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ABSTRACT 

The paper focuses on malware classification, based on semantic analysis of disassembled binaries sections’ opcodes with the 

use of n-grams, TF-IDF indicator and machine learning algorithms. The purpose of the research is to improve and extend the variety 

of methods for identifying malware developed for UNIX-like operating systems. The task of the research is to create an algorithm, 

which can identify the types of threats in malicious binary files using n-grams, TF-IDF indicator and machine learning algorithms. 

Malware classification process can be based either on static or dynamic signatures. Static signatures can be represented as byte-code 

sequences, binary-assembled instructions, or imported libraries. Dynamic signatures can be represented as the sequence of actions 

made by malware. We will use a static signatures strategy for semantic analysis and classification of malware. In this paper, we will 

work with binary ELF files, which is the most common executable file type for UNIX-like operating systems. For the purpose of this 

research we gathered 2999 malware ELF files, using data from VirusShare and VirusTotal sites, and 959 non malware program files 

from /usr/bin directory in Linux operating system. Each malware file represents one of 3 malware families: Gafgyt, Mirai, and 

Lightaidra, which are popular and harmful threats to UNIX systems. Each ELF file in dataset was labelled according to its type. The 

proposed classification algorithm consists of several preparation steps: disassembly of every ELF binary file from the dataset and 

semantically processing and vectorizing assembly instructions in each file section. For the setting classification threshold, the 

Multinomial Naive Bayes model is used. Using the classification threshold, we define the size for n-grams and the section of the file, 

which will give the best classification results. For obtaining the best score, multiple machine learning models, along with 

hyperparameter optimization, will be used. As a metric of the accuracy of the designed algorithm, mean accuracy and weighted F1 

score are used. Stochastic gradient descent for SVM model was selected as the best performing ML model, based on the obtained 

experimental results. Developed algorithm was experimentally proved to be effective for classifying malware for UNIX operating 

systems. Results were analyzed and used for making conclusions and suggestions for future work. 
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INTRODUCTION 

Modern malware is evolving at a very fast pace, 

and new cyber threats appear every day. For more 

effective detection of malicious software, antivirus 

programs widely use artificial intelligence methods 

– both separately and in combination with other 

cyber security approaches. Among the popular 

approaches is the adaptation of natural language 

processing (NLP) techniques to binary files or their 

metadata. 

The resulting vectorized texts are used for 

classification using machine learning methods. For 

example, in 2021, a new malware detection  
 

© Mishchenko M., Dorosh M., 2022 

algorithm using NLP and machine learning was 

developed for the Microsoft 365 Defender antivirus 

[1]. Its essence is to apply the word embedding 

technique to fuzzy hash sums of viruses for further 

classification using a multilayer perceptron. Thanks 

to this algorithm, the antivirus managed to identify a 

new variation of the GoldMax virus, which was later 

confirmed and published. 

The use of convolutional neural networks 

(CNN) for the classification of malicious software is 

gaining popularity. Usually, CNNs are used for 

pattern recognition and working with images, but 

their architecture allows processing raw bytes of any 

binary files, which gave the stimulus for their 

adaptation in the field of identification and  
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classification of malicious software [2]. For 

implementation in antivirus software, models are 

usually used that analyze the file as a whole, without 

analyzing the structure of each file. This makes it 

possible to reduce resources for the development and 

training of algorithms. At the same time, in order to 

achieve high accuracy of such algorithms, it is 

necessary to generate a large amount of input data, 

using a large number of malicious program files as 

samples. With access to antivirus software 

databases, collecting a large dataset of malicious 

software files is not a difficult task, but in other 

cases it is one of the most difficult and long steps of 

preparing for machine learning. To reduce the 

amount of input data and avoid loss of machine 

learning accuracy, it is necessary to increase the 

number of significant features of the input data. This 

can be achieved by more detailed analysis and 

selection of the most important parts of the program 

file. 

Thus, the motivation for carrying out this study 

was the possibility of identifying malicious software 

on relatively small datasets through more detailed 

processing of each of the files. It was decided to 

conduct a study of the content and purpose of each 

section of the program file and highlight the most 

significant for classification using machine learning. 

Also, instead of raw bytes, it was decided to use 

assembly commands of the selected program 

section, performing semantic analysis, text 

vectorization and further classification by machine 

learning methods. 

LITERATURE ANALYSIS 

Malware detection and investigation can be 

broadly divided into two approaches: static analysis 

and dynamic analysis. [3] Static analysis includes 

methods of examining bytecode, assembly binary 

commands, or imported dynamic libraries (DLLs). 

Dynamic analysis involves studying the behavior of 

malicious software. Static analysis can be applied 

both to the entire binary file and to the file’s 

sections. 

