Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

DOI: https://doi.org/10.15276/aait.05.2022.25
UDC 004.89

Semantic analysis and classification of malware for UNIX-like
operating systems with the use of machine learning methods

Maksym V. Mishchenko®
ORCID: https://orcid.org/0000-0001-9769-9759; it144111@stu.cn.ua

Mariia S. Dorosh?
ORCID: https://orcid.org/0000-0001-6537-8957; mariyaya5536@gmail.com. Scopus Author 1D: 56912183600
1 Chernihiv Polytechnic National University, 95, Shevchenko Str. Chernihiv, 14035, Ukraine

ABSTRACT

The paper focuses on malware classification, based on semantic analysis of disassembled binaries sections’ opcodes with the
use of n-grams, TF-IDF indicator and machine learning algorithms. The purpose of the research is to improve and extend the variety
of methods for identifying malware developed for UNIX-like operating systems. The task of the research is to create an algorithm,
which can identify the types of threats in malicious binary files using n-grams, TF-IDF indicator and machine learning algorithms.
Malware classification process can be based either on static or dynamic signatures. Static signatures can be represented as byte-code
sequences, binary-assembled instructions, or imported libraries. Dynamic signatures can be represented as the sequence of actions
made by malware. We will use a static signatures strategy for semantic analysis and classification of malware. In this paper, we will
work with binary ELF files, which is the most common executable file type for UNIX-like operating systems. For the purpose of this
research we gathered 2999 malware ELF files, using data from VirusShare and VirusTotal sites, and 959 non malware program files
from /usr/bin directory in Linux operating system. Each malware file represents one of 3 malware families: Gafgyt, Mirai, and
Lightaidra, which are popular and harmful threats to UNIX systems. Each ELF file in dataset was labelled according to its type. The
proposed classification algorithm consists of several preparation steps: disassembly of every ELF binary file from the dataset and
semantically processing and vectorizing assembly instructions in each file section. For the setting classification threshold, the
Multinomial Naive Bayes model is used. Using the classification threshold, we define the size for n-grams and the section of the file,
which will give the best classification results. For obtaining the best score, multiple machine learning models, along with
hyperparameter optimization, will be used. As a metric of the accuracy of the designed algorithm, mean accuracy and weighted F1
score are used. Stochastic gradient descent for SVM model was selected as the best performing ML model, based on the obtained
experimental results. Developed algorithm was experimentally proved to be effective for classifying malware for UNIX operating
systems. Results were analyzed and used for making conclusions and suggestions for future work.

Keywords: Malware detection; machine learning; semantic analysis; multiclass classification; text mining; operating system

Copyright © Odessa Polytechnic National University, 2022. All rights reserved

For citation: Mishchenko M. V., Dorosh M. S. “Semantic analysis and classification of malware for UNIX-like operating systems with the use
of machine learning methods”. Applied Aspects of Information Technology. 2022; Vol5 No.4: 371-386.
DOI: https://doi.org/10.15276/aait.05.2022.25

INTRODUCTION

Modern malware is evolving at a very fast pace,
and new cyber threats appear every day. For more
effective detection of malicious software, antivirus
programs widely use artificial intelligence methods
— both separately and in combination with other
cyber security approaches. Among the popular
approaches is the adaptation of natural language
processing (NLP) techniques to binary files or their

algorithm using NLP and machine learning was
developed for the Microsoft 365 Defender antivirus
[1]. Its essence is to apply the word embedding
technique to fuzzy hash sums of viruses for further
classification using a multilayer perceptron. Thanks
to this algorithm, the antivirus managed to identify a
new variation of the GoldMax virus, which was later
confirmed and published.

The use of convolutional neural networks

metadata.

The resulting vectorized texts are used for
classification using machine learning methods. For
example, in 2021, a new malware detection

© Mishchenko M., Dorosh M., 2022

(CNN) for the classification of malicious software is
gaining popularity. Usually, CNNs are used for
pattern recognition and working with images, but
their architecture allows processing raw bytes of any
binary files, which gave the stimulus for their
adaptation in the field of identification and

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0)

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity 371

https://doi.org/#_blank
mailto:it144111@stu.cn.ua
https://doi.org/10.15276/aait.05.2022.25

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

classification of malicious software [2]. For
implementation in antivirus software, models are
usually used that analyze the file as a whole, without
analyzing the structure of each file. This makes it
possible to reduce resources for the development and
training of algorithms. At the same time, in order to
achieve high accuracy of such algorithms, it is
necessary to generate a large amount of input data,
using a large number of malicious program files as
samples. With access to antivirus software
databases, collecting a large dataset of malicious
software files is not a difficult task, but in other
cases it is one of the most difficult and long steps of
preparing for machine learning. To reduce the
amount of input data and avoid loss of machine
learning accuracy, it is necessary to increase the
number of significant features of the input data. This
can be achieved by more detailed analysis and
selection of the most important parts of the program
file.

Thus, the motivation for carrying out this study
was the possibility of identifying malicious software
on relatively small datasets through more detailed
processing of each of the files. It was decided to
conduct a study of the content and purpose of each
section of the program file and highlight the most
significant for classification using machine learning.
Also, instead of raw bytes, it was decided to use
assembly commands of the selected program
section, performing semantic analysis, text
vectorization and further classification by machine
learning methods.

LITERATURE ANALYSIS

Malware detection and investigation can be
broadly divided into two approaches: static analysis
and dynamic analysis. [3] Static analysis includes
methods of examining bytecode, assembly binary
commands, or imported dynamic libraries (DLLS).
Dynamic analysis involves studying the behavior of
malicious software. Static analysis can be applied
both to the entire binary file and to the file’s
sections.

For example, lan Shiel et al. in their work [4]
proposed a method of improving the fuzzy hashing
algorithm by applying it to each section of a binary
PE file. With their research, the authors solve the
problem of detecting malicious software for the
Windows OS, in which, by design, there are sections
common to all files, developers can change the order

of program sections or insert additional sections to
complicate its identification. As a result, the authors
achieved 92% more true positive (TP) detections on
unobfuscated files and 88% more TP for packaged
malware, compared to fuzzy hashing of the whole
file.

The application of Convolutional Neural
Networks (CNN) to binary files for their
classification is well researched. For example,
Edward Raff et.al.
in their study [5] used an entire binary file in the
form of a sequence of bytes, which was fed to the
input of a convolutional neural network for further
classification. One of the problems with working
with a raw byte stream has been the fact that bytes
have different meanings depending on the context.
By applying a word embedding algorithm to the byte
stream, which allowed them to highlight byte words
with similar meaning and context, they managed to
solve that problem. The developed MalConv
architecture [5] showed good generalized results on
large data datasets and can be applied to binary files
without focusing on their internal structure. A
significant drawback of the proposed solution is the
large time and computing power required to perform
convolution operations on very long data, such as
the output byte stream of a binary file.

Another example of static analysis of binary
files using CNN is the work of Fangtian Zhong et al.
[6], in which the authors proposed to transform the
input binary file into an image that is processed by a
contrast-limited adaptive histogram equalization
algorithm and classified by CNN. The resulting
model showed good results and efficiency.

