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On the Koebe quarter theorem for
polynomials

Jimmy Dillies, Dmitriy Dmitrishin, Andrey Smorodin,
Alex Stokolos

Abstract.  The Koebe One Quarter Theorem states that the range of
any Schlicht function contains the centered disc of radius 1/4 which is sharp
due to the value of the Koebe function at —1. A natural question is find-
ing polynomials that set the sharpness of the Koebe Quarter Theorem for
polynomials. In particular, it was asked in [8] whether Suffridge polynomi-
als [15] are optimal. For polynomials of degree 1 and 2 that is obviously true.
It was demonstrated in [10] that Suffridge polynomials of degree 3 are not
optimal and a promising alternative family of polynomials was introduced.
These very polynomials were actually discovered earlier independently by
M. Brandt [4] and D. Dimitrov [7]. In the current article we reintroduce
these polynomials in a natural way and make a far-reaching conjecture that
we verify for polynomials up to degree 6 and with computer aided proof up to
degree 51. We then discuss the ensuing estimates for the value of the Koebe
radius for polynomials of a specific degree.

Amnoramnia. Teopema Kebe mpo offy 4BepTh CTBEPIKYE, MO 00/IACTH 3HA-
YeHb Oy/b-gKOI NIXT DYHKIT MICTUTB JUCK paaiycy 1/4 3 neHTpoM B TOUI
z = 0. s ominka Ha pajiyc € TOYHOIO 1 TOCIATAEThCSA JJIsT 3HAYEHHSA (DYHK-
uii Kebe B Touri z = —1. [Ipupoganm nmuTaHHSM € MONTYK MOJIHOMIB, AKi
BU3HAYAIOTH ocrarounicTh Teopemu Kebe. 3okpema, JuMuTpoB craBub 1im-
TaHHs, 9u € onTuMasbauMu nosisomu Cadddpimka. s mosrinoMis crenens
1 ta 2 me, oueBuaHO, Tak. AMurpummus, /IpskoroB i CToKoIOC, ¥ CHOIBHIN
poboti okazasu, mo mnoainomu Caddpimka cremens 3 He € ONTUMAILHUMHA,
i 3aIpoIOHyBaJI MEPCIEKTUBHE AJbLTEPHATHUBHE cimeiicTBO mosiiHoMmiB. Bu-
SIBUJIOCSI, IO T MOJIIHOMH Oysu BifkpuTi pasime BpasiaTowm i, He3aJIeKHO,
HumurposuMm. B mamiit ctarTi Taki mOTiHOME O3HATMEHO OLIBIT TPUPOTHUM
quaoM. Kpim Toro B po0oTi BHCYHYTO BaK/JIMBY TiloTe3y, Ky IIE€PEBipEHO
JJISI TIOJIIHOMIB cTeleHs < 6 BpYYHY, & 3& JOIIOMOI'0I0 KOMII' FOTEDHOTO ITAKETa
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220 J. Dillies, D. Dmitrishin, A. Smorodin, A. Stokolos

Wolfram Mathematica — ajst mosiinomis cremens < 51. Mu TakoxX oOroBo-
proeMo omiHKU 3HaYeHHs pajiycy Kebe mist nesikux moIiHOMIB.

1. INTRODUCTION

Geometric complex analysis has arisen from two fundamental statements:
the Koebe Quarter Theorem and the Bieberbach Conjecture. Koebe’s theo-
rem states that for any function f € S the image f(ID) contains a disc of
radius 1/4, where D = {|z| < 1} and

S={f(2): f(0)=0, f(0) =1, f(2) is univalent in D}.

The Bieberbach Conjecture says that |agy| < k for all £ = 1,2,... where

f € S and the aj are the Taylor coefficients of f. For many decades this

conjecture was a driving force of the development of geometric complex

analysis. Many outstanding mathematicians contributed through partial

solutions until it was resolved in full generality by Louis de Brange in 1984.
Both theorems offer sharp bounds as the so-called Koebe function

K(z) := ﬁ =24224+33 4+, zeD,

is an extremizer for both statements. One can see that the radius % in
Koebe’s theorem is optimal, as also is the estimate |ai| < k in de Brange’s
result. A natural question is whether the constant 1/4 as well as the es-
timate |ax| < k can be improved for polynomials of a specific degree and
what would be a polynomial analogue of the Koebe function. Say, for poly-
nomials of the first degree the constant is trivially 1; a simple computation
demonstrates that for polynomials of degree 2 it is 1/2. The task was
formalized by Dimitrov who asked:

Problem 1.1. [8, Problem 5| For any N € Z, find a polynomial
pn(z) =2+ a2 +.. +ayz"€S
for which the infimum 7y := inf{|pn(2)| : z = €%, 0 < t < 2w} is attained.

