Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology
2023; Vol. 6 No. 3: 286-303

DOI: https://doi.org/10.15276/aait.06.2023.20
UDC 004.032.26:004.946

Efficient face detection and replacement in the creation of

simple fake videos

Oleksii 1. Sheremet V
ORCID: https://orcid.org/0000-0003-1298-3617; sheremet-oleksii@ukr.net. Scopus Author ID: 57170410800

Oleksandr V. Sadovoi ?

ORCID: https://orcid.org/0000-0001-9739-3661; sadovoyav@ukr.net. Scopus Author I1D: 57205432765
Denys V. Harshanov 2

ORCID: https://orcid.org/0009-0008-6257-468X; denysharshanov3@gmail.com

Oleh S. Kovalchuk?
ORCID: https://orcid.org/0009-0009-5521-6451; 3289560@gmail.com

Kateryna S. Sheremet
ORCID: https://orcid.org/0000-0003-3783-5274; artks@ukr.net. Scopus Author ID: 57207768511

Yuliia V. Sokhina 4

ORCID: https://orcid.org/0000-0002-4329-5182; jvsokhina@gmail.com. Scopus Author ID: 57205445522
) Donbas State Engineering Academy, 39, Mashinobudivnykiv Blvd. Kramatorsk, 84313, Ukraine

2 Dnipro University of Technology, 19, Dmytra Yavornytskogo Ave. Dnipro, 49005, Ukraine

% Kharkiv National University of Radioelectronics, 14, Nauky Ave. Kharkiv, 61166, Ukraine

4 Dniprovsky State Technical University, 2, Dniprobudivska Str. Kamyanske, 51918, Ukraine

ABSTRACT

Face detection and facial recognition technologies are among the most intensively studied topics within the field of computer
vision, owing to their vast application potential across a multitude of industries. These technologies have demonstrated practical ap-
plicability in varied contexts such as identifying suspicious individuals in crowded urban spaces, real-time recognition of smartphone
owners, creating compelling deepfakes for entertainment applications, and specialized applications that modify the movements of
facial features such as the lips or eyes. With the current state-of-the-art advancements in hardware and software technology, today's
technological infrastructure provides more resources than are necessary for video streaming. As a result, simple face recognition
systems can be implemented without the need for high-cost server instances that require specified pre-trained models. This abun-
dance of resources is changing the landscape of face recognition, and the discussion within this paper will revolve around these
emerging paradigms. The primary focus of this article is an in-depth analysis of the key concepts of face detection in streaming video
data using prominent pre-trained models. The models under discussion include HRNet, RetinaFace, Dlib, MediaPipe, and KeyPoint
R-CNN. Each of these models has its strengths and weaknesses, and the article discusses these attributes in the context of real-world
case studies. This discussion provides valuable insights into the practical applications of these models and the trade-offs involved in
their utilization. Moreover, this paper presents a comprehensive overview of image transformation techniques. It introduces an ab-
stract method for affine image transformation, an important technique in image processing that changes the geometric properties of
an image without affecting its pixel intensity. Additionally, the article discusses image transformation operations executed through
the OpenCV library, one of the leading libraries in the field of computer vision, providing a highly flexible and efficient toolset for
image manipulation. The culmination of this research is presented as a practical standalone system for image replacement in video.
This system leverages the RetinaFace model for inference and employs OpenCV for affine transformations, demonstrating the con-
cepts and technologies discussed in the paper. The work outlined in this article thereby advances the field of face detection and
recognition, presenting an innovative approach that makes full use of contemporary hardware and software advances.

Keywords: Deepfake; affine transformation; face detection; video processing; alpha channel; binary masks
For citation: Sheremet O. I., Sadovoi O. V., Harshanov D. V., Kovalchuk O. S., Sheremet K. S., Sokhina Yu. V. “Efficient face detection and

replacement in the creation of simple fake videos”. Applied Aspects of Information Technology. 2023; Vol. 6 No.3: 286-303.
DOI: https://doi.org/10.15276/aait.06.2023.20

INTRODUCTION face detection, precise face alignment, and finally,
the actual face replacement.This complicated
procedure of face substitution in videos holds a
crucial role in digital manipulation, with a
significant influence spreading across numerous

Video manipulation, a rapidly evolving field
that intertwines technology and visual artistry, has
witnessed a surge of interest and applicability over

the past several years. There is an escalating demand  go0t0rs The breadth and depth of the impact of face
for precise, high-performing techniques capable of o acement algorithms within video technology are
face substitution within videos, a specialized qnsideraple and far-reaching, sparked by an array
procedure that hinges upon several core steps: initial 55 potential applications.

In the bustling world of entertainment, the

© Sheremet O., Sadox_/oi 0., Harshanov D., Kovalchuk O. significance of face replacement algorithms is
Sheremet K., Sokhina Yu., 2023 indisputable.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

286 Software engineering and systems analysis ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


https://doi.org/
mailto:3289560@gmail.com

Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

These techniques are employed for face
substitution in videos to fabricate incredibly lifelike
deepfakes or to carry out face replacements within
movies and television series. The technology holds
an incredible potential for the augmentation of the
entertainment industry's realism, crafting more
convincing special effects, making it possible for
filmmakers to achieve feats that were once thought
to be unattainable or extremely costly. Furthermore,
in circumstances involving sensitive or private video
content, this technology plays an instrumental role in
protecting an individual's anonymity.

Aside from the entertainment industry, another

critical application of face replacement algorithms is
in the field of security and surveillance. Leveraging
these algorithms, faces in surveillance footage can
be skillfully obscured, hence offering a robust tool
for protecting the privacy of individuals. This
becomes particularly valuable in environments
where privacy concerns are heightened - for
instance, in public spaces where multiple individuals
are captured on camera, or in highly sensitive
settings that necessitate strict confidentiality.
Such a broad array of applications underscores the
importance of face replacement algorithms in
videos, highlighting their wide-ranging utility in a
world that's increasingly sensitive to issues of
privacy and more reliant on visual technology.
Whether it's the world of entertainment or the more
sensitive spheres of security and surveillance, these
techniques offer possibilities that can shape the
future of video manipulation.

LITERATURE REVIEW

There are several methods for replacing faces in
videos using Python/C++, including HRNet, Ret-
inaFace, Dlib, MediaPipe, KeyPoint R-CNN and
OpenCV. Each of these methods has advantages and
disadvantages, and choosing the best method for a
particular project will depend on specific require-
ments and constraints.

HRNet [1] is a high-resolution network for ob-
ject detection and face alignment. It uses deep learn-
ing algorithms to accurately detect and align faces in
video. To replace faces in video with HRNet in Py-
thon, an implementation is available in popular deep
learning libraries such as PyTorch or TensorFlow
[2, 3].

RetinaFace [4] is a deep learning-based face de-
tection and alignment algorithm developed by a re-
search group at Megvii Technology. It uses a single
neural network to detect and align faces, making it
fast and accurate [5]. To replace faces in videos with
RetinaFace in Python, you can use the RetinaFace

implementation available in popular deep learning
libraries such as PyTorch or TensorFlow [6].

Dlib [7] is a widely used library for computer
vision and image processing. It provides a number of
tools for face detection and recognition, including
facial landmark detection and face alignment. You
can use the face detection and face alignment fea-
tures available in the Dlib library to replace faces in
videos using Dlib in Python [8, 9].

MediaPipe (reimplementation of BlazeFace)
[10, 11] is a library developed by Google that is op-
timized for real-time video processing. It provides
high accuracy face detection and uses machine
learning to improve accuracy. To replace faces in
videos using MediaPipe in Python, you can use the
face detection and alignment features available in
the MediaPipe library [12]. It allows detecting 468
3D points of Face Mesh.

KeyPoint R-CNN [13] is a deep learning-based
object detection algorithm that can be used for face
detection and alignment. It is particularly well suited
for face detection in complex and dynamic scenes.
To replace faces in video with KeyPoint R-CNN in
Python, you can use the KeyPoint R-CNN imple-
mentation available in popular deep learning librar-
ies such as PyTorch or TensorFlow [14].

OpenCV is a widely used library for computer
vision and image processing [15, 16]. It provides a
number of tools out the box for face detection and
recognition, including facial landmark detection and
face alignment. To replace faces in video with
OpenCV, it can be used the face detection and face
alignment features available in the OpenCV library.
In general, this library also utilizes ffmpeg for video
processing as the result the performance of pro-
cessing streams will be at high level [17].

There are several methods for replacing faces in
video, including HRNet, RetinaFace, Dlib, Medi-
aPipe, KeyPoint R-CNN, and OpenCV. Choosing the
best method for a particular project depends on spe-
cific requirements and constraints, such as accuracy,
speed, and computational requirements [18]. With
the right approach and tools, you can achieve accu-
rate and efficient face substitution in videos using
Python or C++ languages.

PURPOSE AND OBJECTIVES
OF THE RESEARCH

The purpose of this research is to enhance the
efficiency of face detection and replacement in the
creation of simple fake videos within video stream-
ing contexts, by enhancing the use of advanced neu-
ral network technologies and pre-trained models such
as RetinaFace, Mediapipe, and OpenCV, thereby

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

287



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

enabling faster processing, and broader adaptability
in diverse real-world scenarios.