The main advantage of approaches with
convolutional neural networks is the absence of the
need for domain knowledge of cyber security and
detailed study of the file structure. At the same time,
such approaches do not take into account the
peculiarities of building binary files and have high
resource costs for training and calibrating machine
learning models.

Another approach to malware analysis is to
apply word embedding techniques and semantic
analysis to the text or byte content of a file.

For example, BooJoong Kang et al. in their
study [7] applied the n-gram method to analyze and
process the operation codes of APK files. The
resulting n-grams were used for machine learning
models. The authors

372

Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

achieved the best classification performance using
n=3 and n=4 n-grams.

Semantic analysis is also used in combination
with dynamic analysis of malicious software,
studying and analyzing the results of execution of
malicious files. For example, in their study [8], Bin
Qin et al. applied the TF-IDF method to the
sequence of API calls in application log files and
used this information as a dataset to identify and
classify malicious and safe software. The results of
the study proved the effectiveness of the application
of semantic analysis and the TF-IDF method to
improve the results of classification and detection of
malicious software.

FORMULATION OF THE PROBLEM

The problem of classification of malicious
software is actively researched. PE files, which are
executable files for the Windows operating system,
or APK files, which are executable files for the
Android operating system, are usually taken as the
research object. The reason for this, among others, is
the large volume of virus types developed for these
platforms. ELF files, which are executable files for
UNIX-like operating systems, are less often used as
objects for malware software research and
classification. However, there are currently quite
threatening and destructive types of malware for
UNIX-like operating systems, including the most
common Ransomware, Worm, Trojan and BotNet.
The relatively small number of works [9] [22]
investigating threats to UNIX-like operating systems
is a problem, and this work contributes to solving
this problem.

THE PURPOSE AND THE OBJECTIVES
OF THE STUDY

Malware for UNIX-like operating systems was
chosen as the object of this study.

The purpose of this research is to expand the
methods of identifying malicious software for
UNIX-like operating systems using semantic
analysis and classification by machine learning
models.

To achieve the goal of the research, several
tasks were set. First, collecting malicious and safe
binaries for UNIX-like operating systems and
labeling each file accordingly. Second, vectorization
of assembly commands of disassembled binary files
and classification of these program files according

to their label. Third, determination of feasibility of
application and comparison of accuracy and time
spent of various machine learning methods for
classification of malicious software.

RESEARCH METHODS

For the purpose of the research, we needed to
select appropriate semantic analysis methods and
machine learning models for the classification.
These problems were solved by analyzing relevant
software libraries and literature [11,12], [13,14],
[15,16], [17,18], [24]. As a result, Multinomial
Naive Bayes, Support vector machine, stochastic
gradient descent and gradient boosting models were
selected for running the classification.

The n-gram method and the TF-IDF algorithm
were considered as methodologies for vectorization
of text data.

The problematic aspect of the research was
collecting and obtaining the information about
binary files for identifying malicious software. This
is due to the limited number of datasets available
where the raw binary ELF file is flagged as a
specific type of malware. A set of raw binary ELF
files was downloaded from the VirusShare site [19],
and labels with types for each file were placed using
the public API of the VirustTotal site [20].

The manual about the portable file formats [10]
helped to investigate the structure of executable ELF
files and their sections.

CHOOSING SEMANTIC ANALYSIS
METHODS

The first stage of the research is the semantic
analysis of the program file section. As input data
for semantic analysis, it was decided to take a
sequence of assembly commands located in different
sections of the binary file. At the output, it is
necessary to obtain numerical vectors for further
classification.

One of the basic approaches to natural language
processing (NLP) is the n-gram method [11]. This
method is aimed for creating a probabilistic model
for predicting the next phrase based on statistical
indicators. N-gram models predict word w; based on
the sequence

{W, (4 1)1~ W,_1} . For computing the probability of

the sequence P(W, W,,..., W,) formula 1 is used.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity 373

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

P(w,,) = H P(W, [Wy4) D
k=1

where P(w, |W,, ,) is conditional probability of
appearing of the wordw, in the sequence of the

words W, .

The n-gram method is an important step in the
processing of program code because it groups
together semantically important parts, such as an
assembly instruction and its operands.

Application of the n-gram method does not take
into account the length of the document. In longer
documents, n-grams may occur more often than in
shorter ones, while both documents may have a
common content. Therefore, in our research, n-gram
will be used as the basis for the TF-IDF method,
which takes into account the length of documents
and the frequency of words in them. TF-IDF is a
statistical indicator that allows to determine which
word is used most often in a specific document and
less often in all other documents of the collection
[14]. The indicator consists of two parts: TF (term

frequency) — word frequency calculated by
relation 2.
n.
TF =,
Sn (2)
k
k=1
where n, is amount of word’s appearing in the

docu-ment; n, is amount of the k -word appearing

in the document; N is total amount of the words in
the document.

Inverse document frequency (IDF) — the
inverse value of the frequency with which the word

occurs in all documents of the collection is
calculated by relation 3.
D
IDF:Iog—| | : (3)
|d; ot |
where |D| — amount of the documents in the

collection; | d; ot; | — amount of the documentsd, ,

which have word t; .

As a result of the product of two indicators, we
will get the TF-IDF value (4).

TF-IDF = TF- IDF, @)

where TF is term frequency; IDF is inverted
document frequency.
Therefore, the TF-IDF value is directly

proportional to the number of uses of the selected
word in the selected document, and inversely
proportional to the number of documents containing
the selected word.

In our work, we investigated the size of n-
grams from 1 to 5 and chose the one that gives the
highest accuracy for the basic classification
threshold. The generated n-grams for the selected
section of the file were used for further vectorization
by the TF-IDF method.

CHOOSING MACHINE LEARNING
MODELS

Polynomial Bayes classifier (Multinomial
Naive Bayes) was used to establish the basic
classification threshold. The main idea of this
method is to find the class to which the document
belongs with the highest probability, which is
calculated according to the Bayesian formula (5)
[16].

P)P(|¢)

P(C|ti): P(t-)

, ceC, (5)

where C — set of documents classes; t,— document

of the collection.

Having proposed the hypothesis that the words
in the documents are distributed using a certain
parametric model, we can determine these parameters
using the Polynomial Bayesian classifier. For
example, based on this statement, Jiang Su et al.
solved the problem of text classification in their work
[28].

As the main classification methods, support
vector models, the gradient descent method and the
gradient boosting method were chosen.

Models based on the method of support vectors
- support vector machine or SVM, are often used for
text classification, because they are optimized for
detecting non-linear patterns in the multidimensional
space of features, which is a vectorized text [12].
The accuracy of SVM classification depends on the
selected kernel function. For comparison, 4
functions were investigated: linear, polynomial,
radial and sigmoid.

374

Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

Two methods were chosen to improve training
results: gradient descent and gradient boosting. The
purpose of the gradient descent method is to find the
local minimum of the differentiated function [13].
This method is used to minimize the loss function
during model training by step-by-step
reconfiguration of model parameters.