Let us call ry the Koebe radius. Obviously, we have ry > 1/4. In this
article a new interesting family of typically real polynomials is introduced.
We conjecture that they are univalent (this is proven for degree < 6) and
that they attain the value of the Koebe radius.

The following statement a central in the paper:

Conjecture 1.2. The wvalue of the Koebe radius for the polynomials of
degree N 1is

™
- SeC2

4 N+2
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One cannot emphasize enough the relation between this work and earlier
work of Dimitrov. In particular, in [9], the author established a relation
between Egervary-Szasz and Suffridge polynomials. Dimitrov’s main result
was actually hinted at by the surprising link between Suffridge polynomials
and Fejér’s kernel. His so-called Féjer polynomials [9, Eq. (3.3)] correspond
to our Egervary-Szasz polynomials, Exn(t). So in a sense, our work parallels
that of Dimitrov even though our initial motivations were different.

2. SUFFRIDGE POLYNOMIALS

A natural approach to Dimitrov’s problem would be to look at trun-
cations of the Koebe function. However, there is a significant difference
between extremal analytic functions and polynomials. Since the derivative
of a function univalent in ID has roots outside D, Vieta’s theorem implies
the estimate on the leading coefficient

lan| < i (2.1)
N
Since the coefficients of the Koebe function increase, the truncation is not
a univalent in D polynomial.

Unfortunately, the variety of known polynomials univalent in D is quite

limited. The estimate (2.1) suggests considering the polynomials

N
An(z) =)
k=1

These are partial sums of the function —log(1 — 2z) which is univalent in D.
They were proven to be univalent in D by G. W. Alexander in the milestone
paper [1]. For these polynomials, |[Ay(—1)| > 3 and 3 is sharp.

Other popular extremal polynomials satisfying (2.1) are the Fejér poly-

nomials
N
E—1Y\

2~

| =

These again indicate that the constant % might be sharp in general. Cer-
tainly, we need more polynomials to test. However, to construct new ex-
tremal univalent polynomials is a quite challenging task.

Returning to the Koebe function, we should recall that it is extremal for
the Bieberbach conjecture and has increasing coefficients, while the coeffi-
cients in the above examples are decreasing. A powerful idea of Ted ng—

s

fridge [15] was to multiply the Fejér coefficients by the sine factor sin N1

making the new coefficients increase up to some level. He introduced a
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remarkable family of extremal polynomials

N <l_k_1>sin(ﬂ'kj/(N+1)> k =1

Snj(2) = kg N ) sin(rj/(N+1))

N

which turn (2.1) into equality. He proved that they are univalent in D.
Below instead of Sy 1(z) we will simply write Sy(2).
Also, Suffridge showed that whenever py(z) is a polynomial in S with

real coefficients and |ax| = 1/N, the remaining coefficients of py(z) are
also dominated by the coefficients of Sy (z).
Moreover,
IN+1 , o« 1
Sy(=1)| =~ =
SNED = 3= s s T 1

hence these polynomials indicate that 1/4 is asymptotically sharp for the
polynomial version of the Koebe Quarter Theorem (cf. [6]). Thus, Suffridge
polynomials may be considered as a counterpart of the Koebe function.

Note that the value |Sy(—1)| is the smallest distance from the image
of the unit circle to the origin for polynomials Sy (z), but only for even
degree. For polynomials of odd degree the infimum inf{|Sx(z)| : |z| = 1} is
not achieved at z = —1, but at a different point & such that Sy (§) = 0 [10]
(see Fig. 1).

Fig 1: The image and fragment for S3(D).