To achieve this aim, the following tasks are
formulated:

—exploring the foundational principles of face
detection in streaming video data using various pre-
trained models (HRNet, RetinaFace, Dlib, Medi-
aPipe, and KeyPoint R-CNN) within the context of
simple fake video generation;

—analyzing the strengths and limitations of each
pre-trained model when applied to the creation of
simple fake videos;

— utilizing the OpenCV library to conduct affine
image transformations and other essential image
transformation operations integral to fake video crea-
tion;

—evaluating the speed and computational de-
mands of these face detection methods with an em-
phasis on their efficiency in fake video generation;

— demonstrating the practical application of the
RetinaFace model in replacing images in video via
OpenCV affine transformation, specifically targeted
at simple fake video generation.

FINDING THE FACIAL OVAL IN A CUSTOM
PHOTO

Finding points on the face is an important step
in the process of face substitution in videos. Facial
landmarks, such as the eyes, nose, and mouth, are
used to align the face and to determine the positions
of the facial features. The positions of these
landmarks are used to determine the transformations
needed to replace the face in the video.

There are several methods available for finding
points on the face in Python, including deep
learning-based object detection algorithms and
traditional computer vision algorithms. Deep
learning-based object detection algorithms, such as
RetinaNet [19] and YOLO [20, 21], use deep
learning algorithms to accurately detect facial
landmarks in real-time. Traditional computer vision
algorithms, such as Dlib and OpenCV, use a
combination of feature detection and pattern
recognition algorithms to detect facial landmarks.

In addition to finding facial landmarks, it is also
possible to find additional points on the face, such as
the contours of the face and the position of the eyes,
nose, and mouth. These additional points can be
used to improve the accuracy of the face substitution
and to create a more realistic result.

Various options for character detection in the
video were considered: Keypoint R-CNN in Fig. 1,
HRNet, Dlib, OpenPose [22]. These methods have
not shown good results, detection of faces where
they do not exist, or does not see the face because it
is too small in relation to the image frame.

Fig. 1. Keypoint R-CNN methods for

point detection
Source: compiled by the authors

The options Dlib, OpenCV in Fig. 2, could not
detect faces on most frames, they work mainly on
high resolution and high-quality photos.

As well as MediaPipe also did not give good
results, on frames with a small face image as shown,
no image detection. According to documentation of
MediaPipe and Dlib the distance for the image
should be at 1-1.5 m from camera observer. A high-
quality image is required and the size of the face in
the photo needs to be large enough in order to have
the definition of points on the face increased.

These methods often work falsely in low-
resolution photos (showing facial points where there
are not any).

Fig. 2. Dlib and OpenCV methods for

point detection
Source: compiled by the authors

The RetinaFace model has been applied to
accurately and quickly find reference points in
photos. RetinaFace is designed to detect and align
faces in real-time video, making it well suited for
applications requiring fast and accurate face
detection. Despite the poor photo options, this model
finds all the points to further transform the image, in
Fig.3.

OpenCV was used to decode the video. Each
frame went through RetinaFace face point detector.
The data from the frame could be retrieved and

saved into vectorv=(fr, fa,,dat), where fr is

288 Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

current frame in video processing; fa. is number of

detected face label; dat is data points that
RetinaFace model return.

Fig. 3. RetinaFace methods for point detection
Source: compiled by the authors

The meta-data vector representation the
database for processing and replacing the object
saved spreadsheet in Fig. 4.

However, the model detect almost all features
from frames, there could be cases when the data
should be corrected. The user can correct the data if
necessary to make changes. For example, remove

certain frames; change the point value, etc.

By deleting, its mean extracting frames where
faces are not recognized. Each photo has its own
code. This is a good way to merge the data after
cleaning or correcting it.

MARKUP AND CHARACTER
IDENTIFICATION

If there is more than one person in the image,
then the point search algorithm searches from left to
right and from top to bottom. Thus, if the characters
are swapped in the photo, the algorithm will mark
incorrectly.

Facial recognition algorithms use deep learning
to identify unique features in faces and match them
against a database of known faces [23]. This can be
done using libraries such as Dlib and OpenCV,
which provide pre-trained models and functions for
facial recognition.

Another method for comparing photos of
individuals' faces is using image similarity
algorithms. Image similarity algorithms compare the
visual content of two images and determine their
similarity based on the differences between the
images. This can be done using metrics such as
Euclidean distance, cosine similarity, or Hamming
distance.

Another approach for comparing photos of
individuals' faces is using clustering algorithms.
Clustering algorithms group similar individuals
based on their similarity. This can be done using
libraries such as Scikit-learn, which provides
functions for clustering algorithms. Fig. 5 shows an
example where the algorithm labels faces and it is
not quite correct.

frame | face_nomber | facial_area | left_eye | right_eye | mouth_left | mouth_right | nose | code_photo
frame_0.png face_1 [1349, 358, 1395 [1376.7784, 382 [1357.6359, 38 [1369.9354, 403.. [1355.5392, 402.4 [1360.5295, 388.71646 # 0
frame_1.png face_1 [1351, 370, 140C [1380.3406, 39¢ [1360.9247, 35 [1373.7233, 415.: [1358.1245, 412.7 [1364.7458, 401.602] #_1
frame_2.png face_1 [1352, 376, 1402 [1382.5325, 40z [1360.8551, 35 [1376.5387, 423.. [1359.3939, 420.5 [1366.8827, 409.685] #_2
frame_3.png face_1 [1348, 374, 1398 [1381.9594, 40( [1360.4391, 35 [1375.781, 418.8! [1358.0575, 415.4 [1367.401, 405.7651] # 3
frame_4.png face_1 [1343, 365, 1391 [1372.9491, 39( [1352.2968, 35 [1371.6973, 412.. [1355.0021, 413.4 [1360.5497, 401.1653] #_4
frame_5.png face 1 [1336, 358, 1383 [1365.8556, 38 [1345.1362, 38 [1364.6987, 406.1 [1348.6929, 408.0 [1353.6797, 394.65854 # 5
frame_6.png face_1 [1324, 362, 1372 [1354.0409, 38€ [1332.7917, 35 [1355.9215, 408.. [1338.8104, 411.2 [1343.0986, 399.69543 #_6
frame_7.png face_1 [1311, 371, 136C [1335.4481, 392 [1315.6736, 4C [1345.135, 414.0° [1327.9226, 419.6 [1330.0078, 407.65238 # 7
frame_8.png face_1 [1306, 375, 1355 [1333.1232, 394 [1315.285, 407 [1340.3971, 419." [1326.3408, 425.9 [1325.7551, 414.98877 #_8
frame_9.png face_1 [1308, 369, 1356 [1334.9486, 39 [1317.3276, 4C [1342.8171, 413.! [1329.7911, 420.4 [1328.7118, 409.455] #_9
frame_10.png face_1 [1316, 353, 1363 [1343.6904, 37€ [1325.8595, 38 [1348.949, 396.8( [1334.3573, 402.0 [1335.9065, 389.87946 #_10
frame_11.png face_1 [1324, 337, 1372 [1354.7292, 361[1333.5286, 3€ [1354.6272, 382.: [1336.851, 383.73 [1343.1047, 372.41208 #_11
frame_12.png face_1 [1336, 324, 1384 [1367.1338, 347 [1345.0254, 34 [1364.0244, 368.: [1346.2555, 367.3 [1353.4369, 356.75204 # 12
frame_13.png face_1 [1334.30,372.50, [1346.80,341.1C [1380.70,338.5 [1352.00,359.40] [1371.50,356.70] [1359.70,346.80] # 13
frame_14.png face 1 [1343.30,375.50, [1353.60,339.6( [1388.20,342.3 [1355.10,359.40] [1372.30,361.20] [1368.00,346.00] # 14

Fig. 4. The structure of the data obtained after processing the stream

of photos obtained from the video
Source: compiled by the authors

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

The algorithm starts by reading the two
portraits and converting them to grayscale.
Grayscale conversion is used to reduce the
complexity of the images and make it easier to
compare them. The next step is to detect the faces in
the portraits using a face detection library, such as
OpenCV Haar cascades [24] or Deep Learning-
based methods like RetinaFace.

frame_266.png face_2

frame_267.png face_1

frame_267.png face_2

frame_268.png face_1

frame_268.png face_2

22 2] Lad L

frame_269.png face_1

Fig. 5. Extracted faces from the video stream

frame by frame
Source: compiled by the authors

Once the faces have been detected, the
algorithm can extract features from the faces, such
as facial landmarks or deep features. These features
can then be used to compare the portraits. For
example, the Euclidean distance between the
features can be used to calculate a similarity score.
Alternatively, the features can be used to train a
classifier to determine whether the two portraits
belong to the same person or not.

It is important to note that the accuracy of the
comparison depends on the quality of the face
detection and feature extraction steps. In addition,
the choice of similarity metric will also affect the
accuracy of the comparison.