For example, Ian Shiel et al. in their work [4] 

proposed a method of improving the fuzzy hashing  

algorithm by applying it to each section of a binary 

PE file. With their research, the authors solve the 

problem of detecting malicious software for the 

Windows OS, in which, by design, there are sections 

common to all files, developers can change the order 

of program sections or insert additional sections to 

complicate its identification. As a result, the authors 

achieved 92% more true positive (TP) detections on 

unobfuscated files and 88% more TP for packaged 

malware, compared to fuzzy hashing of the whole 

file. 

The application of Convolutional Neural 

Networks (CNN) to binary files for their 

classification is well researched. For example, 

Edward Raff et.al.  

in their study [5] used an entire binary file in the 

form of a sequence of bytes, which was fed to the 

input of a convolutional neural network for further 

classification. One of the problems with working 

with a raw byte stream has been the fact that bytes 

have different meanings depending on the context. 

By applying a word embedding algorithm to the byte 

stream, which allowed them to highlight byte words 

with similar meaning and context, they managed to 

solve that problem. The developed MalConv 

architecture [5] showed good generalized results on 

large data datasets and can be applied to binary files 

without focusing on their internal structure. A 

significant drawback of the proposed solution is the 

large time and computing power required to perform 

convolution operations on very long data, such as 

the output byte stream of a binary file. 

Another example of static analysis of binary 

files using CNN is the work of Fangtian Zhong et al. 

[6], in which the authors proposed to transform the 

input binary file into an image that is processed by a 

contrast-limited adaptive histogram equalization 

algorithm and classified by CNN. The resulting 

model showed good results and efficiency. 

The main advantage of approaches with 

convolutional neural networks is the absence of the 

need for domain knowledge of cyber security and 

detailed study of the file structure. At the same time, 

such approaches do not take into account the 

peculiarities of building binary files and have high 

resource costs for training and calibrating machine 

learning models. 

Another approach to malware analysis is to 

apply word embedding techniques and semantic 

analysis to the text or byte content of a file. 

For example, BooJoong Kang et al. in their 

study [7] applied the n-gram method to analyze and 

process the operation codes of APK files. The 

resulting n-grams were used for machine learning 

models. The authors  
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achieved the best classification performance using 

n=3 and n=4 n-grams. 

Semantic analysis is also used in combination 

with dynamic analysis of malicious software, 

studying and analyzing the results of execution of 

malicious files. For example, in their study [8], Bin 

Qin et al. applied the TF-IDF method to the 

sequence of API calls in application log files and 

used this information as a dataset to identify and 

classify malicious and safe software. The results of 

the study proved the effectiveness of the application 

of semantic analysis and the TF-IDF method to 

improve the results of classification and detection of 

malicious software. 

FORMULATION OF THE PROBLEM 

The problem of classification of malicious 

software is actively researched. PE files, which are 

executable files for the Windows operating system, 

or APK files, which are executable files for the 

Android operating system, are usually taken as the 

research object. The reason for this, among others, is 

the large volume of virus types developed for these 

platforms. ELF files, which are executable files for 

UNIX-like operating systems, are less often used as 

objects for malware software research and 

classification. However, there are currently quite 

threatening and destructive types of malware for 

UNIX-like operating systems, including the most 

common Ransomware, Worm, Trojan and BotNet. 

The relatively small number of works [9] [22] 

investigating threats to UNIX-like operating systems 

is a problem, and this work contributes to solving 

this problem. 

THE PURPOSE AND THE OBJECTIVES 

OF THE STUDY 

Malware for UNIX-like operating systems was 

chosen as the object of this study. 

The purpose of this research is to expand the 

methods of identifying malicious software for 

UNIX-like operating systems using semantic 

analysis and classification by machine learning 

models. 

To achieve the goal of the research, several 

tasks were set. First, collecting malicious and safe 

binaries for UNIX-like operating systems and 

labeling each file accordingly. Second, vectorization 

of assembly commands of disassembled binary files 

and  classification of these program files according 

to their label. Third, determination of feasibility of 

application and comparison of accuracy and time 

spent of various machine learning methods for 

classification of malicious software. 

RESEARCH METHODS 

For the purpose of the research, we needed to 

select appropriate semantic analysis methods and 

machine learning models for the classification. 

These problems were solved by analyzing relevant 

software libraries and literature [11,12], [13,14], 

[15,16], [17,18], [24]. As a result, Multinomial 

Naïve Bayes, Support vector machine, stochastic 

gradient descent and gradient boosting models were 

selected for running the classification. 

The n-gram method and the TF-IDF algorithm 

were considered as methodologies for vectorization 

of text data. 

The problematic aspect of the research was 

collecting and obtaining the information about 

binary files for identifying malicious software. This 

is due to the limited number of datasets available 

where the raw binary ELF file is flagged as a 

specific type of malware. A set of raw binary ELF 

files was downloaded from the VirusShare site [19], 

and labels with types for each file were placed using 

the public API of the VirustTotal site [20]. 