The method of gradient boosting consists in
using the composition of models [17, 18]. In the
process of finding the local minimum of the loss
function, the best model from the composition is
selected.

Stochastic gradient descent (SGD) is aimed at
minimizing the loss function during model training.
Unlike regular gradient descent, stochastic gradient
descent uses randomly selected instances of the
training sample at each iteration, instead of finding
the minimum
for all sample instances, which optimizes its
performance [15]. In our work SVM loss function
will be the objective for SGD algorithm.

Algorithm XGBoost [18], which uses a
composition of decision tree models, will be used as
a gradient boosting method.

In the course of the study, an algorithm was
created that classifies malicious and safe software
using a prepared set of malicious and safe software
files. The result of the algorithm is a set of machine
learning models trained to recognize malicious and
safe software for UNIX-like operating systems. The
scheme of the created algorithm is shown in Fig. 1.

CREATING A DATASET

As input data for the algorithm, it was decided
to use a set of binary ELF files that were identified
as malicious and safe.

An ELF file (Extensible Linking Format) is a
format for binary executables, object modules, or
libraries for UNIX-like operating systems. Each ELF
file consists of two parts: ELF header and file data.
The ELF header section defines the format of a
particular file and is always zero-indented. The file
data section can contain a table of program headers
and a table of program sections [10].

In this work, the part of file data with the
sections of the program will be investigated. Each of
the sections has a different purpose and content. The
main sections of ELF files and their purpose are
listed below:

— .text — contains program code;

— .data — contains initialized data of the
program;

— .rodata — contains initialized read-only data;

—.bss — contains not initialized variables of
program.

Each of the listed sections of the program file was
semantically analyzed. For use in the developed
algorithm, the section that showed the best
classification results in combination with the
appropriate number of n for n-gram was selected
when determining the classification threshold.Binary
ELF files were downloaded from the VirusShare site
[19]. For each of the files, information was obtained
about the existing threats that the file carries. For
this, the free public API of the VirusTotal site was
used [20]. Using the MD5 hash sum of each file, a
report on the file and its threats detected by various
anti-virus software was processed. After examining
the number of detected threats for each of the
antivirus software, the Microsoft antivirus was
chosen as the one with the most detected threats that

Disassemble

text, data, Process next file
rodata, bss file section

sections

1010101 [N
1010101010
1010101010 No
1010101010
1010101010

Malware ELF

files /

o1

Labeled
dataset

All file sections
processed

Train and evaluate
Selact the best MultinomialNB,
Yes>| section and n-gram —>»| SVM SGD /
for classification ;
XGBoost

1

11

A section n-gram
vectorizing

Not a virus ELF

section TF-IDF
vectorizing

files

Fig.1. Schema for the algorithm for semantic analysis and classification of malware for

UNIX-like operating systems using machine learning methods
Source: compiled by the authors

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity

375

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

can be grouped into separate families. Threats that
are the most common and have enough examples to
form a dataset were chosen for the study. Different
threat mods that belong to the same family have
been grouped together and labeled with their family
name. In this way, it was possible to obtain a
balanced dataset with three main families of threats.

— Gafgyt — malware, that infects UNIX-like
operating systems and runs DDoS attacks from
them [22].

— Mirai — virus, that infects UNIX-like
operating systems and create bot-net from them.
Usually running on the internet of things [21].

— Lightaidra — virus, that infects UNIX-like
ope-rating systems and creates bot-net from them
[23].

To form a set of harmless files, it was decided
to take ELF files from the Linux OS, located in the
{usr/bin directory, and the MD5 sum of which was
not found in the VirusTotal virus database. Thus, it
was possible to obtain a set of 959 harmless ELF
files.

After data collection, we received a dataset
consisting of 3958 binary ELF files. The dataset
contains 959 harmless files, 980 Mirai-type threats,
995 Gafgyt-type threats, and 1024 Lightaidra-type
threats. The proportion of file types in the created
dataset is shown in Fig. 2.

The next step of the research was the
disassembly and section-by-section reading of the
binary files. For the section of each of the files,
assembly commands were sequentially read, each of
which was formed into a line of the form (6)

c_str =(opcode,op _str), (6)
where c_str is command row; opcode is
operation code; op _ str is operands row.

ELF FILE TYPES

M Lightaidra ® Gafgyt Mirai Not a threat

o)
%

After that, special newline characters were
replaced by spaces in the lines. A set of file’s parsed
assembly commands is shown in Fig. 3.

ch je 0x415567 jo 0x4154d7 and byte ptr [rdi + 8x67], dh je ©x4154c2 push 8x3a707474

12f] je ©x48088b jo Bx4B8d85b and byte ptr [rdi + Bx67], dh je Bx4Bd846 push Bx3a707474
:s:[rax], edi cmp dwoerd ptr [rsil, ebp xor dword ptr [rsil], esi cmp byte ptr [rsil, ch
:h emp esp, dword ptr [rax] and byte ptr [rdi + ©x67]1, dh je 0x8058de7 push 8x3a707474
and byte ptr [rdi], ch cmp esp, dword ptr [rax] ja ©x1fb97 je Bx1fb53 push Bx3a787474
outsd dx, dword ptr [rsi] jp ©x41581d insb byte ptr [rdi], ax

Fig. 3. Set of file’s parsed assembly commands
Source: compiled by the authors

Having received a set of assembly commands
for each of the files, we can proceed to their
vectorization and training of machine learning
models.

TRAINING AND EVALUATING
CLASSIFICATION MODELS

The processed input data was passed to the
input to the next step - n-gram generation. The
resulting n-grams were submitted for vectorization
using the TF-IDF algorithm. Using TF-IDF, the list
of assembler commands from program files was
vectorized and transformed into a sparse matrix of
dimension <n, n_features>, where n — amount of
documents, n_features — amount of significant
features, chosen by the algorithm.

The sparse matrix, obtained after TF-IDF
vectorization of the assembly command dataset, was
submitted for classification. The dataset was divided
into training and testing partitions: 80 % for training
and 20% for testing. The time spent on vectorizing
the input data and dividing it into train and test sets
was 0.4 seconds.

To evaluate the results of each of the methods,
the average classification accuracy and the weighted
F1 value will be calculated [24].

The average classification accuracy will be
calculated as the proportion of correctly predicted
classes to the total number of predictions.

To calculate weighted F1, you must first
calculate Precision and Recall (7-8).

. TP
Precision=——, 7
TP+ FP
where TP is amount of true positive predictions of

the class; FP is amount of false positive predictions
of the class.

Fig. 2. Pie chart for proportion of file Reca”:L ' (8)
types in the created dataset TP+FN
Source: compiled by the authors
376 Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

where TP is amount of true positive predictions of Multinomial Naive Bayes

the class; FN is amount of false negative 1.00 1 —e— Training score

predictions of the class. —— | Test acore
After calculating precision and recall, you can 0.95

calculate F1 (9).