The foundation of computer vision algorithms
in the OpenCV library is based on the Viola-Jones
object detection system. The Viola-Jones method is
also characterized by the fact that the process of
training classifiers is quite slow, but the face

detection process is fast and produces accurate
results quickly. When using this method, the
probability of a false positive detection is very low,
and this accuracy works at angles of up to 30
degrees of tilt of the face. However, for arbitrary
angles of more than 30 degrees, which can be an
issue in the implementation of some specializations,
it is worth considering other methods.

Let's take a closer look at the features of the
Viola-Jones method [25]. First of all, it is worth
considering the principle of the scanning window,
which is the basis for identifying objects in the
image. It is assumed that there is an image with the
objects to be detected (human faces).

The image is represented as a two-dimensional
matrix of pixels, with a size of width x height,

where each value corresponds to the color of the
pixel: if the image is black and white, the value is in
the range of 0 to 255: if the image is colored, the
value is between 0 and 2553, representing the BGR
components of the color values of the pixels.

As a result of the algorithm's work, it
determines the facial features, and the se arch is
carried out in the active region of the image using
rectangular features that describe the facial features.

rect; = {x,y,w,h,a}, (1)

where x and y are the coordinates of the center of
the i-th rectangle; w — is the width; h is the height;
and a is the angle of inclination of the rectangle to
the vertical axis of the image.

Among the aforementioned principles of the
Viola-Jones method is the integral representation of
the image. In fact, this principle is also applied in
other popular methods. This is because the integral
representation of the image allows for the
calculation of the total brightness of any rectangle,
regardless of its size, in the same short time.

The scanning window approach is based on
scanning the image with a rectangular area search,
for each position of which a classifier is applied.
Such a feature detection system is fully automated,
does not require human intervention, and therefore
provides fast results. This approach is the basic one
for further work with face recognition, facial
expression detection, personality identification, etc.

Each element of the matrix of the integral
representation of the image is the sum of the
intensity of all the points that are above and to the
left of the current element, and is calculated by the
following formula:

IA

i<x,j<y
Lixy)=" D10, ]). )
i=0,j=0

290 Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

where 1(i, j)
original image.

Accordingly, the calculation of the integral
matrix is also possible by the formula:

L(x,y)=1(x,y)-L(x=1,y—1)+ L(x,y -1)+
+L(x=1,y).

is the brightness of each pixel of the

3)

The next important principle is the use of Haar's
features. A feature is a mapping f: X=Ds, where Dx is
the set of available values of the feature. Depending
on this set, features are divided into the following
types: a binary feature D;= {0, 1}; a nominal feature
in which Dy is a finite set; an ordinal characteristic in
which Dy is an ordered finite set; a quantitative
feature in which Dx is a set of real numbers.

The use of boosting is also important in the
Viola-Jones method. Boosting is a set of methods for
improving the efficiency of analytical models. A
distinction is made between “strong” and “weak”
models. A "strong" model is highly efficient and
makes few errors in calculations and analysis, and
allows you to distribute classes of objects more
accurately. At the same time, the “weak” model
makes a large number of errors. The process of
synthesizing a composition of machine learning
algorithms to compensate for the shortcomings of
previous algorithms is also called boosting or
amplification. This is what makes it possible to
increase the efficiency of “weak models”.

Boosting is based on the construction of a chain
of classifiers — a cascade driven by the training of
each subsequent algorithm on the mistakes of the
previous one. At the same time, boosting is a greedy
compositional algorithm, each stage of which is
accompanied by the selection of the optimal option
in order to achieve the best final result. Boosting is a
rather effective solution, given the pace of modern
development of machine learning technologies,
because if properly configured, the resulting
boosting composition can contain any large number
of algorithms that compensate for each other's
shortcomings.

Image transformation

An affine transformation [26] is any
transformation that preserves collinearity (i.e., all
points lying on a line initially still lie on a line after
transformation) and ratios of distances (e.g., the
midpoint of a line segment remains the midpoint
after transformation).

The mathematical representation of an affine
transformation is usually given as

Y =AX + b,

where Y is the output vector; A is a matrix that
represents the linear transformation component of
the affine transformation; X is the input vector; b is
a vector that represents the translation component of
the affine transformation.

In a spatial transformation each point (X, y) of
image is mapped to a point (u, v) in a new
coordinate system.

u= fl(xay)v
v=f(x,y)

Mapping from (x, y) to (u, v) coordinates. A
digital image array has an implicit grid that is
mapped to discrete points in the new domain. These
points may not fall on grid points in the new domain.

In general, an affine transformation is a
composition of rotations, translations, scaling, and
shears.

(4)

U=CpX+CpY+0C3,
V2021X+C22y+023.

()

where cy3 and cy; — translation transformation; c;;
and c,, — scaling transformation, and the

combination of rotations and shears.
A rotation is produced by 6 is produced by

U=XcosO+ysino,
vV =-xsin0+ ycos 6.

(6)

Complex affine transforms can be constructed
by a sequence of basic affine transforms.

Transform combinations are most easily
described in terms of matrix operations. To use
matrix operations, homogeneous coordinates are
entered. These enable all affine operations to be
expressed as a matrix multiplication. Otherwise,
translation is an exception.

The affine equations are expressed as:

u b c| x
V(= e flyl @)
1 0 11

o Q w

The transformation matrices can be used as
building blocks.
Translation by (Xo, Yo)
1 0 X
0 0 1

Scale by s, and s,

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

291



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

ss; 0 O
0 0 1
Rotate by 6
cos® sind 0
T=|-sin® cos6 O] (10)
0 0 1

A is a matrix representing the transformation,
and b is a vector representing the translation. A is a
2x2 matrix for 2D images and a 3x3 matrix for 3D
images.

Scaling involves changing the size of the image
by multiplying the pixel coordinates with scaling
factors along the x and y axes. Rotation involves
rotating the image by a specified angle around the
origin. Shearing involves skewing the image along
one of the axes.

Translation involves shifting the image by a
specified amount in the x and y directions. The
vector b represents the translation parameters, which
can be added to the transformed pixel coordinates to
obtain the final coordinates.

Affine transformation can be applied to various
image processing applications, including image
registration, image alignment, image warping, and
image rescaling. In image registration, affine
transformation is used to align two images to each
other by minimizing the distance between
corresponding points. In image warping, affine
transformation can be used to distort an image to
match a given shape or template.

Image rescaling involves resizing an image by
applying an affine transformation with a scaling
factor. The scaling factor can be different for the x
and y axes to maintain the aspect ratio of the image.
Affine transformation can also be used for data
augmentation in machine learning applications,
where the image is randomly transformed to
improve the training data quality.

DeepFace algorithm

The DeepFace verification algorithm is used to
solve the problem of identifying a character in a
previously obtained portrait [27].

DeepFace uses a deep neural network
architecture known as a convolutional neural
network (CNN) to analyze facial features. CNNs are
designed to recognize patterns in data by processing
it through multiple layers of non-linear
transformations. In the case of facial recognition, the
input is an image of a face, and the output is a set of

features that describe the face in a way that is
invariant to lighting, pose, and other factors.

The architecture of DeepFace consists of nine
layers, including five convolution layers and three
fully connected layers. The first layers of the
network extract simple features such as edges and
corners, while the later layers extract more complex
features such as eyes, nose, and mouth. The output
of the network is a 4096-dimensional vector, which
represents the unique facial features of the input
image.

To train DeepFace, Facebook's researchers used
a dataset of over 4 million images from over 4,000
individuals. The dataset was carefully curated to
include a diverse range of ethnicities, ages, and
genders, as well as varying lighting and pose
conditions. The images were aligned and normalized
to ensure that the faces were in the same position

and scale, which is important for accurate
recognition.
During training, the neural network is

optimized to minimize the difference between the
features extracted from two images of the same
person, and maximize the difference between the
features of two images of different people. This is
known as the triplet loss function, and it ensures that
the features learned by the network are
discriminative and invariant to variations in lighting,
pose, and other factors. DeepFace has many
applications, including face recognition for security
and law enforcement, social media tagging, and
personalized marketing. However, there are also
concerns about privacy and the potential misuse of
facial recognition technology. Facebook has stated
that it will only use DeepFace for research purposes,
and has implemented privacy safeguards to prevent
misuse.

In conclusion, DeepFace is a state-of-the-art
facial recognition software developed by Facebook's
Al Research division. It uses deep learning
algorithms and a massive dataset to achieve high
accuracy in face recognition. While it has many
potential applications, there are also concerns about
privacy and misuse, which need to be carefully
addressed.

DeepFace is a deep learning-based face
recognition library that can accurately detect and
align faces in images. This makes it an ideal choice
for use in a portrait comparison algorithm.

The algorithm begins by using DeepFace to
detect and align faces in two portraits. Once the
faces are detected and aligned, the algorithm can
extract deep features from them using a deep
learning model.

292

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

These deep features can then be used to
compare the portraits. For example, the Euclidean
distance between features can be used to calculate
similarity estimates [28]. In addition, the
characteristics can be used to train a classifier to
determine whether two portraits belong to the same
person or not.

It is important to note that the accuracy of the
comparison depends on the quality of the deep
learning model used to extract the features. In
addition, the choice of similarity metric also affects
the comparison accuracy.

