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Abstract: The issue of increasing the efficiency of the information-control system for monitoring the
spatial orientation of objects in geophysical surveys by improving the filtering of sensor signals in the
stationary part of the system is considered in this study. For this purpose, an approach is proposed
to reduce the bandwidth when connecting bandpass filters of the same type in series. Ratios are
obtained that allow one to accurately determine frequencies and bandwidth.
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1. Introduction

Geophysical methods of well research based on modern physical methods of rock
research are used to study the geological structure of the subsoil according to well sections,
identify and evaluate hydrocarbon reserves, and use field geophysical information in the
design, control and analysis of oil and gas field development and the technical condition
of wells. In recent years, new methods for the geophysical exploration of wells have
been developed and modern geophysical equipment has being introduced everywhere,
which makes it possible to quickly perform the complex processing and interpretation of
production and geophysical information using computer technology employing the latest
hardware and software [1,2].

Necessity determines the orientation parameters of wells drilled in environments with
anomalous magnetic properties, with steel pipes employed when restoring old deposits,
when examining ore wells, when monitoring pipelines laid in hard-to-reach places, when
building various underground facilities, as well as when controlling landslide zones, bulk
soil dams, tunnels, walls of pits and mine shafts andwhen controlling settlement in the
foundations or embankments of complex structures, such as nuclear power plants, leading
to the expediency of using inclinometers.

The problem of underground orientation is solved with the help of inclinometric
systems (IS), which are information-measuring complexes consisting of technical means,
methodological and mathematical support [3–5].

The modern development of information and control systems for industrial production
is based on the concept of Industry 4.0. Computerization and informatization of many
research processes and industrial production has led to the emergence of the Industrial
Internet of Things (IIoT) [6].

This direction allows one to significantly automate all processes by supplying equip-
ment with multifunctional sensors, actuators and controllers. The collected data are pro-
cessed and sent to the appropriate services, which allows the staff to quickly make informed
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and informed decisions. However, the ultimatetask is to reach a level where smart systems
can work without the participation of people. The role of personnel in this case is reduced
to monitoring the operation of systems and responding only to emergency situations to en-
sure safety and reliability [6–8]. The presence of wireless networks and cloud technologies
contributes to the rapid collection of data, which, after primary processing, are sent to the
analysis and decision center. Further development of such systems follows the direction of
the humanization of decision-making and friendly contact with people in accordance with
the concept of Industry 5.0 [9].

In the general case, a computer information and control system for controlling the
spatial orientation (CICS CSO) of objects can be represented in the form of a block diagram,
as seen in Figure 1.
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The structural diagram of the CICS includes a dynamic part and a stationary part.
The transfer of information between these parts is carried out via the communication link.
Projections of free fall, the Earth’s magnetic field, measuring transducers are transmitted
via the communication link to the stationary part. In the stationary part, the rotation angle
of the object orientation is calculated, using the zenith angle θ, the sighting angle φ, and
the azimuth angle α.

To increase the efficiency of the CICS CSO and control the measurement process, as
well as to increase the reliability of the system, it is necessary to have devices in the station-
ary part of signal reception that can operate in difficult signal-jamming conditions. Under
these conditions, the frequency-dependent components (FDC) of the signal reception path,
based on software and hardware, are easily controlled to rebuild the main characteristics,
which can improve the accuracy of extracting the information signal from the sensor. To
receive a modulated signal at the stationary part, it is necessary to have a bandpass-type
FDC with the possibility of tuning the main frequency, the receiving band and the steepness
of the AFC. It is difficult to manage such high-order components, because many of the
transfer function coefficients of the components are interconnected [10–14]. Therefore, in
most cases, for the control of characteristics, various compounds of the low-order FDC are
used [15,16], due, for example, to the serial connection of the same type of low-order FDC.
This has an impact on both manageability and reliability. It also facilitates and simplifies
the rearrangement of the component [17,18].

As a low-order component, components of the first and second order are more often
used. Typical tasks include changing the cutoff frequency, component bandwidth, and
increasing the steepness of the amplitude–frequency characteristics (AFC) slope. It should
be noted that the general concept of frequency-dependent components of a computer
system includes both typical links of control systems and filters.

We consider a series connection of the same type of second-order components to
increase the steepness of the AFC slope, since the issues regarding tuning the cutoff
frequency are considered in [19].

2. Serial Connection of the Same Type Components and Their Effect on the
Frequency Characteristics

When the transfer functions of the same type of component are connected in se-
ries, their transfer functions are multiplied. Since the transfer function H0(p) consists of
amplitude–frequency characteristics (AFC) and phase frequency characteristics (PFC), if
the components are the same, we can write that:

H0(jω) = H0(ω)·ejϕ0(ω) (1)

where H0(ω) and ϕ0(ω) are the amplitude–frequency and phase–frequency characteristics
of the main components of the same type, respectively.

Multiplication of the transfer functions corresponds to exponentiation for components
of the same type which are connected in series.