The manual about the portable file formats [10] 

helped to investigate the structure of executable ELF 

files and their sections. 

CHOOSING SEMANTIC ANALYSIS 

METHODS 

The first stage of the research is the semantic 

analysis of the program file section. As input data 

for semantic analysis, it was decided to take a 

sequence of assembly commands located in different 

sections of the binary file. At the output, it is 

necessary to obtain numerical vectors for further 

classification. 

One of the basic approaches to natural language 

processing (NLP) is the n-gram method [11]. This 

method is aimed for creating a probabilistic model 

for predicting the next phrase based on statistical 

indicators. N-gram models predict word 𝑤𝑖 based on 

the sequence  

( 1) 1{ ,..., }i n nw w    . For computing the probability of 

the sequence 1, 2( ,..., )nP w w w formula 1 is used.  
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1: 1: 1

1

( ) ( | )
n

n k k

k

P w P w w 



 , (1) 

where 1: 1( | )k kP w w   is conditional probability of 

appearing of the word kw in the sequence of the 

words 1:kw .  

The n-gram method is an important step in the 

processing of program code because it groups 

together semantically important parts, such as an 

assembly instruction and its operands. 

Application of the n-gram method does not take 

into account the length of the document. In longer 

documents, n-grams may occur more often than in 

shorter ones, while both documents may have a 

common content. Therefore, in our research, n-gram 

will be used as the basis for the TF-IDF method, 

which takes into account the length of documents 

and the frequency of words in them. TF-IDF is a 

statistical indicator that allows to determine which 

word is used most often in a specific document and 

less often in all other documents of the collection 

[14]. The indicator consists of two parts: TF (term 

frequency) – word frequency calculated by 

relation 2.  

1

i

N

k

k

n
TF

n





, 

(2) 

where  
in  is amount of word’s appearing in the 

docu-ment; 
kn  is amount of the k -word appearing 

in the document; N  is total amount of the words in 

the document. 

Inverse document frequency (IDF)  – the 

inverse value of the frequency with which the word 

occurs in all documents of the collection is 

calculated by relation 3.  

| |
log

| |i i

D
IDF

d t



,   (3) 

where | |D  – amount of the documents in the 

collection; | |i id t  – amount of the documents
id , 

which have word 
it  . 

As a result of the product of two indicators, we 

will get the TF-IDF value (4).  

TF-IDF TF IDF  , (4) 

where TF  is term frequency; IDF  is inverted 

document frequency. 

Therefore, the TF-IDF value is directly 

proportional to the number of uses of the selected 

word in the selected document, and inversely 

proportional to the number of documents containing 

the selected word. 

In our work, we investigated the size of n-

grams from 1 to 5 and chose the one that gives the 

highest accuracy for the basic classification 

threshold. The generated n-grams for the selected 

section of the file were used for further vectorization 

by the TF-IDF method. 

CHOOSING MACHINE LEARNING 

MODELS 

Polynomial Bayes classifier (Multinomial 

Naive Bayes) was used to establish the basic 

classification threshold. The main idea of this 

method is to find the class to which the document 

belongs with the highest probability, which is 

calculated according to the Bayesian formula (5) 

[16].  

( ) ( | )
( | )

( )

i
i

i

P c P t c
P c t

P t
 , c C , (5) 

where C – set of documents classes; it – document 

of the collection. 

Having proposed the hypothesis that the words 

in the documents are distributed using a certain 

parametric model, we can determine these parameters 

using the Polynomial Bayesian classifier. For 

example, based on this statement, Jiang Su et al. 

solved the problem of text classification in their work 

[28].  

As the main classification methods, support 

vector models, the gradient descent method and the 

gradient boosting method were chosen. 

Models based on the method of support vectors 

- support vector machine or SVM, are often used for 

text classification, because they are optimized for 

detecting non-linear patterns in the multidimensional 

space of features, which is  a vectorized text [12]. 

The accuracy of SVM classification depends on the 

selected kernel function. For comparison, 4 

functions were investigated: linear, polynomial, 

radial and sigmoid. 
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Two methods were chosen to improve training 

results: gradient descent and gradient boosting. The 

purpose of the gradient descent method is to find the  

local minimum of the differentiated function [13]. 

This method is used to minimize the loss function 

during model training by step-by-step 

reconfiguration of model parameters. 

The method of gradient boosting consists in 

using the composition of models [17, 18]. In the 

process of finding the local minimum of the loss 

function, the best model from the composition is 

selected. 

Stochastic gradient descent (SGD) is aimed at 

minimizing the loss function during model training.   