0.90

0.85 - .\\‘—\\‘
where Precisionis precision of classification;
. . . 0.80 4
Recallis recall of classification. /W
The weighted F1 is calculated for all classes of

. . . 0.75
the sample, taking into account the proportion of the
number of instances of each class relative to all
instances of the sample, which is defined as the 250 500 750 1000 1250 1500 1750 2000 2250

weight of the class (10) [24]. _ _ Training examples o
Fig. 4. Learning curves for the Multinomial

N .
Naive Bayes classifier
— *
Flweighted - Z Fli VV' ! (10) Source: compiled by the authors
i=1

4 Precision*Recall

F1=2 — ,
Precision+Recall

(9)

Score

0.70

Table 1. Assessment of the basic threshold
of classification based on n-gram count and
file section

where N is amount of classes; F1. is F1 for class
i; W, is weight of the class i.
To determine the basic threshold of

classification, Multinomial Naive Bayes was trained Model Size of F'tl.e Mean | Value of
and evaluated for all possible program sections and grna_m section a;:((::;r Flweighted
the corresponding number of n for n-gram. Mulinomi 11 — 0.53 0.43
Assessment results of the basic threshold of | .| aive o e VT
classification are shown in Table 1. After obtaining | Bayes ' '
the results, n-gram count and file section was selected | («=0.01) rodata 0.77 0.75
based on the the highest values of the average bss 0.46 0.29
accuracy and F1 weighted. Multinomi | 2 text 0.53 0.43
To improve the results, Laplace smoothing was al naive data 061 056
used in the Be}ygsmn classifier. ThIS method allows Ba}es rodata 0.79 078
to avoid obtaining zero probabilities of the word (2=0.01)
appearing in the text by adding a parameter to the — bss 0.46 0.29
calculated probability o [26]. Using hyper parameter Qfﬁg;cgml 8 text 0.53 044
tuning, it was established a=0.01. Bayes data 0.66 0.63
Based on the best obtained mean accuracy and | (=0.01) rodata 0.79 0.78
F1eigned » Was selected n—gram=4 and section bss 0.46 0.29
rodata . For the Multinomial Naive Bayes classifier Qfﬂg;cgm' 4 text 0.55 0.46
learning curves were plotted (Fig. 4). Bayes data 0.68 0.66
For all of the models in the paper, we build | («=0.01) rodata 0.82 0.82
learning curves using the same approach. Selected
model is initialized on chosen hyper parameters and bss 0.46 0.29
cross-validated on the training dataset, which js | Multinomi |5 text 0.55 0.47
divided into the train and the test sets. As an aBIanaelsve data 0.67 0.65
evaluation metrics, accuracy score is used. (a30.01) rodata 0.81 0.81
bss 0.46 0.29
Source: compiled by the authors
ISSN 2617-4316 (Print) Computer systems and cybersecurity 377

ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

Learning curves for Multinomial Naive Bayes
model indicate the change in model accuracy with
changing sample size and show convergence with
increasing sample size. The curves are approximate
for the real training sample size. This may indicate
that a we achieved bias-variance tradeoff as a result
of model training. It also gives a reason to claim that
the model is not overtrained. We obtained

mean_accuracy =0.82 and F1,,., =0.82,

which is good and indicates the ability of the model
to obtain enough information from the train sample
and generalize on the test sample. With an increase
in the sample, further convergence of the learning
curves and an increase in the test accuracy of the
model are possible.

To estimate the amount of computation spent
on training the model, a graph of the average time in
seconds spent on training versus the size of the
training sample was plotted. The resulting graph for
the model is shown in Fig. 5.

As the sample size increases, the training time
increases linearly.

Scalability of the model

0.030

0.025

fit_time(s)
o
o
N
[=]

0.015 A

0.010 A

T T T T T T
1000 1250 1500 1750 2000 2250
Training examples

T T T
250 500 750

Fig. 5. Plot of the average time in seconds spent
on training the model, depending on the size of
the training sample for Multinomial Naive Bayes

model
Source: compiled by the authors

In order to visually evaluate the best detected
classes of binary files from the test sample, a
confuse-onmatrix was constructed, shown in Fig. 6.
After analy-zing it, we can see that not a virus
program files and viruses Lightaidra were predicted
the most accurately by the Multinomial Naive Bayes
classifier.

-175

Gafgyt

- 150

actual
Lightaidra

Mirai

not a virus

i
Gafgyt Mirai not a virus

Lightaidra
predicted

Fig. 6. Confusion matrix for Multinomial Naive

Bayes classifier
Source: compiled by the authors

After obtaining the classification threshold, it
was decided to use the grid search algorithm to find
the best hyperparameters for the support vector
machine model (SVM). The GridSearchCV
algorithm cross-validates the model on the Cartesian
product of hyperparameters values and selects the
best set of hyperparameters based on the highest
obtained accuracy of the model [27].

Support vector machine
hyperparameters were analyzed:

— C —a measure of regularization. At low values
of C, the hyperplane has a large offset to the points,
at high values the offset is minimal. Set of
investigated values: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8,0.9, 1]

— kernel — a function that accepts data and
transforms them into the required form, changing
their dimensionality. Three functions are used: linear
(linear), polynomial (poly), radial basis (rbf) and
sigmoid (sigmoid).

The graph, that shows cross-validated average
score obtained by the model, depending on the
values of hyper parameters, is shown on Fig. 7.
After analyzing the graph, it was determined that the
highest score on the training data is obtained for
hyper parameters C =0,9 and kernel=rbf .

To assess the ability of the model to learn and
to generalize, learning curves were built. Resulting
curves are shown in Fig. 8.

(SVM)

378

Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

Grid Search Scores

0.82
0.81
0.80
0.79 +

0.78 1 .
—e— linear

poly
rbf
—e— sigmoid

CV Average Score

0.77 1
——

0.76

T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
Fig. 7. Graph of the average accuracy of the
model depending on the hyper parameter C and

kernel values for SVM model
Source: compiled by the authors

SvC

100 —e— Training score

—8— Test score

0.95

0.90

0.85

Score

0.80

0.75

0.70

1000 1250 1500 1750 2000 2250
Training examples

250 500 750

Fig. 8. Learning curves for SVM model
Source: compiled by the authors

It can be seen from the graph that the accuracy
of predictions on the train and test data converge
with the increase of the sample, but do not converge
on the final value. This may indicate that with an
increase the size of the train dataset, the accuracy on
the test data may also increase. A gap between the
training and test curves may indicate the presence of
variance. However, the accuracy of the test is not too
low. SVM model with selected hyperparameters

trained on the test data showed
mean _ accuracy =0.83 and F1,..q =0.82.

Confusion matrix for SVM models is shown on
Fig. 9.

- 175

Gafgyt

- 150

actual
Lightaidra

Mirai

not a virus

I
Gafgyt Lightaidra Mirai not a virus

predicted

Fig. 9. Confusion matrix for SVM model
Source: compiled by the authors

A plot of the average time in seconds spent on
training the model, depending on the size of the
training sample is shown in Fig. 10.