VGG-Face algorithm

VGG-Face is a deep convolutional neural
network for face recognition developed by the
Visual Geometry Group (VGG) at the University of
Oxford. The network is based on the architecture of
the VGG network, which is a popular deep learning
architecture for image recognition tasks.

The VGG-Face network [29] has 16 layers,
including 13 convolutional layers and 3 fully
connected layers. The network was trained on a
large dataset of faces, including over 2.6 million
images of more than 2,600 individuals, using a
supervised learning approach.

One of the key features of the VGG-Face
network is that it uses a simple and uniform
architecture with small 3x3 filters in all
convolutional layers. This design choice enables the
network to learn rich feature representations that are
invariant to variations in pose, expression, and
lighting conditions.

Another important aspect of the VGG-Face
network is that it uses a large number of parameters,
which allows it to capture fine-grained details in
face images. However, this also makes the network
computationally expensive and requires a significant
amount of memory to store the model.

The VGG-Face network has achieved state-of-
the-art performance on several benchmark face
recognition datasets, including the Labeled Faces in
the Wild (LFW) dataset and the YouTube Faces
dataset.

The network has also been used in various
applications, such as facial authentication, face
detection, and emotion recognition.

Google FaceNet algorithm

Google FaceNet is a deep neural network for
face recognition developed by researchers at Google
[30]. The network uses a triplet loss function to learn
a mapping of face images into a high-dimensional
feature space, where distances between feature
vectors correspond to similarities between faces.

The FaceNet network is based on the Inception
architecture, which is a popular deep learning
architecture for image recognition tasks. The
network has 22 layers, including 9 inception
modules and a final fully connected layer with 128
units that output a 128-dimensional feature vector
for each face image.

The triplet loss function used by FaceNet is
designed to encourage the network to learn
embeddings of face images that are close together if
they belong to the same person and far apart if they
belong to different people. The loss function is
computed for triplets of face images, where one
image is an anchor, one is a positive example of the
same person, and one is a negative example of a
different person. The goal is to minimize the
distance between the anchor and the positive
example, while maximizing the distance between the
anchor and the negative example.

The FaceNet network has achieved state-of-the-
art performance on several benchmark face
recognition datasets, including the Labeled Faces in
the Wild (LFW) dataset and the MegaFace
Challenge. The network has also been used in
various applications, such as facial authentication,
face detection, and emotion recognition.

Markup and character identification

After the anchor points are defined as in Fig. 4
and the portraits are marked as in Fig. 5. It is
necessary to prepare the image of the user photo to
replace the marked photo. MediaPipe is used for this

purpose.
Mediapipe is an open-source library for media
processing that provides a wide range of

functionality for tasks such as computer vision,
audio processing, and machine learning. This library
is designed to simplify the process of building
complex pipelines for processing media, making it
easier for developers to focus on the core
functionality of their applications.

One of the key strengths of Mediapipe is its
modular design, which allows developers to build
pipelines using a combination of existing
components and custom components. The library
includes a large number of pre-built components for
tasks such as object detection, image processing, and
audio processing, making it possible to build
complex pipelines with ease.

MediaPipe Face Mesh is a solution that
evaluates 468 3D facial landmarks in real time, even
on mobile devices. It uses machine learning (ML) to
determine the three-dimensional surface of a face,
requiring only one camera input without a dedicated
depth sensor.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis 293



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

According to Mediapipe Face Mesh map. It’s
possible to detect any shape of the face in the photo.
After processing Face Mesh, we apply the affine
transformation and apply transparent background for
extracted image. In the output we get a photo with
the face oval and dots to shap to the video frame, in
Fig. 6.

Fig. 6. Extracted faces from the video stream

frame by frame
Source: compiled by the authors

Animation of the user's face

The algorithm for creating a lip animation
involves two main steps: lip detection and lip
animation.

Lip detection can be performed using a face
detection library such as OpenCV's Haar cascades or
Deep Learning-based methods like MediaPipe. Once
the face has been detected, the algorithm can extract
the lip region using facial landmarks or a deep
learning model. For example, we decided for lips
detection use the Mediapipe Face Mesh capabilities,
as the result the lips Region of Interest (ROI) seems
to be really accurate for detected face.

Lip animation can be achieved by warping the
lip region using a transformation matrix [31]. The
transformation matrix can be calculated based on the
position of the lip landmarks or the deep features
extracted from the lip region.

The warped lip region can then be blended with
the original face to create the final animation. This
process can be repeated for each frame of the video
to create a continuous lip animation.

It is important to note that the accuracy and
quality of the lip animation will depend on the
quality of the lip detection and the transformation
matrix calculation. The idea of the animation is to
move the mouth and chin area by a certain amount at
a certain speed or detect the. The whole process

involves superimposing two areas of color
background and the cut part of the chin along the cut
of the mouth in Fig. 7.

-
n n. B )
( ] 5 2
- ‘J ‘

Fig. 7. Overlaying matrices using OpenCV

for animation of the mouth
Source: compiled by the authors

-

IMAGE OVERLAYING BASED ON BINARY
MASKS

When we are talking about blending two
images, we should consider next important images
attribute: alpha channel and dimensionality. By
default, when desired software (OpenCV in our
case) process images to matrix M with hxw
dimensionality which responds to height and width
of image, the image stores in BGR/RGB subpixel
rendering format. This format is good when the
image blending does not consider the transparency.

But in our case, one of the images or both have
alpha layer, this attribute should be processed in an
appropriate way and saved into the final blended
image. First of all, to resolve this issue we should
know what alpha channel does mean and how it is
connected with transparency.

Alpha channel represents the degree of
transparency of each pixel in the image channels and
by default it scales in a.[0,1]: lower bound means
all pixels of channels turns to 0 (no coverage), upper
bound means all pixels of channels will be masked
(full coverage), with other fractions inside bounds
color will be covered with defined quadruple:

(/0 X /0, Xg/c0), (11)

where x;,i=1,3 are image channels; O<o <1 is
alpha channel fraction.

Simply, the alpha channel could be interpreted
as additional mask layer for image color channels,
this binary mask keeps the information about spe-
cific pixel{x,X,, X} opaque «. So when image
pixel in RGB rendering format {0,0,0}(refers to

black color) have alpha channel fractionax =1 —
means all black colors will be transparent. This
case is shown in Fig. 8.

294

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

Alpha channel not applied {0,0,0} applied a = 1

Fig. 8. Alpha channel applied to

black color
Source: compiled by the authors

In Fig. 8 shown a good example when the im-
age has homogeneous structure: pixels outside face
represented in black color, but the image may have
heterogeneous structure.

To transform the image from heterogeneous to
homogeneous which means the Region of Interest
(now and hereafter ROI) will have same matrix
structure — outside the “object” pixels will have
black or white color. The solution of this problem
could be found with image thresholding.

Thresholding is the tool for segmentation im-
ages that could return a binary mask which stores
only some parts or objects of images according to
the specified method and requirements.

There are a lot of thresholding methods: man-
ual, automatic or adaptive, Otsu, Mode, p-tile, His-
togram Concavity Analysis and etc. [32]. It is most
expedient to use a simple method of adaptive
thresholding.

Let’s define src matrix with dimensionality
hxw which stores the X grayscale pixels format
then the function of automatic thresholding could
be expressed with next equation:

dst(x.y)= max(src(x, y)) if src(x, y)>T(x,y), 12)
"7/ | 0 otherwise.

where T(x,y) is a threshold calculated for each

pixel (x,y).
So the meaning of defined equation could be
expressed as every pixel (x,y) from src matrix

which is bigger than T(x,y) will be saved without
transformation into dst(x,y) otherwise the value is
equal to 0 [32]. Applying thesholding for image
will return us a binary mask for it in Fig. 9.

Fig. 9. Adaptive thresholding for image
Source: compiled by the authors
The returned result is used for image masking
to create new “homogeneous” image with blank
outside of the ROI. Since the matrix dst have same
dimensionality as srcthe masking will be ex-

pressed as (13).
masked (1 )= src A src, mask (1) = dst (13)

Result of masking is shown in Fig. 10.

Fig. 10. Masked image with adaptive

threshold mask
Source: compiled by the authors

Images could contain own alpha channel in
order to correctly merge 2 images with alpha chan-
nels next equation is used:

¢ =af+1-a)y,

C2 = (X.fz + (1— (},)32 y

C3 = af3 +(1—a)b3,
where ¢; is final alpha channel for each channels;
f; is foreground image that is needed to blend with

(14)

background b; ; i=13 and o is the opacity value
of the foreground pixel f;.

In order to get the result, it is necessary to
combine the alpha channel to blend the image along
the axis X =4, the scheme to this operation show in
Fig. 11.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis 295



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

Image have no alpha

Image with alpha

Blended image

Fig. 11. Image blend at specific point

(x, y) with respected alpha channels
Source: compiled by the authors

During the research, an algorithm was defined
that combines 2 BGR images with an alpha chan-
nel:

1. Load images with OpenCV in BGRA for-
mat.

2. Split alpha channel(s) into vector o .

3. Convert BGRA image to BGR.

4. Multiply the BGR image with the inverted
alpha channel of the BGRA image.

5. Add the result of step 3 with BGRA image
to obtain final image.

IMAGE MASKING BASED ON COLOR
CONDITIONS

Image masking is a powerful technique, apply-
ing different conditions, providing isolated shape
area or color could effect on really hyper realistic
results.