Unlike regular gradient descent, stochastic gradient  

descent uses randomly selected instances of the 

training sample at each iteration, instead of finding 

the minimum  

for all sample instances, which optimizes its 

performance [15]. In our work SVM loss function 

will be the objective for SGD algorithm. 

Algorithm XGBoost [18], which uses a 

composition of decision tree models, will be used as 

a gradient boosting method. 

In the course of the study, an algorithm was 

created that classifies malicious and safe software 

using a prepared set of malicious and safe software 

files. The result of the algorithm is a set of machine 

learning models trained to recognize malicious and 

safe software for UNIX-like operating systems. The 

scheme of the created algorithm is shown in Fig. 1. 

CREATING A DATASET 

As input data for the algorithm, it was decided 

to use a set of binary ELF files that were identified 

as malicious and safe. 

An ELF file (Extensible Linking Format) is a 

format for binary executables, object modules, or 

libraries for UNIX-like operating systems. Each ELF 

file consists of two parts: ELF header and file data. 

The ELF header section defines the format of a 

particular file and is always zero-indented. The file 

data section can contain a table of program headers 

and a table of program sections [10]. 

In this work, the part of file data with the 

sections of the program will be investigated. Each of 

the sections has a different purpose and content. The 

main sections of ELF files and their purpose are 

listed below: 

 .text – contains program code; 

 .data – contains initialized data of the 

program; 

 .rodata – contains initialized read-only data; 

 .bss – contains not initialized variables of 

program. 

Each of the listed sections of the program file was 

semantically analyzed. For use in the developed 

algorithm, the section that showed the best 

classification results in combination with the 

appropriate number of n for n-gram was selected 

when determining the classification threshold.Binary 

ELF files were downloaded from the VirusShare site 

[19]. For each of the files, information was obtained 

about the existing threats that the file carries. For 

this, the free public API of the VirusTotal site was 

used [20]. Using the MD5 hash sum of each file, a 

report on the file and its threats detected by various 

anti-virus software was processed. After examining 

the number of detected threats for each of the 

antivirus software, the Microsoft antivirus was 

chosen as the one with the most detected threats that  

 

 

Fig.1. Schema for the algorithm for semantic analysis and classification of malware for  

UNIX-like operating systems using machine learning methods 
Source: compiled by the authors 
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can be grouped into separate families. Threats that 

are the most common and have enough examples to 

form a dataset were chosen for the study. Different 

threat mods that belong to the same family have 

been grouped together and labeled with their family 

name. In this way, it was possible to obtain a 

balanced dataset with three main families of threats. 

– Gafgyt – malware, that infects UNIX-like 

operating systems and runs DDoS attacks from 

them [22]. 

– Mirai – virus, that infects UNIX-like 

operating systems and create bot-net from them. 

Usually running on the internet of things [21]. 

– Lightaidra – virus, that infects UNIX-like 

ope-rating systems and creates bot-net from them 

[23]. 

To form a set of harmless files, it was decided 

to take ELF files from the Linux OS, located in the 

/usr/bin directory, and the MD5 sum of which was 

not found in the VirusTotal virus database. Thus, it 

was possible to obtain a set of 959 harmless ELF 

files. 

After data collection, we received a dataset 

consisting of 3958 binary ELF files. The dataset 

contains 959 harmless files, 980 Mirai-type threats, 

995 Gafgyt-type threats, and 1024 Lightaidra-type 

threats. The proportion of file types in the created 

dataset is shown in Fig. 2.  

The next step of the research was the 

disassembly and section-by-section reading of the 

binary files. For the section of each of the files, 

assembly commands were sequentially read, each of 

which was formed into a line of the form (6) 

 _ , _c str opcode op str , (6) 

where _c str  is command row; opcode  is 

operation code; _op str  is operands row.  

 

 
 

Fig. 2. Pie chart for proportion of file 

types in the created dataset 
Source: compiled by the authors 

 

After that, special newline characters were 

replaced by spaces in the lines. A set of file’s parsed 

assembly commands is shown in Fig. 3. 

 

 
 

Fig. 3. Set of file’s parsed assembly commands 
Source: compiled by the authors 

Having received a set of assembly commands 

for each of the files, we can proceed to their 

vectorization and training of machine learning 

models. 

TRAINING AND EVALUATING 

CLASSIFICATION MODELS 

The processed input data was passed to the 

input to the next step - n-gram generation. The 

resulting n-grams were submitted for vectorization 

using the TF-IDF algorithm. Using TF-IDF, the list 

of assembler commands from program files was 

vectorized and transformed into a sparse matrix of 

dimension <n, n_features>, where n – amount of 

documents, n_features – amount of significant 

features, chosen by the algorithm.    