Scalability of the model

4.0

fit_time(s)
EooNN W W
(%] o [%,] o w
L L L L L

=
o
L

d
L
|

0.0 A

T T T T T T
1000 1250 1500 1750 2000 2250
Training examples

25|0 SCIrO TSIO
Fig. 10. Plot of the average time in seconds spent
on training the model, depending on the size of
the training sample for SVM model
Source: compiled by the authors

To improve the prediction results, a stochastic
gradient descent (SGD) model was built based on
the support vector model.

The following hyper parameters were analyzed
for the stochastic gradient descent model:

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity

379

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

— eta0 — the initial value of the learning rate. A
parameter used to calculate the learning rate;

— learning_rate (Ir) — learning rate calculation
algorithm.

Tested algorithms: “constant” is calculated
according to the formula (11); “optimal” — the
algorithm proposed by Leon Botto in the work [25];
“invscale” according to formula (12); “adaptive” —
an algorithm according to which the learning rate is
divided by 5, upon reaching a loss value that does
not change for 5 iterations in a row.

Ir,., =eta0, (11)

where eta0 is initial value for learning rate.
Ir, = etad / <, (12)
where 1 is value of the element from the training

sample.

The graph of the dependence of the accuracy of
the model on the hyperparameter values is shown in
Fig. 11. The graph shows that the highest accuracy

was obtained for Ir ;. Ta eta0=0,01.

Grid Search Scores

CV Average Score

0.825
0.800 1
0.775
0.750
0.725
0.700
constant
0.675 1 optimal
0.650 1 —e— invscaling
—e— adaptive
0.625 1, : : | :
10-3 10-4 103 102 101
eta0

Fig. 11. Graph of the average accuracy of the
model depending on the hyper parameter Ir and

eta0 values for SGD model
Source: compiled by the authors

Learning curves were constructed for the model
with the selected hyperparameters, which are shown
in Fig. 12. The figure shows that the curves for
training and test accuracy tend to converge, but do
not coincide. A similar result was obtained for the
model of support vectors. We can conclude that with
an increase in the sample, the convergence of the
curves is possible, however, on this sample, the

variance is noticeable after training the stochastic
gradient descent.

SGD learning curve

1.00 7 —e— Training score
—e— Test score

0.95 +

0.901 .\‘\'\o—\‘
<
§ 0.85 -

0.80

0.75 H

0.70

T T T T T T
1000 1250 1500 1750 2000 2250
Training examples

Fig. 12. Learning curves for SGD model
Source: compiled by the authors

T T T
250 500 750

The graph of the dependence of the average
training time of SGD model on the sample size is
shown in Fig. 13.

Scalability of the model

0.12 4

0.10 +

0.08 4

fit_time(s)

0.04 4

0.02 +

T T T T T T
1000 1250 1500 1750 2000 2250
Training examples

25|0 560 75|0
Fig. 13. Plot of the average time in seconds spent
on training the model, depending on the size of

the training sample for SGD model
Source: compiled by the authors

On the test sample, the model of support
vectors using stochastic gradient descent showed

mean_accuracy =0.84 and F1,;,., =0.84.

The results improved by 1 %, showing a slight
optimization obtained by stochastic gradient descent.

380

Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

The confusion matrix for the support vector method
with stochastic gradient descent is shown in Fig. 14.

-200

-175

Gafgyt

- 150

actual
Lightaidra

Mirai

not a virus

I
not a virus

Mirai

|
Lightaidra
predicted

I
Gafgyt

Fig. 14. Confusion matrix for SGD model

Source: compiled by the authors

To complement the evaluation of the results
obtained using SVM and SGD, classification was
carried out using gradient boosting model XGBoost.
As boosters, decision tree models were chosen, the
ensemble of which is used to select the most optimal
model.

The following hyperparameters were analyzed
to build the gradient boosting model:

— max_depth — the maximum depth of the
decision tree.

— learning_rate (Ir) — learning speed.

The graph of the dependence of the average
accuracy of the model on the hyperparameter values
is shown in Fig. 15. The best accuracy indicators for
the model were obtained for Ir=0.1and
max_depth=7.

To check for overtraining and variance, the
learning curves shown in Fig. 16 were constructed.

After analyzing the learning curves, we see that
they tend to converge, but do not converge at the end
of the sample. The same behavior was observed for
previously studied models. We can conclude that the
presence of variance is observed on this sample,
which can be eliminated by training on a larger
sample. The model has no signs of overtraining,
since the accuracy obtained on the test sample is not
significantly lower than the accuracy obtained on the
training data. Obtained test results for gradient

boosting models and

I::I‘Weighted = 083 '

mean _accuracy =0.83

Grid Search Scores

0.815

=

0.810

o o
=] (==}
o o
o w
1
L ~No
8

o
~
=}
w

CV Average Score

0.785 4

0.780 &

0.775

103 1072 1071

learning_rate

1o|*5 1074
Fig. 15. Graph of the average accuracy of the
model depending on the hyper parameter Ir and
max_depth values for XGBoost model
Source: compiled by the authors

XGBoost learning curve

1.00 7 —e— Training score

—8— Test score

0.95 A

0.90 4

0.85 4

Score

0.80 4

0.75 4

0.?0 T T T T T T
1000 1250 1500 1750 2000 2250

Training examples

T T T
250 500 750

Fig. 16. Learning curves for XGBoost model
Source: compiled by the authors

The confusion matrix for gradient boosting
model is shown in Fig. 17.

The dependence of the time spent on training
gradient boosting models on the sample size is
shown in Fig. 18.

To compare the obtained results, a table was
created, in which it is given for each classifier

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity

381

actual

not a virus

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

mean _accuracy, F1,,., and the average time

spent training on the test sample, which can be
obtained from the graphs.

-178

Gafgyt

- 15C

125

Lightaidra

Mirai

Gafgyt Lightaidra Mirai not a virus
predicted
Fig. 17. Confusion matrix for XGBoost
model

Source: compiled by the authors

The time specified in Table 2 does not include
the time spent on vectorization of input data and
division into training and test samples, which was
0.4 seconds.

Scalability of the model

fit_time(s)
=
s

T T T T T T
1000 1250 1500 1750 2000 2250
Training examples

Fig. 18. Plot of the average time in seconds spent
on training the model, depending on the size of

the training sample for XGBoost model
Source: compiled by the authors

T T T
250 500 750

Table 2. Malware and not a virus ELF files
classification results for MultinomialNB, SVM,

SGD and XGBoost
Model Mean Value of | Fittime
accuracy F1 . (seconds)
(percent) lwelghted
(percent)
MultinomialNB 82 82 0.026
SVM 83 82 2.75
SGD 84 84 0.1
XGBoost 83 83 19.5

Source: compiled by the authors

DISCUSSION OF THE RESULTS

The files collected and typed by the ELF
antivirus software were used as a basis for creating
an algorithm for identifying malicious software. The
resulting data set was supplemented with safe ELF
software files from the /usr/bin directory. The
analysis of the distribution of classes indicated that
the dataset for training machine learning models is
balanced, which had a positive effect on the
classification accuracy.

