

function, the best model from the composition is

selected.

Stochastic gradient descent (SGD) is aimed at

minimizing the loss function during model training.

Unlike regular gradient descent, stochastic gradient

descent uses randomly selected instances of the

training sample at each iteration, instead of finding

the minimum

for all sample instances, which optimizes its

performance [15]. In our work SVM loss function

will be the objective for SGD algorithm.

Algorithm XGBoost [18], which uses a

composition of decision tree models, will be used as

a gradient boosting method.

In the course of the study, an algorithm was

created that classifies malicious and safe software

using a prepared set of malicious and safe software

files. The result of the algorithm is a set of machine

learning models trained to recognize malicious and

safe software for UNIX-like operating systems. The

scheme of the created algorithm is shown in Fig. 1.

CREATING A DATASET

As input data for the algorithm, it was decided

to use a set of binary ELF files that were identified

as malicious and safe.

An ELF file (Extensible Linking Format) is a

format for binary executables, object modules, or

libraries for UNIX-like operating systems. Each ELF

file consists of two parts: ELF header and file data.

The ELF header section defines the format of a

particular file and is always zero-indented. The file

data section can contain a table of program headers

and a table of program sections [10].

In this work, the part of file data with the

sections of the program will be investigated. Each of

the sections has a different purpose and content. The

main sections of ELF files and their purpose are

listed below:

 .text – contains program code;

 .data – contains initialized data of the

program;

 .rodata – contains initialized read-only data;

 .bss – contains not initialized variables of

program.

Each of the listed sections of the program file was

semantically analyzed. For use in the developed

algorithm, the section that showed the best

classification results in combination with the

appropriate number of n for n-gram was selected

when determining the classification threshold.Binary

ELF files were downloaded from the VirusShare site

[19]. For each of the files, information was obtained

about the existing threats that the file carries. For

this, the free public API of the VirusTotal site was

used [20]. Using the MD5 hash sum of each file, a

report on the file and its threats detected by various

anti-virus software was processed. After examining

the number of detected threats for each of the

antivirus software, the Microsoft antivirus was

chosen as the one with the most detected threats that

Fig.1. Schema for the algorithm for semantic analysis and classification of malware for

UNIX-like operating systems using machine learning methods
Source: compiled by the authors

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

376

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

can be grouped into separate families. Threats that

are the most common and have enough examples to

form a dataset were chosen for the study. Different

threat mods that belong to the same family have

been grouped together and labeled with their family

name. In this way, it was possible to obtain a

balanced dataset with three main families of threats.

– Gafgyt – malware, that infects UNIX-like

operating systems and runs DDoS attacks from

them [22].

– Mirai – virus, that infects UNIX-like

operating systems and create bot-net from them.

Usually running on the internet of things [21].

– Lightaidra – virus, that infects UNIX-like

ope-rating systems and creates bot-net from them

[23].

To form a set of harmless files, it was decided

to take ELF files from the Linux OS, located in the

/usr/bin directory, and the MD5 sum of which was

not found in the VirusTotal virus database. Thus, it

was possible to obtain a set of 959 harmless ELF

files.

After data collection, we received a dataset

consisting of 3958 binary ELF files. The dataset

contains 959 harmless files, 980 Mirai-type threats,

995 Gafgyt-type threats, and 1024 Lightaidra-type

threats. The proportion of file types in the created

dataset is shown in Fig. 2.

The next step of the research was the

disassembly and section-by-section reading of the

binary files. For the section of each of the files,

assembly commands were sequentially read, each of

which was formed into a line of the form (6)

 _ , _c str opcode op str , (6)

where _c str is command row; opcode is

operation code; _op str is operands row.

Fig. 2. Pie chart for proportion of file

types in the created dataset
Source: compiled by the authors

After that, special newline characters were

replaced by spaces in the lines. A set of file’s parsed

assembly commands is shown in Fig. 3.

Fig. 3. Set of file’s parsed assembly commands
Source: compiled by the authors

Having received a set of assembly commands

for each of the files, we can proceed to their

vectorization and training of machine learning

models.

TRAINING AND EVALUATING

CLASSIFICATION MODELS

The processed input data was passed to the

input to the next step - n-gram generation. The

resulting n-grams were submitted for vectorization

using the TF-IDF algorithm. Using TF-IDF, the list

of assembler commands from program files was

vectorized and transformed into a sparse matrix of

dimension <n, n_features>, where n – amount of

documents, n_features – amount of significant

features, chosen by the algorithm.