The sparse matrix, obtained after TF-IDF 

vectorization of the assembly command dataset, was 

submitted for classification. The dataset was divided 

into training and testing partitions: 80 % for training 

and 20% for testing. The time spent on vectorizing 

the input data and dividing it into train and test sets 

was 0.4 seconds. 

To evaluate the results of each of the methods, 

the average classification accuracy and the weighted 

F1 value will be calculated [24]. 

The average classification accuracy will be 

calculated as the proportion of correctly predicted 

classes to the total number of predictions. 

To calculate weighted F1, you must first 

calculate Precision and Recall (7-8).  

Precision=
TP

TP FP
, (7) 

where TP  is amount of true positive predictions of 

the class; FP  is amount of false positive predictions 

of the class.  

Recall=
TP

TP FN
, (8) 

26%

25%25%

24%

ELF FILE TYPES

Lightaidra Gafgyt Mirai Not a threat
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where TP  is amount of true positive predictions of 

the class; FN  is amount of false negative 

predictions of the class. 

After calculating precision and recall, you can 

calculate F1 (9).  

Precision*Recall
1 2*

Precision+Recall
F  , (9) 

where Precision is precision of classification; 

Recall is recall of classification. 

The weighted F1 is calculated for all classes of 

the sample, taking into account the proportion of the 

number of instances of each class relative to all 

instances of the sample, which is defined as the 

weight of the class (10) [24].  

1

F1 F1 *
N

weighted i i

i

W


 , (10) 

where N  is amount of classes; F1i
 is F1 for class 

i; 
iW  is weight of the class i.  

To determine the basic threshold of 

classification, Multinomial Naïve Bayes was trained 

and evaluated for all possible program sections and 

the corresponding number of n for n-gram. 

Assessment results of the basic threshold of 

classification are shown in Table 1. After obtaining 

the results, n-gram count and file section was selected 

based on the the highest values of the average 

accuracy and F1 weighted. 

To improve the results, Laplace smoothing was 

used in the Bayesian classifier. This method allows 

to avoid obtaining zero probabilities of the word 

appearing in the text by adding a parameter to the 

calculated probability α [26]. Using hyper parameter 

tuning, it was established α=0.01. 
Based on the best obtained mean accuracy and

1weightedF , was selected 4n gram   and section

rodata . For the Multinomial Naïve Bayes classifier 

learning curves were plotted (Fig. 4).  

For all of the models in the paper, we build    

learning curves using the same approach. Selected 

model is initialized on chosen hyper parameters and 

cross-validated on the training dataset, which is 

divided into the train and the test sets. As an 

evaluation metrics, accuracy score is used. 

 

 
Fig. 4. Learning curves for the Multinomial  

Naïve Bayes classifier 
Source: compiled by the authors 

 

Table 1. Assessment of the basic threshold 

of classification based on n-gram count and 

                           file section 

Model Size of 

n-

gram 

File 

section 

Mean 

accur

acy 

Value of

F1weighted  

Multinomi

al naive 

Bayes 

(α=0.01) 

1 text 0.53 0.43 

data 0.54 0.45 

rodata 0.77 0.75 

bss 0.46 0.29 

Multinomi

al naive 

Bayes 

(α=0.01) 

2 text 0.53 0.43 

data 0.61 0.56 

rodata 0.79 0.78 

bss 0.46 0.29 

Multinomi

al naive 

Bayes 

(α=0.01) 

3 text 0.53 0.44 

data 0.66 0.63 

rodata 0.79 0.78 

bss 0.46 0.29 

Multinomi

al naive 

Bayes 

(α=0.01) 

4 text 0.55 0.46 

data 0.68 0.66 

rodata 0.82 0.82 

bss 0.46 0.29 

Multinomi

al naive 

Bayes 

(α=0.01) 

5 text 0.55 0.47 

data 0.67 0.65 

rodata 0.81 0.81 

bss 0.46 0.29 

Source: compiled by the authors 
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Learning curves for Multinomial Naïve Bayes 

model indicate the change in model accuracy with 

changing sample size and show convergence with 

increasing sample size. The curves are approximate 

for the real training sample size. This may indicate 

that a we achieved bias-variance tradeoff as a result 

of model training. It also gives a reason to claim that 

the model is not overtrained. We obtained 

_ 0.82mean accuracy   and 1 0.82weightedF  , 

which is good and indicates the ability of the model 

to obtain enough information from the train sample 

and generalize on  the test sample.  With an increase 

in the sample, further convergence of the learning 

curves and an increase in the test accuracy of the 

model are possible. 

To estimate the amount of computation spent 

on training the model, a graph of the average time in 

seconds spent on training versus the size of the 

training sample was plotted. The resulting graph for 

the model is shown in Fig. 5. 

As the sample size increases, the training time 

increases linearly. 

