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The complexity of the composition and the increase in the number of technical
systems lead to an increase in the intensity of their failures. As a result, there is a
need to repair the equipment of complex technical systems, leading to system
downtime. The search for failed components and the elimination of their failures
contributes to an increase in the safety level of operation of complex technical
systems. Diagnostics and prediction of failures of components of automated systems
and mechanisms (subsystems, elements, intersystem and interelement connections)
in real operation to find and eliminate the causes of failures remains an urgent task.
The operational reliability of restored complex technical systems and their
components is effectively achieved by the strategy of operating systems with
technical condition monitoring based on technical diagnostic systems. Reducing
failures and man-made risks in the operation of complex technical systems is
facilitated by predicting their technical condition based on diagnostics. The article
presents an intelligent system that operates using the developed model for assessing
and predicting the risk of failure of components of a complex technical system using
the example of a ship power plant. Building a model taking into account the
hierarchical levels of subsystems (components), intersystem (interelement)
connections of an intelligent system is based on the use of a priori information about
failures of components of complex technical systems. The model connects the types
of technical condition of components and diagnostic features of systems in the form
of the risk of their failures. The use of a posteriori inference in Bayesian belief
networks makes it possible to determine the risk of system component failures,
taking into account the incoming diagnostic information and information about
component failures. In order to build and research a diagnostic Bayesian network
model of an intelligent system for assessing the risk of failures for a system for
diagnosing and predicting the technical condition of the components of a complex
technical system consisting of numerous variables, the software product GeNle was
used. The results of studies of the model for assessing and predicting the risk of
failure of components of a complex technical system confirmed the possibility of
predicting the risk of failure of components and the system as a whole.
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Introduction

The complexity of the composition and the increase in the number of technical
systems installed at various facilities lead to an increase in the intensity of their failures.
As a result, there is a need to repair the equipment of the systems, which leads to its
downtime.

When designing, manufacturing and operating complex technical systems
(CTS), reliability is ensured by methods and means specific to each stage of the "life
cycle" of systems. The operational reliability of the restored CTS and their components
is effectively achieved by the strategy of operating systems with technical condition
monitoring based on technical diagnostic systems [1-5]. The reduction of failures and
man-made risks during the operation of CTS is facilitated by the prediction of their
technical condition based on diagnostics.

Currently, the volume of implementation of automation, digitalization and
artificial intelligence technologies in various industries continues to grow. For example,
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in accordance with the requirements of the Register of Maritime Navigation, all modern
ships must be equipped with automation systems for technical means using digital
technologies, as well as artificial intelligence technologies [2,6-10]. Such systems
should constantly monitor the components of the ship's CTS, analyze trends in changing
the operating modes of the equipment of the systems, perform emergency transfers and
provide decision support. To implement such a technology, appropriate algorithmic and
software tools are needed to provide diagnostics, forecasting the technical state of
systems, and support for decision-making that is adequate to the goal. The diagnostic
algorithms used, as a rule, are based on the tolerance control of individual diagnostic
parameters. At the same time, the volume of measuring and diagnostic information, the
number of connections, dependencies of diagnostic features and types of technical states
of systems can be significant. In theory, engineering practice, various methods are used
to assess the risk of failure of CTS components.

An example of the application of risk theory is the logical development of a
probabilistic approach for assessing the risk of failures [11,12]. With a probabilistic
approach, the level of reliability is selected depending on the possible consequences of
damage (failure) of system components. In this regard, the assessment of the risk of
CTS failures lies in the unacceptable probability of their damage. However, the negative
consequences of a failure in systems are often taken into account intuitively, implicitly,
by taking certain values of the probability of failure-free operation or the safety factor of
system components.

In artificial intelligence, various models of knowledge representation are
actively developing. Bayesian belief networks (BBN) are a promising mathematical tool
that can be used, in relation to diagnostic tasks, to take into account both the causal
relationship between the types of CTS technical condition and diagnostic features, and
the arrival of new information in the form of statistical data or predictive estimates.
Bayesian networks allow combining a priori (initial) knowledge about an object with
experimental data to obtain an a posteriori estimate [13,14].