The sparse matrix, obtained after TF-IDF

vectorization of the assembly command dataset, was

submitted for classification. The dataset was divided

into training and testing partitions: 80 % for training

and 20% for testing. The time spent on vectorizing

the input data and dividing it into train and test sets

was 0.4 seconds.

To evaluate the results of each of the methods,

the average classification accuracy and the weighted

F1 value will be calculated [24].

The average classification accuracy will be

calculated as the proportion of correctly predicted

classes to the total number of predictions.

To calculate weighted F1, you must first

calculate Precision and Recall (7-8).

Precision=
TP

TP FP
, (7)

where TP is amount of true positive predictions of

the class; FP is amount of false positive predictions

of the class.

Recall=
TP

TP FN
, (8)

26%

25%25%

24%

ELF FILE TYPES

Lightaidra Gafgyt Mirai Not a threat

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 377

where TP is amount of true positive predictions of

the class; FN is amount of false negative

predictions of the class.

After calculating precision and recall, you can

calculate F1 (9).

Precision*Recall
1 2*

Precision+Recall
F  , (9)

where Precision is precision of classification;

Recall is recall of classification.

The weighted F1 is calculated for all classes of

the sample, taking into account the proportion of the

number of instances of each class relative to all

instances of the sample, which is defined as the

weight of the class (10) [24].

1

F1 F1 *
N

weighted i i

i

W


 , (10)

where N is amount of classes; F1i
 is F1 for class

i;
iW is weight of the class i.

To determine the basic threshold of

classification, Multinomial Naïve Bayes was trained

and evaluated for all possible program sections and

the corresponding number of n for n-gram.

Assessment results of the basic threshold of

classification are shown in Table 1. After obtaining

the results, n-gram count and file section was selected

based on the the highest values of the average

accuracy and F1 weighted.

To improve the results, Laplace smoothing was

used in the Bayesian classifier. This method allows

to avoid obtaining zero probabilities of the word

appearing in the text by adding a parameter to the

calculated probability α [26]. Using hyper parameter

tuning, it was established α=0.01.
Based on the best obtained mean accuracy and

1weightedF , was selected 4n gram  and section

rodata . For the Multinomial Naïve Bayes classifier

learning curves were plotted (Fig. 4).

For all of the models in the paper, we build

learning curves using the same approach. Selected

model is initialized on chosen hyper parameters and

cross-validated on the training dataset, which is

divided into the train and the test sets. As an

evaluation metrics, accuracy score is used.

Fig. 4. Learning curves for the Multinomial

Naïve Bayes classifier
Source: compiled by the authors

Table 1. Assessment of the basic threshold

of classification based on n-gram count and

 file section

Model Size of

n-

gram

File

section

Mean

accur

acy

Value of

F1weighted

Multinomi

al naive

Bayes

(α=0.01)

1 text 0.53 0.43

data 0.54 0.45

rodata 0.77 0.75

bss 0.46 0.29

Multinomi

al naive

Bayes

(α=0.01)

2 text 0.53 0.43

data 0.61 0.56

rodata 0.79 0.78

bss 0.46 0.29

Multinomi

al naive

Bayes

(α=0.01)

3 text 0.53 0.44

data 0.66 0.63

rodata 0.79 0.78

bss 0.46 0.29

Multinomi

al naive

Bayes

(α=0.01)

4 text 0.55 0.46

data 0.68 0.66

rodata 0.82 0.82

bss 0.46 0.29

Multinomi

al naive

Bayes

(α=0.01)

5 text 0.55 0.47

data 0.67 0.65

rodata 0.81 0.81

bss 0.46 0.29

Source: compiled by the authors

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

378

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Learning curves for Multinomial Naïve Bayes

model indicate the change in model accuracy with

changing sample size and show convergence with

increasing sample size. The curves are approximate

for the real training sample size. This may indicate

that a we achieved bias-variance tradeoff as a result

of model training. It also gives a reason to claim that

the model is not overtrained. We obtained

_ 0.82mean accuracy  and 1 0.82weightedF  ,

which is good and indicates the ability of the model

to obtain enough information from the train sample

and generalize on the test sample. With an increase

in the sample, further convergence of the learning

curves and an increase in the test accuracy of the

model are possible.