 

Fig. 5.  Plot of the average time in seconds spent 

on training the model, depending on the size of 

the training sample for Multinomial Naïve Bayes 

model 
Source: compiled by the authors 

 

In order to visually evaluate the best detected 

classes of binary files from the test sample, a 

confuse-onmatrix was constructed, shown in Fig. 6. 

After analy-zing it, we can see that not a virus 

program files and viruses Lightaidra were predicted 

the most accurately by the Multinomial Naïve Bayes 

classifier. 

 

 

Fig. 6. Confusion matrix for Multinomial Naïve 

Bayes classifier 
Source: compiled by the authors 

 

After obtaining the classification threshold, it 

was decided to use the grid search algorithm to find 

the best hyperparameters for the support vector 

machine model (SVM). The GridSearchCV 

algorithm cross-validates the model on the Cartesian 

product of hyperparameters values and selects the 

best set of hyperparameters based on the highest 

obtained accuracy of the model [27]. 

Support vector machine (SVM) 

hyperparameters were analyzed: 

      – C – a measure of regularization. At low values 

of C, the hyperplane has a large offset to the points, 

at high values the offset is minimal. Set of 

investigated values: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9, 1] 

      – kernel – a function that accepts data and 

transforms them into the required form, changing 

their dimensionality. Three functions are used: linear 

(linear), polynomial (poly), radial basis (rbf) and 

sigmoid (sigmoid). 

The graph, that shows cross-validated average 

score obtained by the model, depending on the 

values of hyper parameters, is shown on Fig. 7. 

After analyzing the graph, it was determined that the 

highest score on the training data is obtained for 

hyper parameters 0,9C   and kernel=rbf .  

To assess the ability of the model to learn and 

to generalize, learning curves were built.  Resulting 

curves are shown in Fig. 8. 
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Fig. 7. Graph of the average accuracy of the 

model depending on the hyper parameter С  and 

kernel values for SVM model 
Source: compiled by the authors 

 

 

Fig. 8. Learning curves for SVM model 
Source: compiled by the authors 

 

It can be seen from the graph that the accuracy 

of predictions on the train and test data converge 

with the increase of the sample, but do not converge 

on the final value. This may indicate that with an 

increase the size of the train dataset, the accuracy on 

the test data may also increase. A gap between the 

training and test curves may indicate the presence of 

variance. However, the accuracy of the test is not too 

low. SVM model with selected hyperparameters 

trained on the test data showed 

_ 0.83mean accuracy   and 1 0.82weightedF  .  

Confusion matrix for SVM models is shown on 

Fig. 9. 

 

Fig. 9. Confusion matrix for SVM model 
Source: compiled by the authors 

 

A plot of the average time in seconds spent on 

training the model, depending on the size of the 

training sample is shown in Fig. 10. 

 

 

Fig. 10. Plot of the average time in seconds spent 

on training the model, depending on the size of 

the training sample for SVM model 
Source: compiled by the authors 

 

To improve the prediction results, a stochastic 

gradient descent (SGD) model was built based on 

the support vector model.  

The following hyper parameters were analyzed 

for the stochastic gradient descent model: 
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– eta0 – the initial value of the learning rate. A 

parameter used to calculate the learning rate; 

– learning_rate (lr) – learning rate calculation 

algorithm. 

Tested algorithms: “constant” is calculated 

according to the formula (11); “optimal” – the 

algorithm proposed by Leon Botto in the work [25]; 

“invscale” according to formula (12); “adaptive” – 

an algorithm according to which the learning rate is 

divided by 5, upon reaching a loss value that does 

not change for 5 iterations in a row. 

0conslr eta , (11) 

where 0eta  is initial value for learning rate. 

  0 /  invlr eta t , (12) 

where t  is value of the element from the training 

sample. 

The graph of the dependence of the accuracy of 

the model on the hyperparameter values is shown in 

Fig. 11. The graph shows that the highest accuracy 

was obtained for optimallr  та 0 0,01eta  .  

 
 

Fig. 11. Graph of the average accuracy of the 

model depending on the hyper parameter lr  and 

eta0 values for SGD model 
Source: compiled by the authors 

 

Learning curves were constructed for the model 

with the selected hyperparameters, which are shown 

in Fig. 12. The figure shows that the curves for 

training and test accuracy tend to converge, but do 

not coincide. A similar result was obtained for the 

model of support vectors. We can conclude that with 

an increase in the sample, the convergence of the 

curves is possible, however, on this sample, the 

variance is noticeable after training the stochastic 

gradient descent. 

 
Fig. 12. Learning curves for SGD model 

          Source: compiled by the authors 

The graph of the dependence of the average 

training time of SGD model on the sample size is 

shown in Fig. 13. 
 