H(p) = ∏n
i=1 Hi(p) = [H0(p)]

n (2)

The AFC and PFC are transformed as follows:

H(jω) = [H0(Jω)]n = [H0(ω)]n·ejnϕ0(ω) (3)

Therefore, the main changes occur in the AFC.
The aim of the work is to develop a new approach to the calculation of the series

connection of the same type of frequency-dependent components to improve the efficiency
of the information-control system inmonitoring the spatial orientation of objects in geo-
physical research by reducing the bandwidth and increasing the steepness of the AFC in the
stationary part of the system. For the sake of an example, we look at bandpass digital filters
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because they are widely used in the processing cycles of sensor signals under complex
interference and signal conditions.

3. Increasing Steepness of the AFC of the Digital Bandpass Filters

When connecting the same type of bandpass filter in series, the AFC of the new
connection is compressed, as it were, while the cutoff frequencies are shifted to the center
frequency and the AFC steepness increases, as shown in Figure 2.
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Where H0—AFC of the first order, H10 —AFC of the 10th order, c —the level of the cutoff frequency,

10
√

c —the level of the cutoff frequency of the 10th order.

The transfer function of the main bandpass filter is mathematically described as
follows:

H(z) =
a0 + a1z−1 + a2z−2

1 + b1z−1 + b2z−2 , (4)

where a0, a1, a2, b1, and b2 are the real coefficients of the numerator and denominator,
respectively.

Through substitution of z−1 = e−j$, where$ is the normalized angular frequency and
$ = 2π f

fd
and$ ∈ [0,π], f, fd are linear frequency and sampling frequency, respectively, we

obtain a complex transmission coefficient, and on its basis the AFC at a0 = a2 and a1 = 2.
After the transformation, the square of the AFC can be written as:

H2($) =
(2a0sin($))2

(1− b2)
2 + b2

1 + 2b1(1 + b2)cos($) + 4b2cos2($)
. (5)

It should be noted that the peak frequency of the AFC does not change in this case
and is determined by the equation, as shown in Figure 2:

$p = arccos
(
− b1

1 + b2

)
. (6)

Usually, the level at which the cutoff frequency is determined is c = “0.707”, i.e.,
H($c) = c, where$c is the cutoff frequency of the AFC at level c. When multiplying the
same type of frequency response or raising its degree, the level remains the same, but in
order to determine the cutoff frequencies of the new AFC, when they are connected in
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series, it is necessary to extract the root of the corresponding order from the level c, i.e., n
√

c,
as seen in Figure 3. In Figure 2, these levels are shown with horizontal lines.
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In this case, the AFC of the main filter can be used to calculate the cutoff frequencies
of the new AFC (Figure 4).
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order Butterworth filters of the same type are connected in series. Where H0($)—AFC of the first
order, H5($) —AFC of the 5th order, c —the level of the cutoff frequency, 5

√
c —the level of the cutoff

frequency of the 5th order. Projection 2L and 2R points of the 1st order to 3L and 3R points of the 5th
order respectively. 1L and 2R are basical cutoff frequency of the first order.

Figure 4 shows the correspondence between the cutoff frequencies of the main AFC
of the second order at the level c and the AFC when five of the same type of AFC of the
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second order are connected in series. These cutoff frequencies are determined by the main
AFC, the parameters of which are known, and the new level.

To determine the cutoff frequencies of the new AFC after connecting n filters of the
same type according to the main AFC, it is necessary to solve the following equation:

H2($) =
(2a0sin($1n))

2

(1− b2)
2 + b2

1 + 2b1(1 + b2)cos($1n) + 4b2cos2($1n)
=

n√c2 = c
2
n (7)

where$1n is the cutoff frequency at a new level n
√

c on the main AFC.
Solving this equation, provided that [10]

a0 =
1− b2

2
(8)

found formulas for determining the cutoff frequencies for the n-th connection of the same
type of filter. To simplify the representation of the result, we introduce new notation:

A = 4b2c
2
n + (1− b2)

2 (9)

B = −b1(1 + b2)c
2
n (10)

C = (1− b2)

√(
1− c

2
n

)[(
4b2 − b2

1

)
c

2
n + (1− b2)

2
]

(11)

As a result, we obtain the cutoff frequencies of the AFC with the n-th connection of
the same type of filter (Figure 5).

$cn1 = arccos
(

B + C
A

)
(12)

$cn2 = arccos
(

B−C
A

)
(13)
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In accordance with the formulas obtained, it is possible to determine the bandwidth
of such a compound as$BP = |$cn1 −$cn2| (Figure 6). As can be seen from Figure 6, the
bandwidth decreases exponentially.
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In this case, it can be seen how many times the bandwidth will decrease with a serial
connection (Figure 7).
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4. Conclusions

The serial connection of frequency-dependent components of the same type leads to
the exponentiation of both the transfer function and the AFC. This leads to a decrease in
the bandwidth with increasing steepness of the AFC.

While analyzing the AFC of a serial connection of the same type of components, a new
approach was obtained to obtain accurate values of cutoff frequencies and bandwidth.

The obtained ratios lead to an increase in filtering in the stationary part of the
information-control system for controlling the spatial orientation of objects. It should
be noted that this approach makes it possible to automatically increase the operational
security of sensor signal processing in the presence of interference in accordance with the
Industry 4.0 concept.
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