To estimate the amount of computation spent

on training the model, a graph of the average time in

seconds spent on training versus the size of the

training sample was plotted. The resulting graph for

the model is shown in Fig. 5.

As the sample size increases, the training time

increases linearly.

Fig. 5. Plot of the average time in seconds spent

on training the model, depending on the size of

the training sample for Multinomial Naïve Bayes

model
Source: compiled by the authors

In order to visually evaluate the best detected

classes of binary files from the test sample, a

confuse-onmatrix was constructed, shown in Fig. 6.

After analy-zing it, we can see that not a virus

program files and viruses Lightaidra were predicted

the most accurately by the Multinomial Naïve Bayes

classifier.

Fig. 6. Confusion matrix for Multinomial Naïve

Bayes classifier
Source: compiled by the authors

After obtaining the classification threshold, it

was decided to use the grid search algorithm to find

the best hyperparameters for the support vector

machine model (SVM). The GridSearchCV

algorithm cross-validates the model on the Cartesian

product of hyperparameters values and selects the

best set of hyperparameters based on the highest

obtained accuracy of the model [27].

Support vector machine (SVM)

hyperparameters were analyzed:

 – C – a measure of regularization. At low values

of C, the hyperplane has a large offset to the points,

at high values the offset is minimal. Set of

investigated values: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1]

 – kernel – a function that accepts data and

transforms them into the required form, changing

their dimensionality. Three functions are used: linear

(linear), polynomial (poly), radial basis (rbf) and

sigmoid (sigmoid).

The graph, that shows cross-validated average

score obtained by the model, depending on the

values of hyper parameters, is shown on Fig. 7.

After analyzing the graph, it was determined that the

highest score on the training data is obtained for

hyper parameters 0,9C  and kernel=rbf .

To assess the ability of the model to learn and

to generalize, learning curves were built. Resulting

curves are shown in Fig. 8.

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 379

Fig. 7. Graph of the average accuracy of the

model depending on the hyper parameter С and

kernel values for SVM model
Source: compiled by the authors

Fig. 8. Learning curves for SVM model
Source: compiled by the authors

It can be seen from the graph that the accuracy

of predictions on the train and test data converge

with the increase of the sample, but do not converge

on the final value. This may indicate that with an

increase the size of the train dataset, the accuracy on

the test data may also increase. A gap between the

training and test curves may indicate the presence of

variance. However, the accuracy of the test is not too

low. SVM model with selected hyperparameters

trained on the test data showed

_ 0.83mean accuracy  and 1 0.82weightedF  .

Confusion matrix for SVM models is shown on

Fig. 9.

Fig. 9. Confusion matrix for SVM model
Source: compiled by the authors

A plot of the average time in seconds spent on

training the model, depending on the size of the

training sample is shown in Fig. 10.

Fig. 10. Plot of the average time in seconds spent

on training the model, depending on the size of

the training sample for SVM model
Source: compiled by the authors

To improve the prediction results, a stochastic

gradient descent (SGD) model was built based on

the support vector model.

The following hyper parameters were analyzed

for the stochastic gradient descent model:

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

380

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

– eta0 – the initial value of the learning rate. A

parameter used to calculate the learning rate;

– learning_rate (lr) – learning rate calculation

algorithm.

Tested algorithms: “constant” is calculated

according to the formula (11); “optimal” – the

algorithm proposed by Leon Botto in the work [25];

“invscale” according to formula (12); “adaptive” –

an algorithm according to which the learning rate is

divided by 5, upon reaching a loss value that does

not change for 5 iterations in a row.

0conslr eta , (11)

where 0eta is initial value for learning rate.

 0 / invlr eta t , (12)

where t is value of the element from the training

sample.

The graph of the dependence of the accuracy of

the model on the hyperparameter values is shown in

Fig. 11. The graph shows that the highest accuracy

was obtained for optimallr та 0 0,01eta  .