 

Fig. 13. Plot of the average time in seconds spent 

on training the model, depending on the size of 

the training sample for SGD model 
Source: compiled by the authors 

 

On the test sample, the model of support 

vectors using stochastic gradient descent showed 

_ 0.84mean accuracy   and 1 0.84weightedF  . 

The results improved by 1 %, showing a slight 

optimization obtained by stochastic gradient descent. 
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The confusion matrix for the support vector method 

with stochastic gradient descent is shown in Fig. 14. 

 

Fig. 14. Confusion matrix for SGD model 
Source: compiled by the authors 

 

To complement the evaluation of the results 

obtained using SVM and SGD, classification was 

carried out using gradient boosting model XGBoost. 

As boosters, decision tree models were chosen, the 

ensemble of which is used to select the most optimal 

model. 

The following hyperparameters were analyzed 

to build the gradient boosting model: 

– max_depth – the maximum depth of the 

decision tree. 

– learning_rate (lr) – learning speed. 

The graph of the dependence of the average 

accuracy of the model on the hyperparameter values 

is shown in Fig. 15. The best accuracy indicators for 

the model were obtained for 0.1lr  and 

max_depth=7 .  

To check for overtraining and variance, the 

learning curves shown in Fig. 16 were constructed. 

After analyzing the learning curves, we see that 

they tend to converge, but do not converge at the end 

of the sample. The same behavior was observed for 

previously studied models. We can conclude that the 

presence of variance is observed on this sample, 

which can be eliminated by training on a larger 

sample. The model has no signs of overtraining, 

since the accuracy obtained on the test sample is not 

significantly lower than the accuracy obtained on the 

training data. Obtained test results for gradient 

boosting models _ 0.83mean accuracy   and 

1 0.83weightedF  . 

 

Fig. 15. Graph of the average accuracy of the 

model depending on the hyper parameter lr  and 

max_depth values for XGBoost model 

Source: compiled by the authors 

 

 

Fig. 16. Learning curves for XGBoost model 
Source: compiled by the authors 

 

The confusion matrix for gradient boosting 

model is shown in Fig. 17. 

The dependence of the time spent on training 

gradient boosting models on the sample size is 

shown in Fig. 18. 

To compare the obtained results, a table was 

created, in which it is given for each classifier 
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_mean accuracy , 1weightedF  and the average time 

spent training on the test sample, which can be 

obtained from the graphs. 

 
Fig. 17. Confusion matrix for XGBoost 

model 
          Source: compiled by the authors 

 

The time specified in Table 2 does not include 

the time spent on vectorization of input data and 

division into training and test samples, which was 

0.4 seconds. 

 

 
Fig. 18. Plot of the average time in seconds spent 

on training the model, depending on the size of 

the training sample for XGBoost model 
Source: compiled by the authors 

 

 

 

Table 2. Malware and not a virus ELF files 

classification results for MultinomialNB, SVM, 

SGD and XGBoost 

 

Model Mean 

accuracy 

(percent) 

Value of

F1weighted

(percent) 

Fit time 

(seconds) 

MultinomialNB 82 82 0.026 

SVM 83 82 2.75 

SGD 84 84 0.1 

XGBoost 83 83 19.5 

Source: compiled by the authors 

 

DISCUSSION OF THE RESULTS 

The files collected and typed by the ELF 

antivirus software were used as a basis for creating 

an algorithm for identifying malicious software. The 

resulting data set was supplemented with safe ELF 

software files from the /usr/bin directory. The 

analysis of the distribution of classes indicated that 

the dataset for training machine learning models is 

balanced, which had a positive effect on the 

classification accuracy. 
 

As a result of the comparison of the basic 

classification threshold for the semantically processed 

program sections, section rodata and n-gram size 4, 

which showed the best average accuracy and F1, were 

selected. The number of n-gram 4 can be explained by 

the fact that it is close to the number of words in the 

line of the assembly command according to formula 6 

and, thus, highlights the semantically important 

fragments of the assembly code. The best classification 

performance for the rodata section can be explained by 

the fact that it contains initialized data, such as text 

variables, the values of which can carry significant 

features for the created classification model. 

Obtained training results of the machine 

learning models showed relatively good average 

accuracy and weighted F1. The basic classification 

threshold of 82 %, obtained for the Multinomial 

Naive Bayes model, was improved, obtaining a 

maximum value on the test sample of 84% for the 

Stochastic Gradient Descent model, which indicates 

the correct choice of machine learning models. It 

should be noted that the time spent on training the 

support vector model using stochastic gradient 

descent is 0.1 seconds, compared to the support 

vector model without stochastic gradient descent – 

2.75 seconds. This is due to the stochastically 

selected instances at each iteration of the training to 
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calculate the weights, compared to using the entire 

data set for a model without stochastic gradient 

descent. The longest training time was shown by the 

gradient boosting model, which is explained by the 

use of an ensemble of models to solve the 

classification problem. The best time shown by the 

polynomial Bayesian classifier is due to the speed of 

calculations for probabilistic models. 