Also, note that the roots of the derivative of a Suffridge polynomial are on
0D, and the leading coefficient is 1/ N — the extremal case of the univalence
property. What could be a better candidate to be a solution to Dimitrov’s
problem? Actually, Dimitrov [8, p. 16] asked a specific question about the
Suffridge polynomial Sy (z): Is it extremal for every fized N7 Note that it
is indeed extremal for N =1, 2.

Later in this work we will provide evidence that the range of Brandt
polynomials contain a central disc of radius § sec?(m/N +2) by working out
explicit cases. Our conjecture is that this holds for all N which would allow
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Brandt polynomials to be used in future work as probes to text extremal
constructions.

3. NEW POLYNOMIALS

We have analyzed the way the Suffridge polynomials emerged. They
came out as multiplier operators with some sine multipliers applied to the
Fejér polynomials. In turn, the Fejér polynomials arose as a solution of the
following extremal problem.

Let fn(t) = 14aj cost+---+an cos Nt = 0. Then fy(t) < N+1 and the
Fejér polynomials are extremal here. Their coefficients can be computed
from the Fejér—Riesz representation

N 2 N 1
ikt|
Z::(il 1+2]§1<1—M)Coskt

On(t) =
N+1|% 0
Furthermore, for the trigonometric polynomial

N
Fy(t)=142 Z ay, cos kt
k=1

the following Fejér inequality is valid:

a1 < 2cos 5

ai| < 2cos ——,

! N +2

and here the extremal polynomials are the Egérvary-Szasz polynomials [17]

N 7(k+1)

N 2 k sin
En(t) + +2 (N +1—k)cos LI Nt2 ) cos kt.
N +2 sin N’er

The expression mE ~N(t) can be written in the following form [5]:

Z by, cos kt,

N
2 . m(k+1) ikt
N +2 kZ:OSln N +2

where bp =1 and for k=1,..., N,

(N —k+3)sin BEUT (N — & + 1) sin &7 51)

(N +2)sin 175

b, =

Now, let us apply the same approach to the Egervary-Szész polynomi-
als, i.e. multiply the coefficients (3.1) by sin Nil and introduce the new
polynomials

Z by, sm k. (3.2)
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Below are some examples:
Py(z) = 2, Py(z) = 2+ 327,
L) 3
7
Py(z)=z+ 2+ 22° + lz4,
8 — 40 cos? ( ) + 32cos? (7) — 24 cos (7) 9

z
Ps(z )—z+\[z +3 (1

Ps(z) = 2+ 40 cos3 (7) —30cos ( ) — 32cos? (7) +7 et
24 cos® (%) — 28 cos (%) — 18 cos (%) +4 4
40 cos? (%) — 30cos (%) 32 cos? (%) +7 :
16 cos® (%) — 16 cos (%) — 12 cos (%) +4 4
40 cos3 (%) —30cos (%) — 32cos? (%) +7
N 8 cos® (%) — 4 cos? (%) — 6cos (%) +1 5
40 cos? (%) — 30 cos (%) — 32 cos? (%) +777

94842 .2 |, 6424103 | 44246 4 | 2/242_5 1 6
Po (= )_Z+4xf+82 + 1v218 © +4\/§+82 +4\/§+8Z +4\/§+8z'

Theorem 3.1. The following representation is valid fort € (0,m), t # N+2 :

) 1
Py(e™) = +
n(e") 2(cost cos ]\,212)
N 1 — cos ]\,212 sin ¢ sin Mt Ni2, (3.3)
e 2
(N +2)(1 —cost) (cost — cos ]\?12)2
Proof. We begin with
1
Pn(z) = X
(N +2) sin N+2 sin
X Z [(N —k+3) sin (Ti;r — (N —k+1)sin (ljvj% sin A’,ﬁzzk

k=1
Having in mind that

{2 sin(7) — 0 - sin 2% ] sin (ijﬂ:_lz)ﬂ N+ _

N+2
we can sum up to N + 1. A further modification produces

N+1
1 +

COS =
N—k+2)sin 2br 4 9 “ " NE2 2 kn ]zk
(N +2)sin 5 ;1 {( )oin v sin ;3 A

PN(Z)
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An important observation is that

N+1
1 +

N+ 2k k
- S E N — k4 2)sin -z
N+2 N+1, 2( ) (N 2)s1n N+2 P 1( ) N+2

where Syy12(2) is the second Suffridge polynomial of order N + 1. By
using formula (5) in [15, p. 496] for n = N + 1 and j = 2 we get