Fig. 11. Graph of the average accuracy of the

model depending on the hyper parameter lr and

eta0 values for SGD model
Source: compiled by the authors

Learning curves were constructed for the model

with the selected hyperparameters, which are shown

in Fig. 12. The figure shows that the curves for

training and test accuracy tend to converge, but do

not coincide. A similar result was obtained for the

model of support vectors. We can conclude that with

an increase in the sample, the convergence of the

curves is possible, however, on this sample, the

variance is noticeable after training the stochastic

gradient descent.

Fig. 12. Learning curves for SGD model

 Source: compiled by the authors

The graph of the dependence of the average

training time of SGD model on the sample size is

shown in Fig. 13.

Fig. 13. Plot of the average time in seconds spent

on training the model, depending on the size of

the training sample for SGD model
Source: compiled by the authors

On the test sample, the model of support

vectors using stochastic gradient descent showed

_ 0.84mean accuracy  and 1 0.84weightedF  .

The results improved by 1 %, showing a slight

optimization obtained by stochastic gradient descent.

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 381

The confusion matrix for the support vector method

with stochastic gradient descent is shown in Fig. 14.

Fig. 14. Confusion matrix for SGD model
Source: compiled by the authors

To complement the evaluation of the results

obtained using SVM and SGD, classification was

carried out using gradient boosting model XGBoost.

As boosters, decision tree models were chosen, the

ensemble of which is used to select the most optimal

model.

The following hyperparameters were analyzed

to build the gradient boosting model:

– max_depth – the maximum depth of the

decision tree.

– learning_rate (lr) – learning speed.

The graph of the dependence of the average

accuracy of the model on the hyperparameter values

is shown in Fig. 15. The best accuracy indicators for

the model were obtained for 0.1lr  and

max_depth=7 .

To check for overtraining and variance, the

learning curves shown in Fig. 16 were constructed.

After analyzing the learning curves, we see that

they tend to converge, but do not converge at the end

of the sample. The same behavior was observed for

previously studied models. We can conclude that the

presence of variance is observed on this sample,

which can be eliminated by training on a larger

sample. The model has no signs of overtraining,

since the accuracy obtained on the test sample is not

significantly lower than the accuracy obtained on the

training data. Obtained test results for gradient

boosting models _ 0.83mean accuracy  and

1 0.83weightedF  .

Fig. 15. Graph of the average accuracy of the

model depending on the hyper parameter lr and

max_depth values for XGBoost model

Source: compiled by the authors

Fig. 16. Learning curves for XGBoost model
Source: compiled by the authors

The confusion matrix for gradient boosting

model is shown in Fig. 17.

The dependence of the time spent on training

gradient boosting models on the sample size is

shown in Fig. 18.

To compare the obtained results, a table was

created, in which it is given for each classifier

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

382

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

_mean accuracy , 1weightedF and the average time

spent training on the test sample, which can be

obtained from the graphs.

Fig. 17. Confusion matrix for XGBoost

model
 Source: compiled by the authors

The time specified in Table 2 does not include

the time spent on vectorization of input data and

division into training and test samples, which was

0.4 seconds.

Fig. 18. Plot of the average time in seconds spent

on training the model, depending on the size of

the training sample for XGBoost model
Source: compiled by the authors

Table 2. Malware and not a virus ELF files

classification results for MultinomialNB, SVM,

SGD and XGBoost

Model Mean

accuracy

(percent)

Value of

F1weighted

(percent)

Fit time

(seconds)

MultinomialNB 82 82 0.026

SVM 83 82 2.75

SGD 84 84 0.1

XGBoost 83 83 19.5

Source: compiled by the authors

DISCUSSION OF THE RESULTS

The files collected and typed by the ELF

antivirus software were used as a basis for creating

an algorithm for identifying malicious software. The

resulting data set was supplemented with safe ELF

software files from the /usr/bin directory. The

analysis of the distribution of classes indicated that

the dataset for training machine learning models is

balanced, which had a positive effect on the

classification accuracy.

As a result of the comparison of the basic

classification threshold for the semantically processed

program sections, section rodata and n-gram size 4,

which showed the best average accuracy and F1, were

selected. The number of n-gram 4 can be explained by

the fact that it is close to the number of words in the

line of the assembly command according to formula 6

and, thus, highlights the semantically important

fragments of the assembly code. The best classification

performance for the rodata section can be explained by

the fact that it contains initialized data, such as text

variables, the values of which can carry significant

features for the created classification model.