This technique could be applied not only for the
image to blend but also for every single video frame
without applying any changes of input data, working
with preloaded frame masks only.

But providing areas to mask manually would
reflect to a really long process, video streams for
nowadays have a really outstanding resolution and
frames per seconds (FPS) parameters. More and
more software packages provide options to play and
save videos in 30-60-120 FPS. As an example, 60
seconds duration video with 60 FPS parameter will
decode 3600 frames to operate.

To simplify the video processing and keep at-
traction on the highest level with affordable pro-
cessing rate we could use HSV rendering format.

HSV stands for Hue, Saturation, and Value.
Hue refers to the dominant wavelength of a color,
and is often represented as an angle on a color
wheel.

Saturation refers to the purity or intensity of the
color, with fully saturated colors being vivid and
intense, and desaturated colors appearing more gray
or washed out. Value refers to the brightness of the
color, with higher values being brighter and lower
values being darker.

This format was developed with RBG trans-
formation to cylinder coordinates. Image frames in
HSV format could have same color range in specific
ROls that is calculated according to shape of the ob-

ject. In research case this reference shape responds

to dimensions of the face on frames, but in fact the
object is not important for masking.

The main idea in masking with HSV — select
the correct color range from low up to high for the
ROI mask, convert it to binary mask and then con-
catenate this mask with another mask retrieved from
thresholding operations.

For example, let’s operate with HSV image
from Fig. 12 as for ROI select next part of image
which have “light green and light red color” or in
HSV range low=(75,94,69), high=(24,88,78)
and apply binarization for selected range (this opera-
tion already built in OpenCV).

RGB image HSV image

Fig. 12. RGB to HSV conversion sample

Source: compiled by the authors

According to HSV masking pipeline: concate-
nate mask (Fig.13) to affined mask using equation
modified equation (15).

HSV range

=)

Fig. 13. HSV range operation masking

Source: compiled by the authors
masked(1 )= src, A src,,mask(l)=src,, (15)

where src, — affined mask; src, — HSV mask.

The result of the binary masks concatenation
visualized in Fig. 14.

F1 et bd

Fig. 14. Concatenation of binary masks
Source: compiled by the authors

296 Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

As the result, final mask could be applied to
transformed image with X rendering format
(Fig. 15).

Fig. 15. Result after applying HSV masking
to specified ROI of image

Source: compiled by the authors

BOUNDARY CONDITIONS FOR IMAGE
ALLINMENT

Dimensionality is the second point that is
needed to be considered while blending images.
The dimensions of the inserted image should be
less that second image. Image dimensions could be
dynamic in replace process and because of insert
point (x, y) it is varying from really small dimen-
sions up to real affined image. This effect happens
when the insert point (x, y) at specific image have
invalid coordinates.

The term invalid point means next: the coordi-
nates are less than image start point or bigger than
the image height and width value along all axis:

0<xUx=widthUy>0Uy=>height. (16)

So, in this case the coordinates of specific
point are invalid, as the result image cannot be pro-
cessed and inserted to this point without any trans-
formation, but it does not mean that It is impossi-
ble.

To resolve this issue let’s define four main
cases:

1. x<0Ay<O

2. X<0Ay=height

3. x=>widthAny<0

4. x>width Ay > height

These cases for reference point will not allow
insert image without transformation since image
cannot be inserted outside the bounds of the second
image. So the main idea of image transformation in
case of invalid coordinates is to slice only visible
part of images.

For these we should define next statements:
ins — matrix of destination image and dst — matrix
of inserted image, the reference point p=(x,y) —
have invalid coordinates according to F -case,
which map conditions above; visible inserted image
ROI will be represented as matrix upd and appro-
priate ROI for destination matrix — cor .

For each cases corrected transformation for
point (x,y) —(X,y") and images ROI (cor and
upd matrices are the same for all cases, only the
sizes change, therefore they are shown only for
case 1):

1.F=x<0Ay<0,
X" = width;, + X,
y' = height;s + Y,

a1 Ao Gy

cor=|ay ayp ay |, 17)
i1 Qi
=0,y,j=0,x,
upd = b21 bzz bz il
biz D
i = heightj,s — y', ', J = width;,s — X', X"

2.F =x<0Ay2>height,
X" = width;s + X,

y’ = height;,s —max(0, y + height;,, — height 4 ),

cor =|[..}, (18)
i=y,y.j=0x,
upd =[..],
i =0, height;, j = width;,, — X, X',
3.F=x>widthAny <0,
X' = width;,s —max(0, x + width;, —widthg ),
y' = height;s +V,
cor =[..], (19)
i=0,y,j=xx,
upd =[..},

i =|height 4, —height;|,y", j =0, X,

4 F=x>20Ay2=0,
X' = width;,s —max(0, x + width; s — widthg ),
y' = height;,, —max(0, x + height;, —height, ),

cor=[..}], (20)

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis 297



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

I=Y,¥,)]=XX,
upd =[...],
i=0,y,j=0,x,
The visualization for cases is shown in Fig. 16.
1. 2.
3. 4.

Fig. 16. F-cases for invalid reference point
visible part of inserted image compared

to destination image
Source: compiled by the authors

OPENCYV POSSIBILITIES TO UTILIZE
CUDA TECHNOLOGY

Infocommunication systems are becoming in-
creasingly complex, and their performance require-
ments are growing rapidly. To meet these require-
ments, new technologies are being developed that
can process large amounts of data quickly and effi-
ciently. One such technology is GPGPU, or General-
Purpose Computing on Graphics Processing Units.

GPGPU is a technique that uses the parallel
processing power of graphics processing units
(GPUs) for general-purpose computing tasks. GPUs
were originally designed for rendering graphics in
video games and other applications, but they have
since evolved to become powerful computing devic-
es in their own right. By using GPGPU, infocom-
munication systems can take advantage of the mas-
sive parallel processing power of GPUs to perform
complex calculations and other tasks more quickly
and efficiently than with traditional CPU-based sys-
tems.

In OpenCV applications all tasks execute with
CPU cores by default but there is an option to in-
crease performance of image or video processing
with GPGPU technologies like OpenCL or CUDA
[33]. However, the biggest boost to performance
could be achieved only with Nvidia CUDA technol-
ogies but since it is Nvidia product it is available
from the box only on Nvidia graphical cards.

As for OpenCV APl — the library support
CUDA casting within a few additional calls. The
performance curve for applying a Gaussian filter to

video frames with specific samples was examined to
determine the relationship between performance and
number of samples (Fig. 17).

Y

300
CPU

GPU
250

200
150

100

0 —_—

10 100 1000 10000 100000 1000000 X

Fig. 17. Time dependency in performance on
CPU and GPU with CUDA technology

Source: compiled by the authors

As seen in Fig. 17, GPU cores show a good
performance enhancement when the large amount of
data is needed to process. When the amount batch of
digital images is less than 10 000 samples, there is
no need to call CUDA operations because it will
cause the lag in initialization functions. For most not
complex operations, CPU could be also used. The
complete algorithmic pipeline studied in the article
is presented in Fig. 18.

CONCLUSIONS

In conclusion, face replacement in video
streaming presents unique challenges due to the real-
time demands and the complexity of accurately de-
tecting and replacing faces under diverse conditions.
This study aimed to enhance the efficiency and ac-
curacy of face detection and replacement within vid-
eo streaming contexts by utilizing the capabilities of
advanced neural network technologies and pre-
trained models, with a particular focus on Ret-
inaFace, Medipipe, and OpenCV.

Findings indicate that each of these tools pos-
sesses its unique strengths, with varying trade-offs
between accuracy and processing speed. RetinaFace,
a deep learning-based face detection and alignment
algorithm, emerges as a powerful tool. Its ability to
swiftly detect faces of different scales and orienta-
tions (within 10-20 milliseconds per frame) under-
scores its potential in real-world applications that
demand quick face detection and replacement.

298

Software engineering and systems analysis

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology

2023; Vol. 6 No. 3: 286-303

v1dedata image to blend / 7
2 Transform image to | Apply binary masking and
o Apply affine “homogeneous”  structure by concatenate alpha channel
[:> tr; for | [ ) | applying binary mask with :> along axis x assuming that
the image. thresholding operations black or white color have

(OpenCV could be used) a=1 (fully transparent)

Slicing video stream
into ordered batch of
frames (OpenCV can be
used).

Define reference pomnt and
other meta-points on each | [
frame with ML mode! for
detection objects.

according

D

frame_1:{ fa:e_l 3 fa:lal_a:
ea: [124,390,345,96],

left eye:[223,334],

right eye:[255,337],...}

Concatenate images

to

boundary rules check
and alpha blending.

& P | J
&:/ye-&

—

Blended frames

Fig. 18. Pipeline scheme for inserting images at specific reference point
Source: compiled by the authors

Medipipe, another deep learning-based frame-
work, offers high performance and flexibility. Its
user-friendly interface facilitates the integration of
various computer vision models, including those for
face and landmark detection, in approximately 20-30
milliseconds per frame. This versatility makes
Medipipe an adaptable tool for face replacement
tasks, particularly in diverse and complex video
streams.