Forecasting the state of CTS plays an important role in planning their operation.
It is assumed that the actual technical condition of an object can be assessed by the
results of monitoring its parameters, and predicting their changes allows the object to be
operated until signs of a dangerous decrease in reliability appear. There are efficient
algorithms and forecasting methods. Artificial intelligence models, in particular, neural
networks, are being actively developed to solve forecasting problems [15,16]. However,
the main problem for the productive operation of a neural network is the need for a
significant amount of statistical data, which is difficult to obtain in real conditions due
to a number of reasons (high cost of the systems under study, high costs for testing,
limited time, etc.). The lack of a clear understanding in the choice of neural network
architecture for solving various types of problems (pattern recognition, approximation,
prediction, etc.) and areas of application also complicates their application.

The conceptual basis for the intellectualization of the solution of interrelated
problems of diagnostics, forecasting and decision support is traditional for the class of
unstructured and poorly formalized tasks: the impossibility of obtaining complete and
objective information for making adequate decisions and the resulting need to involve
informal (subjective, heuristic) information; the presence of uncertainty in the initial
data, as well as the presence of ambiguity (multiple options) in the process of finding a
solution; the need to develop and justify the desired solutions to the problem
inconditions of strict time constraints, which are determined by the course of controlled
processes; the need to correct and introduce additional information into the process of
finding solutions, the interactive (dialogue, human-machine) nature of the logical
inference of solutions. Taking these factors into account forces us to abandon traditional
algorithmic methods and models of decision-making and management and move on to
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intelligent technologies. Combined with the tasks of diagnosing and predicting, the task
of modeling the behavior of the CTS acts as a source of data on the state of the object at
the stages of system testing.

Thus, during the operation of CTS, an urgent task remains the improvement of
methods and models aimed at accurate and prompt assessments, management of the risk
of failures of CTS components.

Objective

The aim of the work is to improve the reliability of CTS operation based on the
use of an intelligent system for assessing and predicting the risk of failures of
components and systems as a whole.

Main part

Currently, Bayesian belief networks are actively developing in the field of
modeling and knowledge representation [13,14]. When solving the problems of
diagnosing CTS, BBN allow taking into account both the dependence between the types
of technical systems and diagnostic features, taking into account the reliability of their
checks, and the results of checking diagnostic features, data on failures of CTS
components.

The model of an intelligent syste m for assessing and predicting the risk of failure
of components of a complex technical system in the form of a BBN can be written as:

<M,S,R,L> (1)

where M - is the set of subsystems (elements) of the CTS; S - a set of intersystem
(interelement) links of CTS; R - a set of diagnostic assessments of the risk of failures of
subsystems (elements), intersystem (interelement) links of CTS; L - mapping of
connections between the sets M, S and R, based on the CTS diagnostic model.

The set of subsystems (elements) of ship CTS, taking into account the hierarchical
levels of subsystems (elements), is determined by:

_ )y SIse> _ .. _
M = {U,’M) | Iy = 1’1S(E)9JS(E) =0, JS(E)}’ (2)
JsE> .
where QS(E) - is the state of each subsystem (element) of the CTS; Igg)- number of

subsystem (element) of CTS; j ;- number of the hierarchical level of the subsystem
(element) of the CTS; I, - number of subsystems (elements) of CTS; J, ;- number

of hierarchical levels of subsystems (elements) of CTS
The state of each subsystem (element) of the CTS:

<jS(E)>

9) ={F F ,a a

Is(E) { UnS(E) ? UiS(E) ? UmS(E) ? U()"S(E) }, (3)

where E) - is the nominal performance of the subsystem (element) of the STS;

"S(E)

F, O, T operability of a subsystem (element) in case of its partial loss;
S(E

a a

Oing gy > Vong g ™ intersystem (interelement) connections incoming and outgoing to

subsystems (elements), in, on — sequence number of incoming and outgoing intersystem
(interelement) connections.
A set of intersystem (interelement) links of CTS:

S={& " |c=1,C;h=LH;b=1,B;q=1,0}, 4)
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<b,q> . . . .
where @, , 7 _is the state of each intersystem (interelement) connection; ¢ — number of

intersystem communication; % - is the number of the interelement bond; b is the number
of the hierarchical level of intersystem communication; ¢ - is the number of the
hierarchical level of the interelement connection; C - is the number of intersystem
connections; H - is the number of interelement bonds; B - is the number of hierarchical
levels of intersystem links; Q - is the number of hierarchical levels of interelement
connections

The state of each intersystem (interelement) connection

<b,q> _ . . .
0" ={F, ;F, ;F, ;F, },

@y 2 whp

)

where [, - is the nominal performance of intersystem connections; F;,Cp - operability
cn

of intersystem communication in case of its partial loss; F w,, - hominal performance of

the interelement connection; F

O~ operability of intersystem communication in case of

its partial loss.
A set of diagnostic assessments of the risk of failures of subsystems (elements),
intersystem (interelement) links of CTS:

R<P)Y >
R, ={r, |m=1M},

M (6)

R, ={r,|s=1S},
where M, S - are determined based on the failure trees, presented as a set of risk of
failures of subsystems (elements) and intersystem (interelement) links, taking into

account their failure probabilities (P) and damages from failures (Y); 7,,- risk of

failures of subsystems (elements) of CTS; 7, - risk of failures of intersystem

(interelement) connections.

The initial data for constructing a model of an intelligent system for assessing
and predicting the risk of failures of components of a complex technical system on the
example of a ship power plant (SPP) [17], based on a dynamic BBN, are: SPP scheme;
the principle of operation of the SPP; probability of failures of CTS components.

The construction and study of the BBN of the probability of loss of working
capacity, assessments of the risk of failures of CTS components was carried out using
the GenNle software product [18]. It is a fully portable C++ class library that
implements graphical decision theory methods such as the Bayesian network. jobs and
impact diagrams that are directly amenable to inclusion in intelligent systems. Its
Windows wuser interface, Genie is a versatile and user-friendly development
environment for graphical decision theory models. modeling tools into intelligent
systems. The use of the GenNle environment allows diagnosing each component of the
CTS. Perform a regression analysis of the influence of each parent element of the
network on its corresponding child element. Implement a graphical display of the results
of predicting the risk assessment of failures of CTS components. Calculate the value of
the probability of loss of performance, damage and risk assessments of failures of CTS
components. When modeling the BBN of the SPP (Fig. 1), for various values of the
probability (risk) of failure of the input element, the values of the probability (risk) of
failures, the performance of the components of the SPP for 20,000 hours of its operation
are determined. Symbols of the elements of the SPP are given in Table 1. The operating
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state and failure, for example, of the SSV subsystem for the risk of failure at the input

element of the SPP 0.014 is shown in Fig.2.

Table 1
Symbols of the components of the SPP
Component name Symbol Failure risk
value
Input element VHOD 0,26
Manual control of the main engine RUGD 0,035
Compressed air system SSV 0,047
Control system for propulsion and steering complex | SUDRK 0,081
(PSC)
Boiler plant KU 0,13
Ship power plant SE 0,09
Fire fighting system PS 0,01
Main engine GD 0,16
Remote automated control system of the main engine DAU 0,01
Ballast drainage system BOS 0,019
Transfer of power from the main engine to the PM 0,003
propeller
Emergency drive PSC AP 0,01
™ Node properties: SSV  level2 O X
General | Defintion | Fomat | User properties Value |
Temporal probabilty distributions: e W R N
Time 0 1 2 ] 3 4 5 | s
bl Work 0.8288 | 0.70440512 063320149 059244453 056911525 055576157 0548117
[J Not work  0.1712 ' 0.25559488 ' 0.36675851 040755547 & 043088475 & 044423843 ' 0451882
< >

input element of the SPP 0.014
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Fig.1. Operating state and failure of the SSV subsystem for the risk of failure at the
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Fig.2. BBN SPP in the GeNle environment when searching for the causes of failures at
the risk of failure of the input component

From the retrospective analysis of the research results in the simulation of the SPP, the
components that affect the overall performance of the system are identified. In the study of
emergency situations, the analysis of incidents in the CTS, the main goal is to determine the
cause of the accident. It follows from the research results that the maximum non-operating
state during the operation of the SPP is 20,000 hours. corresponds to the SUDRK complex
(Fig. 2). Because Since the SUDRK complex is dependent at the level of the hierarchical
structure of the SPP, it is necessary to check the complex in order to find the cause of its
failure.