Obtained training results of the machine

learning models showed relatively good average

accuracy and weighted F1. The basic classification

threshold of 82 %, obtained for the Multinomial

Naive Bayes model, was improved, obtaining a

maximum value on the test sample of 84% for the

Stochastic Gradient Descent model, which indicates

the correct choice of machine learning models. It

should be noted that the time spent on training the

support vector model using stochastic gradient

descent is 0.1 seconds, compared to the support

vector model without stochastic gradient descent –

2.75 seconds. This is due to the stochastically

selected instances at each iteration of the training to

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 383

calculate the weights, compared to using the entire

data set for a model without stochastic gradient

descent. The longest training time was shown by the

gradient boosting model, which is explained by the

use of an ensemble of models to solve the

classification problem. The best time shown by the

polynomial Bayesian classifier is due to the speed of

calculations for probabilistic models.

CONCLUSIONS

As a result of the work, we solved the tasks of

creating a set of malicious and safe binary ELF files;

disassembly and vectorization of assembly

commands of files, and classification of files

according to their labels using machine learning

models.

Obtained results of file classification by four

different machine learning models confirm the

expediency of using each of the models to solve the

given problem.

The best result of 84 % accuracy on the test

data was shown by the stochastic gradient descent

model. The study of the learning curves of this

model showed the possibility of improving the

results with an increase in the training sample.

Model training takes 0.1 seconds on a training

sample size of 2250 files. This indicator allows you

to use the model to detect threats in real time, as

well as to train it on expanded volumes of data.

Based on the obtained results, it can be

concluded that the methods for detecting malicious

and safe software for UNIX-like operating systems

were extended by the developed algorithm. The

effectiveness of the developed algorithm was

confirmed by various metrics, in particular the

obtained classification accuracy. This confirms the

achievement of the research goal.

FUTURE WORK

Possible steps to improve the obtained results

may be to expand the set of input data. The learning

curves for the selected stochastic gradient descent

model show the ability to improve prediction

accuracy with the increasing training samples.

Also, as a future work, the automation of the

created algorithm is considered by creating an API

and connecting to a database for recognizing

malicious software in real time. The short training

time for the gradient stochastic descent model allows

it to be trained on new data in real time.

REFERENCES

1. Lazo, E. G. ”Combing through the fuzz: Using fuzzy hashing and deep learning to counter malware

detection evasion techniques”. Microsoft. 2021. – Available from: https://www.microsoft.com/en-

us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-

malware-detection-evasion-techniques/ – [Accessed: Nov. 2021]

2. Huang, C. & Karnik, A. “The rise of deep learning for detection and classification of malware”.

McAfee, 2021. – Available from: https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-deep-

learning-for-detection-and-classification-of-malware/ – [Accessed: Nov. 2021].

3. Yusirwan, S., Prayudi, Y. & Riadi, I.. “Implementation of malware analysis using static and dynamic

analysis method.” International Journal of Computer Applications (0975–8887). 2015; 117 (6): 11–15.

DOI: https://doi.org/10.5120/20557-2943 .

4. Shiel, I. & O'Shaughnessy, S. “Improving file-level fuzzy hashes for malware variant classification”.

Digital Investigation. 28. https://www.scopus.com/authid/detail.uri?origin=resultslist&

authorId=57191184033. 2019; 28: S88–S94. DOI: https://doi.org/10.1016/j.diin.2019.01.018.

5. Raff, E., et al. “Malware detection by eating a whole exe.” Workshops at the Thirty-Second AAAI

Conference on Artificial Intelligence. 2018. DOI: https://doi.org/10.48550/arXiv.1710.09435.

6. Zhong, F., Zekai, C., Minghui X., Guoming Z., Dongxiao Y. & Xiuzhen C. “Malware-on-the-Brain:

Illuminating malware byte codes with images for malware classification”. IEEE Transactions on Computers.

https://www.scopus.com/authid/detail.uri?authorId=57219436659. 2022. DOI: https://doi.org/10.48550/

arXiv.2108.04314.