OpenCV, a comprehensive computer vision li-
brary, provides an array of tools for face detection
and replacement. Despite a slower processing time
(50-100 milliseconds per frame), its robustness and
use of pre-trained models can achieve higher accura-
cy, a critical quality for scenarios where precision is
of greater importance than speed.

It is critical to acknowledge that the choice of
face detection and replacement method is heavily
influenced by the specific requirements and con-
straints of a given application. RetinaFace and
Medipipe may prove more suitable for scenarios
demanding high-speed processing, while OpenCV
might be the preferred choice in contexts that priori-
tize accuracy.

This study significantly contributes to the
understanding of the scope and applicability of these
three methods, providing a solid foundation for
future research. With advancements in deep learning

and computer vision technologies, face replacement
in video streaming has become more accessible,
efficient, and adaptable to various scenarios. The
RetinaFace, Medipipe, and OpenCV methods
emerge as leading approaches, offering an effective
balance of performance, accuracy, and flexibility.
The potential to create simple fake videos
quickly and with higher accuracy has far-reaching
implications across various sectors, including
entertainment, education, research, and even
forensics. Further exploration and refinement of

these  techniques are needed, potentially
incorporating elements like emotion detection or
aging effects to increase the realism and

applicability of the replaced faces. As this fast-
evolving field continues to advance, ensuring the
responsible use of such powerful technologies is
crucial, with ethical guidelines and safeguards in
place to prevent misuse.

Looking ahead, there will undoubtedly be an
evolution of these methods and potentially the
development of new techniques that are even more
efficient and accurate. Such developments will need
to account for increasingly  sophisticated
requirements, from handling variable lighting
conditions to managing the intricacies of face
orientation or subtle facial expressions.

ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)

Software engineering and systems analysis

299



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology
2023; Vol. 6 No. 3: 286-303

REFERENCES

1. Wang, J.,, Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y. & Xiao, B. “Deep high-resolution repre-
sentation learning for visual recognition”. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2021; 43 (10): 3349-3364. DOI: https://doi.org/10.1109/TPAMI.2020.2983686.

2. Li, R., Huang, H. & Zheng, Y. “Human pose estimation based on lite HRNet with coordinate atten-
tion". 7th International Conference on Intelligent Computing and Signal Processing (ICSP). Xi‘an: China.
2022. p. 1166-1170. DOI: https://doi.org/10.1109/ICSP54964.2022.9778346.

3. Cheng, Z. & Fu, D. “Remote sensing image segmentation method based on HRNET”. IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS). Waikoloa: HI, USA. 2020. p. 6750-6753,
https://www.scopus.com/authid/detail.uri?authorld=57207759702. DOl: https://doi.org/10.1109/
IGARSS39084.2020.9324289.

4. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, |. & Zafeiriou, S. “Retinaface: Single-stage dense face lo-
calisation in the wild”. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Seattle: USA. 2020. p. 5202-5211. DOI: https://doi.org/10.1109/CVPR42600.2020.00525.

5. Sitepu, S. E., Jati, G., Alhamidi, M. R., Caesarendra, W. & Jatmiko, W. “FaceNet with RetinaFace to
identify Masked Face”. 6th International Workshop on Big Data and Information Security (IWBIS). Depok:
Indonesia. 2021. p. 81-86, https://www.scopus.com/authid/detail.uri?authorld=55490339500.
DOI: https://doi.org/10.1109/IWBI1S53353.2021.9631848.

6. Xue, B., Hu, J. & Zhang, P. “Intelligent detection and recognition system for mask wearing based on
improved RetinaFace algorithm”. 2nd International Conference on Machine Learning, Big Data and Busi-
ness Intelligence (MLBDBI). Taiyuan: China. 2020. p. 474-479,
https://www.scopus.com/authid/detail.uri?authorld=55499454700.

DOI: https://doi.org/10.1109/ MLBDBI51377.2020.00100.

7. Noor Reza, M. A., Zaki Hamidi, E. A., Ismail, N., Effendi, M. R., Mulyana, E. & Shalannanda, W.
“Design a landmark facial-based drowsiness detection using dlib and opencv for four-wheeled vehicle driv-
ers”. 15th International Conference on Telecommunication Systems, Services, and Applications (TSSA). Bali:
Indonesia. 2021. p. 1-5, https://www.scopus.com/authid/detail.uri?authorld=57200569226.
DOI: https://doi.org/10.1109/TSSA52866.2021.9768278.

8. Zhang, D., Li, J. & Shan, Z. “Implementation of dlib deep learning face recognition technology”. In-
ternational Conference on Robots & Intelligent System (ICRIS). Sanya: China. 2020. p. 88-91,
https://www.scopus.com/authid/detail.uri?authorld=55085374700.

DOI: https://doi.org/10.1109/ICR1S52159.2020.00030.

9. Mahdi, W. A., Mahdi, S. Q. & Al-Naji, A. “Generating masked facial datasets using dlib-machine
learning library”. 4th International Conference on Advanced Science and Engineering (ICOASE). Zakho:
Irag. 2022. p. 66-70, https://www.scopus.com/authid/detail.uri?authorld=57189363725.
DOI: https://doi.org/10.1109/ICOASE56293.2022.10075601.

10. Latreche, A, Kelaiaia, R., Chemori, A., Kerboua, A. “Reliability and validity analysis of MediaPipe-
based measurement system for some human rehabilitation motions”. Measurement. 2023; 214: 112826,
https://www.scopus.com/authid/detail.uri?authorld=58026746000.

DOI: https://doi.org/10.1016/j.measurement.2023.112826.

11. Bayar, N., Giizel, K. & Kumlu, D. “A novel blazeface based pre-processing for MobileFaceNet in
face verification”. 45th International Conference on Telecommunications and Signal Processing (TSP). Pra-
gue: Czech Republic. 2022. p. 179-182, https://www.scopus.com/authid/detail.uri?authorld=57244661400.
DOI: https://doi.org/10.1109/TSP55681.2022.9851255.

12. Singhal, R., Modi, H., Srihari, S., Gandhi, A., Prakash, C. O. & Eswaran, S. “Body posture correc-
tion and hand gesture detection using federated learning and mediapipe”. 2nd International Conference for
Innovation in Technology (INOCON). Bangalore: India. 2023. p. 1-6,
https://www.scopus.com/authid/detail.uri?authorld=57460519900.

DOI: https://doi.org/10.1109/INOCON57975.2023.10101124.

13. Jiang, L., Chen, J., Todo, H., Tang, Z., Liu, S. & LI, Y. “Application of a Fast RCNN Based on Up-
per and Lower Layers in Face Recognition”. Computational Intelligence and Neuroscience. 2021; 2021:
9945934, https://www.scopus.com/authid/detail.uri?authorld=57209284865.

DOI: https://doi.org/10.1155/2021/9945934.

300 Software engineering and systems analysis ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.2983686

Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology
2023; Vol. 6 No. 3: 286-303

14 He, K., Gkioxari, G., Dollar P. & Girshick, R. “Mask R-CNN”. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence. 2020; 42 (2): 386-397, https://www.scopus.com/authid/
detail.uri?authorld=15622876800. DOI: https://doi.org/10.1109/TPAMI.2018.2844175.

15. Tirupal, T., Kumar, M. N., Basha, P. M., Babu J. M. & Rathan, O. “OPENCYV based smart attend-
ance system using facial recognition”. 4th International Conference for Emerging Technology (INCET).
Belgaum: India. 2023. p. 1-6. DOI: https://doi.org/10.1109/INCET57972.2023.10170456.

16. Duan, C. & Luo, S. “Design of pedestrian detection system based on OpenCV”. 4th International
Conference on Artificial Intelligence and Advanced Manufacturing (AIAM). Hamburg: Germany. 2022.
p. 256-259, https://www.scopus.com/authid/detail.uri?authorld=57555516400.

DOI: https://doi.org/10.1109/AIAM57466.2022.00055.

17. Hou, W., Xia, D. & Jung, H. “Video road vehicle detection and tracking based on OpenCV”. Inter-
national Conference on Information Science and Education (ICISE-IE). Sanya: China. 2020. p. 315-318,
https://www.scopus.com/authid/detail.uri?authorld=12778468200.

DOI: https://doi.org/10.1109/ICISE51755.2020.00076.

18. Mishra, S. & Pradhan, R. K. “Analyzing the impact of feature correlation on classification accuracy
of machine learning model”. International Conference on Artificial Intelligence and Smart Communication
(AISC). Greater Noida: India. 2023. p. 949-953, https://www.scopus.com/authid/
detail.uri?authorld=58195199400. DOI: https://doi.org/10.1109/A1SC56616.2023.10085293.

19. Wei, Q., Hu, X., Wang, X. & Wang, H. “Improved RetinaNet target detection model”. 2nd Interna-
tional Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCALI).
Guangzhou: China. 2022. p. 470-476. DOI: https://doi.org/10.1109/AHPCAI57455.2022.10087635.