R o.0a0s
L A postereori e
0,0803
0,0802 __—A‘_/:______.a-—______..---"“
0,0801 \< o
0,08 |— A priori
0,079 . Y . . . Y . . . -
0 10 20 30 0 50 60 70 80 90 100

t, h
Fig.3. A posteriori and a priori estimates of the risk of failure power plant
compressed air systems

The purpose of using the BBN in assessing both the probability of loss of
performance and the risk of failure of the elements of the CTS components is an a
posteriori conclusion. The a priori data are dynamically recalculated and form a posterior
failure risk estimate, which is a priori information, to process the new information. The a
posteriori conclusion is based on the procedures for analyzing the data obtained as a
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result of using the BBN. When implementing this approach in research, modeling using a

priori and a posteriori data, the subsystems of the power plant are determined that have

the greatest impact on the performance of the main engine and the operation of the entire
system for various periods of time. Figure 3 shows a priori and a posteriori data and
studies of the compressed air system for 100 hours of SPP operation. The risk of system

failure increased slightly, changing from 0.08 to 0.085.

Conclusions

Application of the research results of the developed model for the purpose of a
retrospective analysis of emergency situations at CTS makes it possible to improve the
reliability of systems operation by solving the problem of determining their causes. The
application of the developed model, taking into account the hierarchical levels of
subsystems (components), intersystem (interelement) connections for an intelligent
system for assessing and predicting the risk of failures of components of a complex
technical system when searching for the causes of failures of CTS components, allows:

» control the values of the risk of failures of the system components upon receipt
of information about failures;

* predict trends in the risk of failures of CTS components, taking into account
changes in the risk of failures of individual components in order to select a strategy for
their recovery.
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IHTEJEKTYAJIBHA CUCTEMA OIIHKH I ITPOI'HO3YBAHHA
PU3UKY BIIMOB KOMIIOHEHTIB CKJIAJJHOI TEXHIYHOI
CUCTEMU

A.B. Buuyxanin

HamionaneHauii yHiBepcuTeT «OechKka MOJITEXHIKA
npocm. leBuenka, 1, Oxeca, 65044, Ykpaina; e-mail: v.v.vychuzhanin@op.edu.ua