7. Kang, B., Yerima, S.Y., Mclaughlin & Sezer S. “N-opcode analysis for android malware

classification and categorization”. International Conference On Cyber Security And Protection Of Digital

https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-deep-learning-for-detection-and-classification-of-malware/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-deep-learning-for-detection-and-classification-of-malware/
https://doi.org/10.5120/20557-2943
https://doi.org/10.1016/j.diin.2019.01.018
https://doi.org/10.48550/arXiv.1710.09435
https://www.scopus.com/authid/detail.uri?authorId=57219436659

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

384

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Services (Cyber Security). https://www.scopus.com/authid/detail.uri?authorId=35728940000. 2016. p. 1–7.

7502343 DOI: https://doi.org/10.1109/CyberSecPODS.2016.7502343.

8. Qin, B., Junpeng, Z. & Honguy, C. “Malware detection based on TF-(IDF&ICF) method”. Journal

of Physics: Conference Series. 2021; 2024 (1). DOI: https://doi.org/10.1088/1742-6596/2024/1/012030.

9. Cozzi, E., Graziano, M., Fratantonio, Y. & Balzarotti, D. "Understanding Linux Malware." 2018

IEEE Symposium on Security and Privacy (SP). https://www.scopus.com/authid/detail.uri?

origin=resultslist&authorId=57203246428. 2018. p. 161–175, DOI: https://doi.org/10.1109/SP.2018.00054.

10. “Portable formats specification”. Tool Interface Standards. TIS Committee. 1993.

11. Jurafsky, D. & Martin, J. H.”N-gram language models”. Speech and Language Processing. 2021;

Chapter 3, Draft.

12. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. “Support vector machines”. IEEE

Intelligent Systems. 1998. p. 18–28. DOI: https://doi.org/10.1109/5254.708428 .

13. Aatila, M., Mohamed, L. & Kartit A. “An Overview of gradient descent algorithm optimization in

machine learning: Application in the ophthalmology field”. Communications in Computer and Information

Science. https://www.scopus.com/authid/detail.uri?authorId=57203053740. 2020. p. 349–359.

DOI: http://doi.org/10.1007/978-3-030-45183-7_27.

14. Schaetti, N. “UniNE at CLEF 2017: TF-IDF and deep-learning for author profiling”. Conference:

CLEF, Dublin. 2017. DOI: https://doi.org/10.13140/RG.2.2.14902.60482.

15. Lei, Y., Hu, T. & Tang, K. “Generalization performance of multi-pass stochastic gradient descent

with convex loss functions.” Journal of Machine Learning Research.

https://www.scopus.com/authid/detail.uri?authorId=53663866600. 2021; 22 (25): 1–41.

16. Kibriya, A. M., Frank, E., Pfahringer, B. & Holmes, G. “Multinomial naive bayes for text

categorization revisited”. Australasian Joint Conference on Artificial Intelligence. AI 2004: Advances in

Artificial Intelligence. https://www.scopus.com/authid/detail.uri?authorId=8646743300. 2004. p. 488–499.

DOI: https://doi.org/10.1007/978-3-540-30549-1_43.

17. Friedman, J. “Stochastic gradient boosting” Computational Statistics & Data Analysis. 2002; 38 (4):

367–378. DOI: https://doi.org/10.1016/S0167-9473(01)00065-2.

18. Tianqi, C. & Guestrin, C. “XGBoost: A scalable tree boosting system”. Proceedings of the 22nd

{ACM} {SIGKDD} International Conference on Knowledge Discovery and Data Mining.

https://www.scopus.com/authid/detail.uri?authorId=55788261800. 2016. p. 785–794.

DOI: https://doi.org/10.1145/2939672.2939785.

19. “All new ELF binaries collected since the previous release in 2019”. VirusShare, 2020. – Available

from: https://virusshare.com/torrents. – [Accessed: Dec. 2021].

20. “Get a file report”. VirusTotal, 2020. – Available from:

https://developers.virustotal.com/reference/file-info. – [Accessed: Dec, 2021].

21. Margolis, J., Oh, T. T., Jadhav, S., Kim, Y. H. & Kim J. N. “An in-depth analysis of the mirai

botnet”. 2017 International Conference on Software Security and Assurance (ICSSA). 2017. p. 6–12,

DOI: https://doi.org/10.1109/ICSSA.2017.12.

22. Sahota, J. & Vlajic, N. “Mozi IoT malware and its botnets: From theory To Real-World Observations”.
2021 International Conference on Computational Science and Computational Intelligence, CSCI.

https://www.scopus.com/authid/detail.uri?authorId=57795696900. 2021; p. 698–703. DOI:

https://doi.org/10.1109/ CSCI54926.2021.00181.