20. Luo, S. & Zheng, W. “You-only-look-once-v5 based table detection for academic papers”. Interna-
tional Conference on Digital Society and Intelligent Systems (DSInS). Chengdu: China. 2021. p. 53-56,
https://www.scopus.com/authid/detail.uri?authorld=57194978524.

DOI: https://doi.org/10.1109/DSInS54396.2021.9670600.

21. Pulipalupula, M., Patlola, S., Nayaki, M., Yadlapati, M., Das, J. & Sanjeeva Reddy, B. R. “Object
detection using you only look once (YOLO), algorithm in convolution neural network (CNN)”. IEEE 8th
International Conference for Convergence in Technology (I12CT). Lonavla: India. 2023. p. 1-4.
DOI: https://doi.org/10.1109/12CT57861.2023.10126213.

22. Lina, W. & Ding, J. “Behavior detection method of OpenPose combined with Yolo network”. Inter-
national Conference on Communications, Information System and Computer Engineering (CISCE). Kuala
Lumpur: Malaysia. 2020. p. 326-330. DOI: https://doi.org/10.1109/CISCE50729.2020.00072.

23. Mira, F. “Deep learning technique for recognition of deep fake videos”. IEEE IAS Global Confer-
ence on Emerging Technologies (GlobConET). London: United Kingdom. 2023. p. 1-4,
https://www.scopus.com/authid/detail.uri?authorld=57192162466.

DOI: https://doi.org/10.1109/GlobConET56651.2023.10150143.

24. Anggadhita, M. P. & Widiastiwi, Y. “Breaches detection in zebra cross traffic light using haar cas-
cade classifier”. International Conference on Informatics, Multimedia, Cyber and Information System
(ICIMCIS). Jakarta: Indonesia. 2020. p. 272-277. https://www.scopus.com/authid/
detail.uri?authorld=57218626891. DOI: https://doi.org/10.1109/ICIMCIS51567.2020.9354275.

25. Viola, P. & Jones, M. “Rapid object detection using a boosted cascade of simple features”. Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
Kauai: USA. 2001. p. I-1. DOI: https://doi.org/10.1109/CVPR.2001.990517.

26. Cao, C., Preda, M. & Zaharia, T. “Affine transformation-based color compression for dynamic 3D
point clouds”. IEEE International Conference on Image Processing (ICIP). Bordeaux: France. 2022.
p. 1556-1560, https://www.scopus.com/authid/detail.uri?authorld=7005864787.

DOI: https://doi.org/10.1109/1CIP46576.2022.9897788.

27. Gunasekar, M., Panneerselvam, A., Sneharathna, V., Suganneshan, M. & Logeswaran, K. “Im-
proved Facial Emotion Recognition using Yolo and DeepFace for Music suggestion”. 2022 3rd International
Conference on Electronics and Sustainable Communication Systems (ICESC). Coimbatore, India, 2022,
p. 1124-1127, https://www.scopus.com/authid/detail.uri?authorld=57209690820. DOI: https://doi.org/
10.1109/ICESC54411.2022.9885456.

28. Singh, M. K., Singh, N. & Singh, A. K. “Speaker’s voice characteristics and similarity measurement
using euclidean distances”. International Conference on Signal Processing and Communication (ICSC).
Noida: India. 2019. p. 317-322. DOI: https://doi.org/ 10.1109/ICSC45622.2019.8938366.

ISSN 2617-4316 (Print) Software engineering and systems analysis 301
ISSN 2663-7723 (Online)



Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology
2023; Vol. 6 No. 3: 286-303

29. Gyawali, D., Pokharel, P., Chauhan, A. & Shakya, S. C. “Age range estimation using MTCNN and
VGG-Face model”. 11th International Conference on Computing, Communication and Networking Technol-
ogies  (ICCCNT). Kharagpur: India. 2020. p. 1-6. DOl: https://doi.org/10.1109/
ICCCNT49239.2020.9225443.

30. Bouallegue, G. & Djemal, R. “EEG person identification using facenet, LSTM-RNN and SVM”.
17th International Multi-Conference on Systems, Signals & Devices (SSD). Monastir: Tunisia. 2020.
p. 22-28, https://www.scopus.com/authid/detail.uri?authorld=55959113300. DOI: https://doi.org/10.1109/
SSD49366.2020.9364129.

31. Agarwal, S., Das, D., Bhowmick, B. “Realistic Lip Animation from Speech for Unseen Subjects us-
ing Few-shot Cross-modal Learning”. 2020 28th European Signal Processing Conference (EUSIPCO). Am-
sterdam, Netherlands. 2021. p. 690-694, https://www.scopus.com/authid/detail.uri?authorld=57212306170.
DOI: https://doi.org/10.23919/Eusipco47968.2020.9287778.

32. Choi, K. -H. & Ha, J. -E. “An adaptive threshold for the canny edge with actor-critic algorithm”.
IEEE Access. 2023; 11: 67058-67069, https://www.scopus.com/authid/detail.uri?authorld=58481363800.
DOI: https://doi.org/ 10.1109/ACCESS.2023.3291593.

33. Asaduzzaman, A., Trent, A., Osborne, S., Aldershof, C. & Sibai, F. N. “Impact of CUDA and
OpenCL on Parallel and Distributed Computing”. 8th International Conference on Electrical and Electronics
Engineering (ICEEE). Antalya: Turkey. 2021. p. 238-242,
https://www.scopus.com/authid/detail.uri?authorld=35316746700. DOl:
https://doi.org/10.1109/ICEEE52452.2021.9415927.

Conflicts of Interest: the authors declare no conflict of interest

Received 15.06.2023
Received after revision 28.08.2023
Accepted 14.09.2023

DOI: https://doi.org/10.15276/aait.06.2023.20
YK 004.032.26:004.946

EdexTuBHe n1eTekTyBaHHs i 3aMiHa 00JIMY IPH CTBOPEHHI
pocToro peKoBOro Bieo

Illepemer Outexciii IBanopuy?
ORCID: https://orcid.org/0000-0003-1298-3617; sheremet-oleksii@ukr.net. Scopus Author ID: 57170410800

Capnogoii Onexcanap Banentunopuy?
ORCID: https://orcid.org/0000-0001-9739-3661; sadovoyav@ukr.net. Scopus Author ID: 57205432765

I'apmanos Jlenuc Bosogumuposuy®
ORCID: https://orcid.org/0009-0008-6257-468X; denysharshanov3@gmail.com

Kopanbuyk Ouer Crenanosnu”
ORCID: https://orcid.org/0009-0009-5521-6451; 3289560@gmail.com

Illepemer Katepuna Cepriipna?
ORCID: https://orcid.org/0000-0003-3783-5274; artks@ukr.net. Scopus Author ID: 57207768511

Coxina IQuis Biraniipna®

ORCID: https://orcid.org/0000-0002-4329-5182; jvsokhina@gmail.com. Scopus Author ID: 57205445522

D Jlonbacwka JiepkaBHA MalIMHOOY/AiBHA akanaeMis, Oyia. MamunoOyniBHuKiB, 39. KpamaTopcerk, 84313, Ykpaina
2) Hanionaneuuit TY «/lHimpoBCchKa noJiTexHikay, mp. Jmutpa SBopuuipkoro, 19. Juinpo, 49005, Ykpaina

%) XapkiBchbKuil HAIIOHATBHUH YHIBEPCUTET pajlioeeKTpoHiky, np. Hayku, 14. Xapkis, 61166, Ykpaina

4) IlninpoBchbkuil iepskaBHUI TexHiuHMit yHiBEpCUTET, By [{HiMpoOyischka, 2. Kam’sHcbke, 51918, Vkpaina

AHOTALIS

TexHomnoTii BHUSABICHHS Ta pO3Mi3HABAaHHSA OOJNWYb € OJHAMH 3 HaWOUTBII IHTEHCHMBHO JOCII/DKYBaHHX TEeM Yy Tarys3i
KOMIT FOTEPHOTO 30py 3aBISKH iX BEIMYE3HOMY MOTEHIady 3aCTOCYBaHHS B Oarathox ramyssx. L[i TexHomorii mpoaeMoHCTpyBau
HPaKTUYHE 3aCTOCYBAaHHS B Pi3HMX KOHTEKCTaX, TAKUX SIK BUSIBJICHHS Mif03PiinX 0Ci0 y OaraToylfoHUX MiChKHX MPOCTOpax, po3mi3Ha-
BAaHHSI BIIACHUKIB CMapT(OHIB y peaqbHOMY 4aci, CTBOPEHHS IIEPEKOHINBHX MiNeiikiB s po3BaXKalbHUX JOAATKIB i CHeliali30BaHuX
Hporpam, siki 3MIHIOIOTb PYXH pHC O0JIHMYYsI, HAPUKIIA Ty0 a0o oueil. 3aBASKM Cy4acHUM AOCSATHEHHSM arnapaTHOro Ta MporpaMHOro
3a0e3neyeHHs, cydacHa TEXHOJIOTiYHa iH(pacTpyKTypa Hazmae OuTbIIe pecypciB, HiXK HEOOXITHO Ul MMOTOKOBOTO Bizeo. Y pe3yibTari
MPOCTi CHCTEMH PO3ITi3HABAHHS 00JIHYb MOXKYTh OyTH peanizoBaHi 0e3 BUKOPHCTaHHS JOPOTHX CEPBEPIB, SKi BUMAraroTh MEBHUX IOTIE-
penHbO HaBYEHHUX Mojenell. Taka BelrKa KUTbKICTh pecypeiB 3MiHIOE TaHMmadT po3mi3HaBaHHSA 00IHYb, 1 IUCKYCIs B AaHill cTarTi 00e-