. 1
N+1 ity _
N+2 Sn-ia(e) = 2(Cost cos 2L )+
N+2
sint - sin Mt N+2
I e 2
N+42 b 2 \2
(cos COS 7 +2)
Meanwhile,
Nt 9k Kt .9 sin %t sint N+2,
Esm ke — gin? L - : cet 2
N+2 NT2 2t 1 _ cost
cost — cos Nio Cos
By combining both formulas, we get the formula in the theorem. (I

Note that the right hand side of (3.3) has removable singularities, thus
it is in fact a trigonometric polynomial.

Theorem 3.2. The following representation is valid fort € (0,7), t # N+2 :

4Py (") =
N+2 _ 27 . 2
B cos 5=t L2 1 —cos 515 sint sin N424) 4
- t— 21 N+2 1 — cost 2 \2 2
COs COS N2 (cost COS 77 +2)

N < sin Mt )2
27 :
cost — cos Ni2

Theorem 3.2 can be directly verified by tedious standard computations.
Further, in order to better understand the behaviour of Py, we will pull
back its norm to Rar via the Weierstrass map. The pull back,

RN(.%) = ‘PN(eit)‘2’t22arctana:

allows us to study a single period of the function.

Theorem 3.3. If (Ry(z))" < 0 for all x € (0,00) then Pn(D) contains a
central disc of radius

™
- SeC2

4 N+2
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Proof. Taking the imaginary part we get

& it 1 —cos N%z sint (sin %tf
S(Pn(e™)) = _ 2 34
(N +2)(1 —cost) (cost — cos ]\?712)

Since I(Py (%)) =0 on [0, 7], the monotonicity of Ry(x) in = implies the
monotonicity of | Py (e®)] in t which implies that the shortest distance from
the boundary dP(DD) to the origin is at

1 1 5

Pyn(-1) = = ——sec .
n(=1) 2(cos7r—cosN2—I2) 4 N+2

Theorem efthm3 motivates the following:

Conjecture 3.4. For every polynomial Py (z) the range Py (D) contains a

central disc of radius
1 m
~ sec?

4 N+2

4. PROOF OF THE CONJECTURE FOR SMALL N

Our first observation is that Ry (z) is of the form
Qn(z)
(14 22)N-1
where @y is an even polynomial of degree 2(N — 1). Indeed, one shows by

induction that cos(narctanz) (or sin(narctanx)) is a rational function of
the form

(4.1)

cn(z)
(14 22)2
where ¢, is a polynomial. An ugly but elementary computation implies
then that Ry is of the form shown in equation (4.1).
The benefit is that the monotonicity can now checked by a deterministic
algorithm: using a Sturm sequence one can count the real roots of the
numerator of the derivative of Ry (x):

(1+2)V2An(z) == 1+ 22)V 2 (Qy(2) (1 + 27) — 2(N — 1)zQn (7)) .
This allows us to determine the univalence of the function P:

4.1. The case N = 1. In this case Pi(z) = z, R1(z) = 1, thus the Koebe
radius is 1.

4.2. The case N = 2. In this case Q2(x) = 92‘”2, and the Koebe radius
T2 is |P2(—1)‘ = 1/2.
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4.3. The case N = 3. In this case
1
Qs(a) = 15 (27 +9v5 + (10V5 — 18)22 + (35 — 15\/5);1:4)

As Az is quadratic, is easy to check that Rs is decreasing. on R*. This

implies the estimate r3 < |P3(—1)| = % = 0.382... for the Koebe radius.
Note that for the Suffridge polynomial we have |S3(—1)] = 0.3905... and
the minimal distance from the image of the unit circle to the origin is
0.3849... [10]. These estimates imply a negative answer to Dimitrov’s
question for cubic polynomials.

4.4. The case N = 4. In this case
1
Qa(z) = 9 (22 +9) (z* — 22 +9)

(This can also be seen from A which is biquadratic). The discriminant is
negative, and therefore the smallest value for Ry(x) is at —1, which implies
T4 < |P4(—1)| = 1/3.