23. McNulty, L. & Vassilakis, V. “IoT botnets: Characteristics, exploits, attack capabilities, and targets.”

13th International Symposium on Communication Systems, Networks and Digital Signal Processing. CSNDSP.

https://www.scopus.com/authid/detail.uri?authorId=57939684100. 2022. p. 350–355. DOI:

https://doi.org/10.1109/ CSNDSP54353.2022.9908039.

24. Grandini, M., Bagli, E. & Visani G. “Metrics for multi-class classification: an overview”. 2020.

DOI: https://doi.org/10.48550/arXiv.2008.05756 .

https://www.scopus.com/authid/detail.uri?authorId=35728940000
https://doi.org/10.1109/CyberSecPODS.2016.7502343
https://doi.org/10.1088/1742-6596/2024/1/012030
https://doi.org/10.1109/5254.708428
https://www.scopus.com/authid/detail.uri?authorId=57203053740
http://doi.org/10.1007/978-3-030-45183-7_27
https://doi.org/10.13140/RG.2.2.14902.60482
https://www.scopus.com/authid/detail.uri?authorId=53663866600
https://www.scopus.com/authid/detail.uri?authorId=8646743300
https://doi.org/10.1007/978-3-540-30549-1_43.
https://doi.org/10.1016/S0167-9473(01)00065-2
https://www.scopus.com/authid/detail.uri?authorId=55788261800
https://virusshare.com/torrents
https://developers.virustotal.com/reference/file-info
https://doi.org/10.1109/ICSSA.2017.12
https://www.scopus.com/authid/detail.uri?authorId=57795696900
https://www.scopus.com/authid/detail.uri?authorId=57939684100
https://doi.org/10.48550/arXiv.2008.05756

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 385

25. Bottou, L. “Stochastic gradient descent tricks” Neural Networks: Tricks of the Trade.

https://www.scopus.com/authid/detail.uri?authorId=6701721644. 2012. p. 421–436. DOI:

https://doi.org/10.1007/ 978-3-642-35289-8_25.

26. Alfons, J. & Hermann, N. “Reversing and smoothing the multinomial naive bayes text classifer”

Pattern Recognition in Information Systems. Proceedings of the 2nd International Workshop on Pattern

Recognition in Information Systems, PRIS 2002. In conjunction with ICEIS 2002. Ciudad Real. 2002. p.

200–212.

27. Adnan, M., Alarood, A., Uddin, M. I., & Rehman, I. “Utilizing grid search cross-validation with

adaptive boosting for augmenting performance of machine learning models.” PeerJ Computer Science.

https://www.scopus.com/authid/detail.uri?authorId=57202148561. 2022; 8. e803. DOI:

https://doi.org/10.7717/ peerj-cs.803.

28. Su, Jiang & Shirab, Jelber. “Large Scale Text Classification using Semisupervised Multinomial

Naive Bayes” Proceedings of the 28th International Conference on Machine Learning, ICML 2011.

Bellevue, Washington: USA. 2011.

Conflicts of Interest: The authors declare that there is no conflict of interest

Received 25.10. 2022
Received after revision 15.12.2022
Accepted 22.12.2022

DOI: https://doi.org/10.15276/aait.05.2022.25

УДК 004.89

Семантичний аналіз і класифікація шкідливого програмного

забезпечення для UNIX-подібних систем з використанням методів

машинного навчання

Міщенко Максим Валерійович
ORCID: https://orcid.org/0000-0001-9769-9759; it144111@stu.cn.ua

Дорош Марія Сергіївна
ORCID: https://orcid.org/0000-0001-6537-8957; mariyaya5536@gmail.com. Scopus Author ID: 56912183600

Національний університет «Чернігівська політехніка» вул. Шевченка, 95. Чернігів, 14035, Україна

АНОТАЦІЯ

Стаття зосереджена на класифікації шкідливих програм на основі семантичного аналізу кодів операцій

дизасембльованих секцій бінарних виконуваних файлів з використанням n-грам, індикатора TF-IDF і алгоритмів машинного

навчання. Метою дослідження є вдосконалення та розширення наявних методів ідентифікації шкідливих програм,