CONCLUSIONS 

As a result of the work, we solved the tasks of 

creating a set of malicious and safe binary ELF files; 

disassembly and vectorization of assembly 

commands of files, and classification of files 

according to their labels using machine learning 

models.  

Obtained results of file classification by four 

different machine learning models confirm the 

expediency of using each of the models to solve the 

given problem. 

The best result of 84 % accuracy on the test 

data was shown by the stochastic gradient descent 

model. The study of the learning curves of this 

model showed the possibility of improving the 

results with an increase in the training sample. 

Model training takes 0.1 seconds on a training 

sample size of 2250 files. This indicator allows you 

to use the model to detect threats in real time, as 

well as to train it on expanded volumes of data.  

Based on the obtained results, it can be 

concluded that the methods for detecting malicious 

and safe software for UNIX-like operating systems 

were extended by the developed algorithm. The 

effectiveness of the developed algorithm was 

confirmed by various metrics, in particular the 

obtained classification accuracy. This confirms the 

achievement of the research goal. 

FUTURE WORK 

Possible steps to improve the obtained results 

may be to expand the set of input data. The learning 

curves for the selected stochastic gradient descent 

model show the ability to improve prediction 

accuracy with the increasing training samples. 

Also, as a future work, the automation of the 

created algorithm is considered by creating an API 

and connecting to a database for recognizing 

malicious software in real time. The short training 

time for the gradient stochastic descent model allows 

it to be trained on new data in real time. 
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АНОТАЦІЯ 

 
Стаття зосереджена на класифікації шкідливих програм на основі семантичного аналізу кодів операцій 

дизасембльованих секцій бінарних виконуваних файлів з використанням n-грам, індикатора TF-IDF і алгоритмів машинного 

навчання. Метою дослідження є вдосконалення та розширення наявних методів ідентифікації шкідливих програм, 

розроблених для UNIX-подібних операційних систем. Завданням дослідження є створення алгоритму, який може 

ідентифікувати типи загроз у шкідливих бінарних файлах для UNIX-подібних систем за допомогою n-грам, індикатора TF-

IDF і алгоритмів машинного навчання. Процес класифікації шкідливих програм може базуватися на статичних або 

динамічних сигнатурах. Статичні сигнатури можуть бути представлені у вигляді послідовностей байт-коду, двійкових 

інструкцій або імпортованих бібліотек. Динамічні сигнатури можна представити як послідовність дій шкідливого ПЗ. Ми 

будемо використовувати стратегію статичних сигнатур для семантичного аналізу та класифікації шкідливих програм. У цій 

статті ми будемо працювати з двійковими файлами ELF, які є найпоширенішим типом виконуваних файлів для UNIX-

подібних операційних систем. Для цілей цього дослідження було зібрано набір даних із 2999 зразків шкідливих ELF файлів, 

використовуючи дані із сайтів VirusShare та VirusTotal, а також 959 нешкідливих програмних файлів з директорії /usr/bin в 

операційній системі Linux. Шкідливі файли представляють одне з 3 сімейств шкідливих програм: Gafgyt, Mirai та Lightaidra, 

які є поширеними загрозами для UNIX-подібних систем. У отриманому наборі даних для кожного ELF файлу було 

проставлено мітку відподвідно до його типу. Запропонований алгоритм класифікації складається з кількох етапів 

підготовки: дизасемблювання кожного бінарного ELF файлу із набору даних і семантична обробка та векторизація 

інструкцій зі кожної з секцій файлу. Для встановлення порогу класифікації використовується поліноміальна модель Байєса. 

Використовуючи поріг класифікації, ми визначаємо розмір n-грам і секцію файлу, які дадуть найкращі результати 

класифікації. В результаті було виявлено, що найкраща точність класифікації отримана для n-gram розміру 4 та секції rodata. 
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Щоб отримати найкращу точність, буде використано декілька моделей машинного навчання разом із оптимізацією 

гіперпараметрів. Як метрика точності розробленого алгоритму використовується середня точність і зважена оцінка F1. 

Стохастичний градієнтний спуск для моделі SVM було обрано як найкращу модель ML на основі отриманих 

експериментальних результатів. Експериментально підтверджено ефективність розробленого алгоритму для класифікації 

шкідливих програм для UNIX-подібних операційних систем. Результати були проаналізовані та використані для висновків 

та пропозицій для подальшої роботи. 

Ключові слова: Виявлення шкідливого програмного забезпечення; машинне навчання; семантичний аналіз; 

багатокласова класифікація; інтелектуальний аналіз тексту ; операційна система 
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