As a result of the comparison of the basic
classification threshold for the semantically processed
program sections, section rodata and n-gram size 4,
which showed the best average accuracy and F1, were
selected. The number of n-gram 4 can be explained by
the fact that it is close to the number of words in the
line of the assembly command according to formula 6
and, thus, highlights the semantically important
fragments of the assembly code. The best classification
performance for the rodata section can be explained by
the fact that it contains initialized data, such as text
variables, the values of which can carry significant
features for the created classification model.

Obtained training results of the machine
learning models showed relatively good average
accuracy and weighted F1. The basic classification
threshold of 82 %, obtained for the Multinomial
Naive Bayes model, was improved, obtaining a
maximum value on the test sample of 84% for the
Stochastic Gradient Descent model, which indicates
the correct choice of machine learning models. It
should be noted that the time spent on training the
support vector model using stochastic gradient
descent is 0.1 seconds, compared to the support
vector model without stochastic gradient descent —
2.75 seconds. This is due to the stochastically
selected instances at each iteration of the training to

382

Computer systems and cybersecurity

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

calculate the weights, compared to using the entire
data set for a model without stochastic gradient
descent. The longest training time was shown by the
gradient boosting model, which is explained by the
use of an ensemble of models to solve the
classification problem. The best time shown by the
polynomial Bayesian classifier is due to the speed of
calculations for probabilistic models.

CONCLUSIONS

As a result of the work, we solved the tasks of
creating a set of malicious and safe binary ELF files;
disassembly and vectorization of assembly
commands of files, and classification of files
according to their labels using machine learning
models.

Obtained results of file classification by four
different machine learning models confirm the
expediency of using each of the models to solve the
given problem.

The best result of 84 % accuracy on the test
data was shown by the stochastic gradient descent
model. The study of the learning curves of this
model showed the possibility of improving the
results with an increase in the training sample.
Model training takes 0.1 seconds on a training

sample size of 2250 files. This indicator allows you
to use the model to detect threats in real time, as
well as to train it on expanded volumes of data.

Based on the obtained results, it can be
concluded that the methods for detecting malicious
and safe software for UNIX-like operating systems
were extended by the developed algorithm. The
effectiveness of the developed algorithm was
confirmed by various metrics, in particular the
obtained classification accuracy. This confirms the
achievement of the research goal.

FUTURE WORK

Possible steps to improve the obtained results
may be to expand the set of input data. The learning
curves for the selected stochastic gradient descent
model show the ability to improve prediction
accuracy with the increasing training samples.

Also, as a future work, the automation of the
created algorithm is considered by creating an API
and connecting to a database for recognizing
malicious software in real time. The short training
time for the gradient stochastic descent model allows
it to be trained on new data in real time.

REFERENCES

1. Lazo, E. G. ”Combing through the fuzz: Using fuzzy hashing and deep learning to counter malware
detection evasion techniques”. Microsoft. 2021. — Available from: https://www.microsoft.com/en-
us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-
malware-detection-evasion-techniques/ — [Accessed: Nov. 2021]

2. Huang, C. & Karnik, A. “The rise of deep learning for detection and classification of malware”.
McAfee, 2021. — Available from: https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-deep-
learning-for-detection-and-classification-of-malware/ — [Accessed: Nov. 2021].

3. Yusirwan, S., Prayudi, Y. & Riadi, I.. “Implementation of malware analysis using static and dynamic
analysis method.” International Journal of Computer Applications (0975-8887). 2015; 117 (6): 11-15.

DOI: https://doi.org/10.5120/20557-2943 .

4. Shiel, I. & O'Shaughnessy, S. “Improving file-level fuzzy hashes for malware variant classification”.

Digital Investigation. 28.

https://www.scopus.com/authid/detail.uri?origin=resultslist&

authorld=57191184033. 2019; 28: S88-S94. DOI: https://doi.org/10.1016/j.diin.2019.01.018.

5. Raff, E., et al. “Malware detection by eating a whole exe.” Workshops at the Thirty-Second AAAI
Conference on Artificial Intelligence. 2018. DOI: https://doi.org/10.48550/arXiv.1710.09435.

6. Zhong, F., Zekai, C., Minghui X., Guoming Z., Dongxiao Y. & Xiuzhen C. “Malware-on-the-Brain:
Illuminating malware byte codes with images for malware classification”. IEEE Transactions on Computers.

https://www.scopus.com/authid/detail.uri?authorld=57219436659. 2022.

arXiv.2108.04314.
7. Kang, B., Yerima, S.Y., Mclaughlin

DOI: https://doi.org/10.48550/

& Sezer S. “N-opcode analysis for android malware

classification and categorization”. International Conference On Cyber Security And Protection Of Digital

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Computer systems and cybersecurity

383

https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.microsoft.com/en-us/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-deep-learning-for-detection-and-classification-of-malware/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/the-rise-of-deep-learning-for-detection-and-classification-of-malware/
https://doi.org/10.5120/20557-2943
https://doi.org/10.1016/j.diin.2019.01.018
https://doi.org/10.48550/arXiv.1710.09435
https://www.scopus.com/authid/detail.uri?authorId=57219436659

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

Services (Cyber Security). https://www.scopus.com/authid/detail.uri?authorld=35728940000. 2016. p. 1-7.
7502343 DOI: https://doi.org/10.1109/CyberSecPODS.2016.7502343.

8. Qin, B., Junpeng, Z. & Honguy, C. “Malware detection based on TF-(IDF&ICF) method”. Journal
of Physics: Conference Series. 2021; 2024 (1). DOI: https://doi.org/10.1088/1742-6596/2024/1/012030.

9. Cozzi, E., Graziano, M., Fratantonio, Y. & Balzarotti, D. "Understanding Linux Malware." 2018
IEEE Symposium on Security and Privacy (SP). https://www.scopus.com/authid/detail.uri?
origin=resultslist&authorld=57203246428. 2018. p. 161-175, DOI: https://doi.org/10.1109/SP.2018.00054.

10.“Portable formats specification”. Tool Interface Standards. TIS Committee. 1993.

11. Jurafsky, D. & Martin, J. H.”N-gram language models”. Speech and Language Processing. 2021;
Chapter 3, Draft.

12. Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J. & Scholkopf, B. “Support vector machines”. |IEEE
Intelligent Systems. 1998. p. 18-28. DOI: https://doi.org/10.1109/5254.708428 .

13. Aatila, M., Mohamed, L. & Kartit A. “An Overview of gradient descent algorithm optimization in
machine learning: Application in the ophthalmology field”. Communications in Computer and Information
Science. https://www.scopus.com/authid/detail.uri?authorld=57203053740. 2020. p. 349-359.
DOI: http://doi.org/10.1007/978-3-030-45183-7_27.

14. Schaetti, N. “UniNE at CLEF 2017: TF-IDF and deep-learning for author profiling”. Conference:
CLEF, Dublin. 2017. DOI: https://doi.org/10.13140/RG.2.2.14902.60482.

15. Lei, Y., Hu, T. & Tang, K. “Generalization performance of multi-pass stochastic gradient descent
with convex loss functions.” Journal of Machine Learning Research.
https://www.scopus.com/authid/detail.uri?authorld=53663866600. 2021; 22 (25): 1-41.