розроблених для UNIX-подібних операційних систем. Завданням дослідження є створення алгоритму, який може

ідентифікувати типи загроз у шкідливих бінарних файлах для UNIX-подібних систем за допомогою n-грам, індикатора TF-

IDF і алгоритмів машинного навчання. Процес класифікації шкідливих програм може базуватися на статичних або

динамічних сигнатурах. Статичні сигнатури можуть бути представлені у вигляді послідовностей байт-коду, двійкових

інструкцій або імпортованих бібліотек. Динамічні сигнатури можна представити як послідовність дій шкідливого ПЗ. Ми

будемо використовувати стратегію статичних сигнатур для семантичного аналізу та класифікації шкідливих програм. У цій

статті ми будемо працювати з двійковими файлами ELF, які є найпоширенішим типом виконуваних файлів для UNIX-

подібних операційних систем. Для цілей цього дослідження було зібрано набір даних із 2999 зразків шкідливих ELF файлів,

використовуючи дані із сайтів VirusShare та VirusTotal, а також 959 нешкідливих програмних файлів з директорії /usr/bin в

операційній системі Linux. Шкідливі файли представляють одне з 3 сімейств шкідливих програм: Gafgyt, Mirai та Lightaidra,

які є поширеними загрозами для UNIX-подібних систем. У отриманому наборі даних для кожного ELF файлу було

проставлено мітку відподвідно до його типу. Запропонований алгоритм класифікації складається з кількох етапів

підготовки: дизасемблювання кожного бінарного ELF файлу із набору даних і семантична обробка та векторизація

інструкцій зі кожної з секцій файлу. Для встановлення порогу класифікації використовується поліноміальна модель Байєса.

Використовуючи поріг класифікації, ми визначаємо розмір n-грам і секцію файлу, які дадуть найкращі результати

класифікації. В результаті було виявлено, що найкраща точність класифікації отримана для n-gram розміру 4 та секції rodata.

https://www.scopus.com/authid/detail.uri?authorId=6701721644
https://www.scopus.com/authid/detail.uri?authorId=57202148561
https://doi.org/#_blank

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4 : 371–386

386

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Щоб отримати найкращу точність, буде використано декілька моделей машинного навчання разом із оптимізацією

гіперпараметрів. Як метрика точності розробленого алгоритму використовується середня точність і зважена оцінка F1.

Стохастичний градієнтний спуск для моделі SVM було обрано як найкращу модель ML на основі отриманих

експериментальних результатів. Експериментально підтверджено ефективність розробленого алгоритму для класифікації

шкідливих програм для UNIX-подібних операційних систем. Результати були проаналізовані та використані для висновків

та пропозицій для подальшої роботи.

Ключові слова: Виявлення шкідливого програмного забезпечення; машинне навчання; семантичний аналіз;

багатокласова класифікація; інтелектуальний аналіз тексту ; операційна система

Copyright © Національний університет «Одеська політехніка», 2022. Всі права захищені

ABOUT THE AUTHORS

Maksym V. Mishchenko - Postgraduate, Information Technology and Software Engineering Department. Chernihiv
Polytechnic National University, 95, Shevchenko Street. Chernihiv, 14035, Ukraine
ORCID: https://orcid.org/0000-0001-9769-9759; it144111@stu.cn.ua

Research field: Cybersecurity; machine learning; operating systems; software engineering
Міщенко Максим Валерійович - аспірант, кафедра Інформаційних технологій та програмної інженерії.

Національний університет «Чернігівська політехніка» вул. Шевченка, 95. Чернігів, 14035, Україна

Mariia S. Dorosh - Doctor of Engineering Sciences, Professor of Information Technology and Software Engineering

Department, Chernihiv Polytechnic National University, 95, Shevchenko Str. Chernihiv, 14035, Ukraine
ORCID: https://orcid.org/0000-0001-6537-8957; mariyaya5536@gmail.com. Scopus Author ID: 56912183600
Research field: Modeling and design of intelligent systems; knowledge management; convergence of project

management systems; human factor in information security systems of organizations and projects

Дорош Марія Сергіївна - доктор технічних наук, професор кафедри Інформаційних технологій та програмної

інженерії. Національний університет «Чернігівська політехніка», вул. Шевченка, 95. Чернігів, 14035, Україна