302 Software engineering and systems analysis ISSN 2617-4316 (Print)
ISSN 2663-7723 (Online)


https://doi.org/
mailto:3289560@gmail.com

Sheremet O., Sadovoi O., Harshanov D., Kovalchuk O., Sheremet K., Sokhina Yu. / Applied Aspects of Information Technology
2023; Vol. 6 No. 3: 286-303

PTa€eThCsl HABKOJIO LIMX HOBMX IapaaurM. OCHOBHA yBara B Ll CTaTTi — NOIIMOJICHUIT aHaII3 KIIOYOBHMX KOHLENIH IeTeKTyBaHHS 00-
JIMY4S B OTOKOBHX BiJICOJIaHMX 3a JOTIOMOTOIO BiZIOMHMX MONEPEIHbO HaBYeHUX Mozenei. ObrosoproBani Mozeni Briroyarots HRNet,
RetinaFace, Dlib, MediaPipe i KeyPoint R-CNN. KoxHa 3 1ux Mo/ieneii Mae CBO1 CHIIbHI Ta ClTa0Ki CTOPOHH, 1 IaHa CTATTS PO3TIIsIae i
aTpuOyTH B KOHTEKCTI NIPAaKTUIHUX NPUKIIAJIB i3 peanbHOTO cBiTy. Takuii po3riiy qae MiHHY iH(pOPMAIIO PO NPaKTHIHE 3aCTOCYBaH-
HSI X MOJeNel 1 KOMIIPOMICH, ITOB’s13aHi 3 IX BUKOpUCTaHHAM. KpiM TOro, CTaTTs IpeCTaBisie BUUEPITHHI OIS METOIB TpaHc(hop-
Marii 300pakeHns1. [IpencrasineHo abcTpakTHHIT MeTo[ adiHHOTO IIepEeTBOPEHHS 300paXKeHHs, Ba)KIIUBY TEXHIKY 00pOOKH 300pakeHs,
sIKa 3MIHIOE TEOMETPHYHI BIACTHBOCTI 300pa)KeHHs, He BIUIMBAIOYH Ha IHTEHCHUBHICTBH Horo mikceniB. Kpim Toro, y cTarTi po3risaaroTh-
cs1 oreparlii mepeTBOPEHHs 300pakeHb, SKi BUKOHYIOTHCS 3a fomomororo 6ibmiorexn OpenCV, onHiel 3 mpoBigHUX 0i101i0TeK y ramysi
KOMIT FOTEPHOT'0 30pY, 1[0 3a0e3Meuye qyKe THYYKHii i edekTHBHUI Ha0ip IHCTPYMEHTIB AJIs1 MaHiMy IfoBaHHs 300paxeHHs MU, Kynbmi-
HALi€I0 BOTO JOCII/DKEHHS € MPaKTHYHA aBTOHOMHA CHCTeMa Ul 3aMiHHM 300pakeHHS y Bizmeo. Ll cucreMa BUKOPUCTOBYE MOJENb
RetinaFace 1ys 3ailicHeHHs: BUCHOBKIB i BikoprucToBye OpenCV 11t aiHHUX HEePeTBOPEHb, JEMOHCTPYIOUYH KOHLETIIii Ta TeXHOJIOT ],
sIKi 0OTOBOPIOIOTECS B cTaTTi. TakuM 4MHOM, IpoBeeHa poOoT NpocyBae chepy BUABICHHS Ta PO3Mi3HABAaHHS 00JIHYb, IPEICTABILIOUN
IHHOBAIIIHHMI MiAXiJ, KU TOBHOIO MipOIO BUKOPUCTOBYE CyJacHi arapaTHi Ta MPOrpaMHi JOCSTHEHHS.
Kumrouosi ciioBa: pindelik; adinaa Tpanchopmamis; BUSBICHH 00JIMI4s; Bijeo 00poOka; anbda-kaHai; 6iHapHI MaCKH

ABOUT THE AUTHORS

Oleksii 1. Sheremet — Doctor of Engineering Sciences, Professor, Head of the Department of Electromechanical Systems of
Automation and Electric Drive. Donbas State Engineering Academy, 39, Mashinobudivnykiv Blvd. Kramatorsk, Ukraine
ORCID: https://orcid.org/0000-0003-1298-3617; sheremet-oleksii@ukr.net. Scopus ID: 57170410800

Research field: Machine learning and artificial intelligence in general technical problems and electromechanics; predicative
analytics based on artificial intelligence technology

Ilepemer Ouekciii IBaHOBHY — TOKTOp TEXHIYHUX Hayk, mpodecop, 3aBimyBau kadenpu EnexTpoMexaHiYHHX CHCTEM
aBromaru3auii JJoHbackKkol AepaBHOI MalIMHOOYAiBHOT akaaeMii, Oys. MammHoOyniBHuKiB, 39. KpamaTropcbk, YkpaiHa

Oleksandr V. Sadovoi — Doctor of Engineering Sciences, Professor of the Department of Electric Drive, Dnipro University
of Technology, 19, Dmytra Yavornytskogo Ave. Dnipro, Ukraine

ORCID: https://orcid.org/0000-0001-9739-3661; sadovoyav@ukr.net. Scopus Author ID: 57205432765

Research field: Optimal control of electromechanical systems

CanoBoii Osexcanap BajneHTHHOBHY — JJOKTOp TEXHIYHMX HayK, npodecop kadeapu EnekrponprBoay HalioOHaIbHOTO
TY «/lninpoBceka nomitexHikay, mp. Imurpa SIBopHuipkoro, 19. [xinpo, Ykpaina

Denys V. Harshanov — Student, Department of Computer Engineering and Control, Kharkiv National University of Radioe-
lectronics, 14, Nauky Ave. Kharkiv, Ukraine

ORCID: https://orcid.org/0009-0008-6257-468X; denysharshanov3@gmail.com

Research field: Image processing in infocommunication systems; bilinear filtering with binary masking methods

I'apmanos Jlennc Boroaumuposuy — ctyznenT dakymnbrery Komm’roTeproi imkeHepii Ta ynpasiiHHa XapKiBChKOTO HaIli-
OHAJIHOTO YHIBEpCHUTETY pajioenekTpoHiky, np. Hayku, 14. Xapkis, Ykpaina

Oleh S. Kovalchuk — Student, Department of Automation of Mechanical Engineering and Information Technology, Donbas
State Engineering Academy, 39, Mashinobudivnykiv Blvd. Kramatorsk, Ukraine

ORCID: https://orcid.org/0009-0009-5521-6451, 3289560@gmail.com

Research field: Computer vision; natural language processing

KoBanbuyk Ouier CTenanoBu4 — CTyeHT (haKynbTeTy ABTOMATH3AMli MAITMHOOYTyBaHHS Ta iHGOpMALiHHIX TEXHOIOT1 i
JlonOaceKkoi neprkaBHOI MaIIMHOOY IiBHOI akazeMil, Oyi. MammHoOyniBHuKIB, 39. Kpamaroperk, Ykpaina

Kateryna S. Sheremet — Department Engineering of the Department of Intelligent Decision Support Systems. Donbas State
Engineering Academy, 39, Mashinobudivnykiv Blvd. Kramatorsk, Ukraine

ORCID: https://orcid.org/0000-0003-3783-5274, artks@ukr.net. Scopus Author I1D: 57207768511

Research field: Machine learning; decision support systems

Illepemer KaTepuna CepriiBna - imkenep kadenpu IHTenekTyaqbHIX CHCTEM NPHIHATTSA pinrerb Jlonbackkoi gepxKaBHOT
MamHOOYy 1iBHOT akajemii, Oyin. MammuoOyaiBHuKiB, 39. KpamaTtopcek, Ykpaina

Yuliia V. Sokhina — PhD in Engineering Sciences, Associate Professor of the Department of Electrical Engineering and
Electromechanics, Dniprovsky State Technical University, 2, Dniprobudivska, Str. Kamyanske, Ukraine

ORCID: https://orcid.org/0000-0002-4329-5182; jvsokhina@gmail.com. Scopus Author ID: 57205445522

Research field: Optimal control of electromechanical systems

Coxina FOuis BitaniiBHa — kaHIuIaT TEXHIYHUX HaYK, AOLEHT Kadeapu EnextporexHiku Ta enexTpomexaHiku J{HIIpoB-
CBKOTO JIep)KaBHOIO TEXHIYHOTO YHIBepcUTeTy, By JIHinpoOyniBceka, 2. Kam’sHebke, Ykpaina

ISSN 2617-4316 (Print) Software engineering and systems analysis 303
ISSN 2663-7723 (Online)