CKagHiCTh CKJIamy Ta 30UTBIICHHS KUTBKOCTI TEXHIYHHX CHCTEM NPH3BOAATH IO 3POCTaHHS
IHTEHCUBHOCTI iX BigMOB. B pe3ynbrari BHHHKAE€ HEOOXiAHICTHP PEMOHTY OONamHAHHS CKJIAJIHUX
TEXHIYHUX CHCTEM, IO BeJe J0 MPOCTOIB cucteM. [1oMIyK KOMIIOHEHTIB, 1110 BiIMOBHIIH, T4 YCYHEHHS iX
BiJIMOB CITpHSI€ MiJBUIICHHIO PiBHS OC3MEKU SKCILTyaTallii CKJIaIHUX TEXHIYHUX cUcTeM. J[iarHOCTHKa Ta
MPOTHO3YBaHHS BiJIMOB KOMIIOHCHTIB aBTOMAaTH30BAHUX CHCTEM Ta MEXaHi3MiB (IIJICHCTEM, CIEMEHTIB,
MIXKCHCTEMHHUX Ta MIKEJICMEHTHHX 3B'3KIB) Y peaIbHUX €KCIUTyaTalii IJis MONIYKY Ta YCYHCHHS IPUIHH
BiJ]MOB 3aJIMIIA€THCS aKTYaJIbHUM 3aBAaHHsAM. ExcruryaraniiiHa HaaiifHICTh CKIIQIHUX TEXHIYHUX CHCTEM,
IO BiJHOBIIOIOTHCS, Ta IX KOMIIOHCHTIB €(EKTHBHO JOCSITAETHCS CTPATETIEI EKCIUTyaTalil CHCTEM 3
KOHTPOJIEM TEXHIYHOTO CTaHy Ha OCHOBI CHCTEM TEXHIYHOI JiarHOCTHKH. 3MEHIIECHHIO BiIMOB Ta
TEXHOTCHHHX PHU3WKIB IMiJ] Yac eKCIUTyaTallii CKJIAIHUX TEXHIYHHX CHUCTEM CIPHS€E MPOTHO3YBaHHS iX
TEXHIYHOTO CTaHy Ha OCHOBI JIarHOCTUKU. Y CTATTi HABENIEHO 1HTEIEKTYIbHY CHCTEMY, 110 (DYHKITIOHYE
3 BUKOPHUCTAHHAM PO3pOOIEHOT MOIEIi OIMIHKHU Ta MPOTHO3YBaHHS PU3HUKY BiMOB KOMITOHEHTIB CKJIaJHOT
TEXHIYHOT CHCTEMH Ha TPUKIIAJi CYJHOBOI €HEpreTHYHOI ycTaHOBKHU. [100ymoBa Mojeli 3 ypaxyBaHHIM
iepapxidHUX  piBHIB  MiACUCTeM  (KOMIIOHEHTIB), MDKCHCTEMHUX  (MiXKEIEMEHTHHX) 3B'A3KiB
IHTEJIEKTYalbHOI CHUCTEMHM TIPYHTYETbCS Ha BUKOPHUCTAaHHI ampiopHoi iHdopMmalii mnpo BiaMOBH
KOMIIOHCHTIB CKJIaJHUX TEXHIYHHUX CHCTeM. MoJellb MOB'SI3y€ BUAM TEXHIYHOTO CTaHY KOMIIOHCHTIB Ta
JAarHOCTUYHI O3HAKH CHCTEM Y BUIJISII PU3MKY IX BiIMOB. BHKOpHCTaHHS amoCTEpiOPHOTO BUCHOBKY B
0alieCiBCBKUX Mepekax JOBIpH JIO3BOJISE BH3HAYaTH PH3MK BiIMOB KOMIIOHCHTIB CHCTEMH 3
ypaxyBaHHSM AiarHOCTHYHOI iH(opMmanii, 0 HAIXOIUTb, Ta iHpOpMAaLii MPo BiIMOBM KOMIOHEHTIB. 3
METOI0 MOOYJOBH Ta JOCTIUKEHb AiarHOCTHYHOI OaleciBChbKOi MepekeBOi MoJelsi IHTENEeKTyaJbHOI
CHUCTEeMH OIliIHKA PHU3UKY BiMOB JUISI CHCTEMH JialHOCTHKH Ta MPOTHO3YBaHHS TEXHIYHOTO CTaHy
KOMITOHEHTIB CKIIQJHOI TEXHIYHOI CHUCTEMH, LI0 CKIIAJAETHCS 3 YHCICHHHX 3MIHHHX, 3aCTOCOBAHO
nporpamManii mpoaykt GeNle. OTpumaHi pe3ynbTaTH MOCHTIIKEHb MOJAENi OIIHKH Ta MPOTHO3yBAHHS
PU3UKY BiIMOB KOMIIOHEHTIB CKJIQJHOI TEXHIYHOI CHCTEMHU IiATBEPAMIIA MOXKJIHMBICTH MPOTHO3YBATH
3HAYEHHS PU3UKY BIJIMOB KOMIIOHEHTIB Ta CHCTEMH 3arajioM.

KurouoBi cjioBa: ckjanHa TEXHIYHA CHCTEMa, KOMIIOHEHTH, OIliIHKA PH3WKY BiIMOBH,
IHTEJICKTyalbHaA CHCTeMa, 0alleCOBChKa Mepeka JIOBIpH, IIarHOCTUKA, POTHO3YBAHHSI.
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