4.5. The case N =5. We have that
Qs (x) = —492° (121 sin f; — 42 (3 + 5sin 35 ) +55c05 % )+
+ 425 (8924 — 9107 sin & + 15094sin 4 — 4507 cos % ) +
+ 20484326 — 20035 sin 7 + 116342sin 3 + 33443 cos 7 ) -
— 422 (37328 + 61431 sin(f; + 31802sin 3 + 133139 cos 3 ) +

491 (22702 + 3859 sin 7 + 30218 sin 3T + 31141 cos T )

« 1

784 (bln 23 ~+cos ?2)78r )

and
A 6 3
Tow — x ( 1375 + 1589 sin {; — 2402 sin 17 + 906 cos 7 )
€T
— (28777 + 3193 sin 75 + 35530sin 3 + 23482 cos £ ) +
+ (98155 + 81679sin 75 + 105874 sin 35 + 216430 cos 7 ) -
— 5(51407 + 14247 sin 75 + 66638 sin 35 + 78710 cos 2 ).

Again P5(z) is univalent and this gives us an estimate on the Koebe radius
rs < |Ps(—1)| = 0.3080. ...
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4.6. The case N = 6. In this case
Qs(z) = (6 — 4v2)z'% + (246 — 172v/2) 2% + 4(70v/2 — 99) 2°—
—4(30v2 — 61)2* — 10(9 + 2v2)2? + 36v/2 + 54

and
% = (19v2 - 27)2® + (222 — 156v/2) 2+
+ (15072 — 240)2* + (106 — 20v/2) 2% + (—45 — 25v/2).

This is the last situation where we can find the roots exactly and this
implies the estimate for the Koebe radius r¢ < |Ps(—1)| = 0.2929.... We
conjecture that the estimates obtained are in fact true values.

4.7. Larger N. As mentioned above, by using the Weierstrass transform,
univalence follows from the study of the roots of Ay. We used Mathematica
that checks exactly that A(z) has no real roots outside 0 for N up to 51,
and the growth of Ry can be checked exactly for any N.

5. KOEBE RADIUS FOR UNIVALENT POLYNOMIALS

When this article was in preparation, the authors learned that these
polynomials were discovered earlier and independently by Brandt [4] and
Dimitrov [7]. Neither considered the problem of uniqueness and their univa-
lence was proved through two different methodologies by Brandt [4] and by
Kayumov and Khammatova [11]. Note that the monotonicity of |Py ()]
implies that Py(z) takes no value more than once on dD, whence the poly-
nomial Py(z) is univalent in D (cf. [16, 6.45, p. 201]|). This gives a third
proof of the univalency of Py(z) for small values of N.

Let us thus focus directly on their Koebe radius. Theorem 3.3 implies
the following estimate on the Koebe radius for univalent polynomials:

1 5 7

<= )
TN 4sec N2

This estimate may be complemented by an estimate from below. In 1916
Bieberbach provided the estimate

las| < 2 (5.2)

(5.1)

for the the second Taylor coefficient of a function from S. This estimate
implies the Koebe conjecture by the following beautiful argument. Let
fe8, f(z)=2z+az?+--- and v ¢ f(D). Then

f(z)

| 1G) :f(2)<1+7+”'> :(z+a222+...)<1_|_§+...) _
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1 2
=z+ a2+ - |z +--.
v
1

By the Bieberbach estimate we have |as + %| < 2, hence |y| = 3T]ag and

again by (5.2) we get |y| > I which is a statement of Koebe Theorem.
The above argument implies that ry > m W. Rogosinski and

G. Szegs [13] obtained an estimate for the second coefficient of a typically
real polynomial, |az| < 2 cos2¢y, where ¢y = 7/(N + 3) if N is odd, and
1N 1s the smallest positive root of the equation

(N +4)sin (N +2)Yy + (N +2)sin (N +4)Yy =0

if N is even. (Recall that a polynomial p(z) with real coefficients is called
typically real in D if S(p(2))S(z) = 0 for z € D.) Since a univalent polyno-
mial with real coefficients is typically real we thus get an estimate on the
Koebe radius for univalent polynomials:

1
TN = 18602 YN - (5.3)

An alternative approach to the problem of estimating the functionals in
complex domains can be found in [2,3,12, 14|
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