16. Kibriya, A. M., Frank, E., Pfahringer, B. & Holmes, G. “Multinomial naive bayes for text
categorization revisited”. Australasian Joint Conference on Artificial Intelligence. Al 2004: Advances in
Artificial Intelligence. https://www.scopus.com/authid/detail.uri?authorld=8646743300. 2004. p. 488-499.
DOI: https://doi.org/10.1007/978-3-540-30549-1_43.

17. Friedman, J. “Stochastic gradient boosting” Computational Statistics & Data Analysis. 2002; 38 (4):
367-378. DOI: https://doi.org/10.1016/S0167-9473(01)00065-2.

18. Tiangi, C. & Guestrin, C. “XGBoost: A scalable tree boosting system”. Proceedings of the 22nd
{ACM} {SIGKDD} International Conference on Knowledge Discovery and Data Mining.
https://www.scopus.com/authid/detail.uri?authorld=55788261800. 2016. p. 785-794.
DOI: https://doi.org/10.1145/2939672.2939785.

19. “All new ELF binaries collected since the previous release in 2019”. VirusShare, 2020. — Available
from: https://virusshare.com/torrents. — [Accessed: Dec. 2021].

20. “Get a file report”. VirusTotal, 2020. - Available from:
https://developers.virustotal.com/reference/file-info. — [Accessed: Dec, 2021].

21. Margolis, J., Oh, T. T., Jadhav, S., Kim, Y. H. & Kim J. N. “An in-depth analysis of the mirai
botnet”. 2017 International Conference on Software Security and Assurance (ICSSA). 2017. p. 6-12,
DOI: https://doi.org/10.1109/ICSSA.2017.12.

22. Sahota, J. & Vlajic, N. “Mozi loT malware and its botnets: From theory To Real-World Observations”.
2021 International Conference on Computational Science and Computational Intelligence, CSCI.
https://Aww.scopus.com/authid/detail.uri?authorld=57795696900. 2021; p. 698-703. DOl:
https://doi.org/10.1109/ CSC154926.2021.00181.

23. McNulty, L. & Vassilakis, V. “IoT botnets: Characteristics, exploits, attack capabilities, and targets.”
13th International Symposium on Communication Systems, Networks and Digital Signal Processing. CSNDSP.
https://www.scopus.com/authid/detail.uri?authorld=57939684100. 2022. p. 350-355. DOIl:
https://doi.org/10.1109/ CSNDSP54353.2022.9908039.

24. Grandini, M., Bagli, E. & Visani G. “Metrics for multi-class classification: an overview”. 2020.
DOI: https://doi.org/10.48550/arXiv.2008.05756 .

384 Computer systems and cybersecurity ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

https://www.scopus.com/authid/detail.uri?authorId=35728940000
https://doi.org/10.1109/CyberSecPODS.2016.7502343
https://doi.org/10.1088/1742-6596/2024/1/012030
https://doi.org/10.1109/5254.708428
https://www.scopus.com/authid/detail.uri?authorId=57203053740
http://doi.org/10.1007/978-3-030-45183-7_27
https://doi.org/10.13140/RG.2.2.14902.60482
https://www.scopus.com/authid/detail.uri?authorId=53663866600
https://www.scopus.com/authid/detail.uri?authorId=8646743300
https://doi.org/10.1007/978-3-540-30549-1_43.
https://doi.org/10.1016/S0167-9473(01)00065-2
https://www.scopus.com/authid/detail.uri?authorId=55788261800
https://virusshare.com/torrents
https://developers.virustotal.com/reference/file-info
https://doi.org/10.1109/ICSSA.2017.12
https://www.scopus.com/authid/detail.uri?authorId=57795696900
https://www.scopus.com/authid/detail.uri?authorId=57939684100
https://doi.org/10.48550/arXiv.2008.05756

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

25. Bottou, L. “Stochastic gradient descent tricks” Neural Networks: Tricks of the Trade.
https://www.scopus.com/authid/detail.uri?authorld=6701721644. 2012. p. 421-436. DOl:
https://doi.org/10.1007/ 978-3-642-35289-8_25.

26. Alfons, J. & Hermann, N. “Reversing and smoothing the multinomial naive bayes text classifer”
Pattern Recognition in Information Systems. Proceedings of the 2nd International Workshop on Pattern
Recognition in Information Systems, PRIS 2002. In conjunction with ICEIS 2002. Ciudad Real. 2002. p.
200-212.

27. Adnan, M., Alarood, A., Uddin, M. I., & Rehman, I. “Utilizing grid search cross-validation with
adaptive boosting for augmenting performance of machine learning models.” PeerJ Computer Science.
https://www.scopus.com/authid/detail.uri?authorld=57202148561. 2022; 8. €803. DOl:
https://doi.org/10.7717/ peerj-cs.803.

28. Su, Jiang & Shirab, Jelber. “Large Scale Text Classification using Semisupervised Multinomial
Naive Bayes” Proceedings of the 28th International Conference on Machine Learning, ICML 2011.
Bellevue, Washington: USA. 2011.

Conflicts of Interest: The authors declare that there is no conflict of interest

Received 25.10. 2022
Received after revision 15.12.2022
Accepted 22.12.2022

DOI: https://doi.org/10.15276/aait.05.2022.25
Y]IK 004.89

CemaHTHYHUA aHATI3 | KjIacudikanis MKIAJIMBOr0 NMPOrpaMHOro
3a0e3neyenHs A UNIX-mogiOHUX cucTeM 3 BUKOPMCTAHHSAM METO/IiB
MAIIMHHOTO0 HABYAHHS

Mimenko Makcum BanepiiioBuu

ORCID: https://orcid.org/0000-0001-9769-9759; it144111@stu.cn.ua

HJopom Mapist CepriiBna

ORCID: https://orcid.org/0000-0001-6537-8957; mariyaya5536@gmail.com. Scopus Author I1D: 56912183600
Harmionanbauit yHiBepcuteT «HepHiriBebka mosiTexHikay By IlleBuenka, 95. Uepniris, 14035, Ykpaina

AHOTAIIA

CrarTss 30cepe/pkeHa Ha Kiacudikamii IIKIZIMBHX NporpaM Ha OCHOBI CEMaHTHYHOIO aHaN3y KOJIB omepamiil
JTM3aceMOJIbOBAHMX CeKIil OIHAPHUX BUKOHYBAaHUX (haillliB 3 BUKOPUCTaHHIM n-rpam, inaukaropa TF-IDF i airoputmiB MarHHOTO
HaBYaHHA. METOI0 IOCHi/UKEHHS € BJOCKOHAJCHHS Ta pO3MIMPEHHsS HasBHUX METOMAIB ineHTH]IKalii NIKi[UIMBUX MHporpam,
po3pobmennx s UNIX-momiOHHMX oOmepamiifHuX CHCTeM. 3aBJaHHAM JOCTIDKEHHS € CTBOPEHHS AITOPUTMY, SKHH MOXe
iIeHTU(IKYBaTH TUIH 3arpo3 y WKiUMBHX OiHapHUX (aiinmax ams UNIX-moniOHuX cucteM 3a JOMOMOTo0 n-rpam, iHmukaropa TF-
IDF i amroputmiB MammHHOTO HapuyaHHs. [Ipomec kimacudikamii IIKIATMBHX TpOrpaM Moke Oa3yBaTHCS Ha CTaTHYHHX abo
IUHAMIYHUX cuTHaTypaxX. CTaTH4YHI CHUTHATypH MOXYTh OyTH TpEICTaBlIeHI y BHUIVAAI MOCHIZOBHOCTEH OalT-KOMY, IBIMKOBHX
iHCTpyKLilt abo iMmopToBaHux OiOmioTek. J[MHaMiYHI CHTHATYpH MOXKHA MPEACTAaBUTH K HMOCIIIOBHICTb HiH mwkimmmBoro I13. Mu
OyeMO BHKOPHCTOBYBATH CTPATEril0 CTATHYHUX CUTHATYD JUISl CEMAaHTHYHOTO aHaIi3y Ta Kiacudikauii MKiyIMBUX nporpaM. Y wii
cTaTTi Mu Oyznemo mpaioBatu 3 aBilikoBumu ¢aitmamu ELF, siki € HalinommpeHimMM THIIOM BHKOHYyBaHUX (aitmie mms UNIX-
noAiOHUX omepariiHux cucteM. [nineit poro qociimpkeHHs Oyio 3i0pano HaGip nanunx i3 2999 3paskis wkiammeux ELF daiinis,
BHKOPHCTOBYIOUH JaHi i3 caiitiB VirusShare Ta VirusTotal, a Takoxk 959 HewkimumBux nporpamMuux ¢aitnie 3 gupekropii /usr/bin B
omnepariiiHiii cucremi Linux. Ikimmusi daiian npenctapisioTs oaHe 3 3 cimMeiicTB mkigmBux nporpam: Gafgyt, Mirai Ta Lightaidra,
ski € momupenuMu 3arpozamu Uit UNIX-momi6rmx cucrem. Y oTpuManoMy Habopi naHux st koxxkHoro ELF ¢aiimy OGymo
MIPOCTABIEHO MITKy BiANOABIAHO 10 HOro THITy. 3ampoNOHOBAaHHMI aNropuTM KiacH(ikamii CKIaJaeTbcsl 3 KUIBKOX €TaliB
HiIrOTOBKU: JAn3aceMOfoBaHHS KoxkHOro OinapHoro ELF ¢aiiny i3 Habopy maHMxX i cemaHTHYHa oOpoOKa Ta BEKTOpH3allis
IHCTpYKLI#t 31 KOXkHOT 3 cekuiil daitny. [[nsa BcTaHOBIGHHS MOpory kiacu(ikaiii BHKOPUCTOBYETHCS MOJIiHOMIanbHa Mofienb baiieca.
BukopucToByloud mOpir kimacudikaiii, MM BH3HA4a€EMO po3Mip N-rpaM i cekuito ¢aitmy, sKi OaayTh HaiKpaili pe3ylbTaTH
knacudikanii. B pesynbrari 0yino BEABICHO, 1[0 HAKpalla TOYHICTh Kiacudikalii oTpiMana st N-gram posmipy 4 Ta cexuii rodata.

ISSN 2617-4316 (Print) Computer systems and cybersecurity 385
ISSN 2663-7723 (Online)

https://www.scopus.com/authid/detail.uri?authorId=6701721644
https://www.scopus.com/authid/detail.uri?authorId=57202148561
https://doi.org/#_blank

Mishchenko M. V., Dorosh M. S. / Applied Aspects of Information Technology
2022; Vol.5 No.4 : 371-386

[I{o6 oTpumMaTu HaWKpally TOYHICTh, Oyae BHKOPHCTAHO [eKiibka MOJeJed MAalIMHHOTO HABYaHHS pa3oM i3 ONTHMI3alli€io
rinmeprapamerpiB. Sk MeTpHka TOYHOCTI pO3pOOIICHOTO AITOPUTMY BHKOPHCTOBYETHCS CEpPEIHS TOUHICTH i 3BakeHa oIjiHka F1.
CroxacTHUHHMI TpafieHTHHH crmyck mius Mmomeni SVM Oymo oOpaHo sk Haiikpamy Monens ML Ha ocHOBI oTpuMaHHX
EKCIIepUMEHTAIBHUX pe3yNbTaTiB. ExcriepuMeHTansHo MiITBEpKEeHO ePeKTHBHICTH PO3POOJICHOTO alNrOpHTMY JUIs Kiachdikarii
mkigmBux nporpam st UNIX-noni6Hnx omepamiiHux cucreM. Pesynbrati Oynu mpoaHaizoBaHi Ta BUKOPHUCTaHI JUIs BUCHOBKIB
Ta MPOTMO3HULIH TS MOJATBIIOT POOOTH.
KurouoBi ci10Ba: BUsBICHHS IIKIJUTMBOrO NPOrpaMHOTo 3a0€3IIeUeHHS ; MAIIMHHE HABYaHHS; CEMAaHTHYHHUN aHaIi3;

GaratokiacoBa Kiacugikais; iHTeJIeKTyalIbHUH aHali3 TEKCTY ; ONepaliifiHa cucTeMa

Copyright © Hanionansuuii ynisepcutet «Oechbka nojitexnikay», 2022, Bei npasa 3axuineHi

ABOUT THE AUTHORS

Maksym V. Mishchenko - Postgraduate, Information Technology and Software Engineering Department. Chernihiv
Polytechnic National University, 95, Shevchenko Street. Chernihiv, 14035, Ukraine

ORCID: https://orcid.org/0000-0001-9769-9759; it144111@stu.cn.ua

Research field: Cybersecurity; machine learning; operating systems; software engineering

Mimenko Makcum BanepiiioBuu - acmipanrt, xadenpa IHpopmamiiHMX TeXHONOTil Ta IporpamHOi iHmKeHepil.
Hamionansuuii yaisepcuter «UepHiriBepka nomitexnika» Byi. Lllesuenka, 95. Yepniris, 14035, Ykpaina

Mariia S. Dorosh - Doctor of Engineering Sciences, Professor of Information Technology and Software Engineering
Department, Chernihiv Polytechnic National University, 95, Shevchenko Str. Chernihiv, 14035, Ukraine

ORCID: https://orcid.org/0000-0001-6537-8957; mariyaya5536@gmail.com. Scopus Author ID: 56912183600
Research field: Modeling and design of intelligent systems; knowledge management; convergence of project
management systems; human factor in information security systems of organizations and projects

Jlopomr Mapis CepriiBHa - TOKTOp TeXHIYHUX HayK, npodecop kadeapu [HpopmaniiiHUX TEXHOJIOTIH Ta MPOrpaMHOi
imkeHepii. Harionansauii yHiBepcuteT «UepHiriBebka nomitexHikay, Byi. llleBuenka, 95. Yepniris, 14035, Ykpaina

386 Computer systems and cybersecurity ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

