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On the Koebe quarter theorem for
polynomials

Jimmy Dillies, Dmitriy Dmitrishin, Andrey Smorodin,
Alex Stokolos

Abstract. The Koebe One Quarter Theorem states that the range of
any Schlicht function contains the centered disc of radius 1/4 which is sharp
due to the value of the Koebe function at ´1. A natural question is find-
ing polynomials that set the sharpness of the Koebe Quarter Theorem for
polynomials. In particular, it was asked in [8] whether Suffridge polynomi-
als [15] are optimal. For polynomials of degree 1 and 2 that is obviously true.
It was demonstrated in [10] that Suffridge polynomials of degree 3 are not
optimal and a promising alternative family of polynomials was introduced.
These very polynomials were actually discovered earlier independently by
M. Brandt [4] and D. Dimitrov [7]. In the current article we reintroduce
these polynomials in a natural way and make a far-reaching conjecture that
we verify for polynomials up to degree 6 and with computer aided proof up to
degree 51. We then discuss the ensuing estimates for the value of the Koebe
radius for polynomials of a specific degree.

Анотація. Теорема Кебе про одну чверть стверджує, що область зна-
чень будь-якої шліхт функції містить диск радіусу 1/4 з центром в точці
z = 0. Ця оцінка на радіус є точною і досягається для значення функ-
ції Кебе в точці z = ´1. Природним питанням є пошук поліномів, які
визначають остаточність теореми Кебе. Зокрема, Димитров ставив пи-
тання, чи є оптимальними поліноми Саффріджа. Для поліномів степеня
1 та 2 це, очевидно, так. Дмитришин, Дьяконов і Стоколос, у спільній
роботі показали, що поліноми Саффріджа степеня 3 не є оптимальними,
і запропонували перспективне альтернативне сімейство поліномів. Ви-
явилося, що ці поліноми були відкриті раніше Брандтом і, незалежно,
Димитровим. В даній статті такі поліноми означено більш природним
чином. Крім того в роботі висунуто важливу гіпотезу, яку перевірено
для поліномів степеня ď 6 вручну, а за допомогою комп’ютерного пакета
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Wolfram Mathematica – для поліномів степеня ď 51. Ми також обгово-
рюємо оцінки значення радіусу Кебе для деяких поліномів.

1. INTRODUCTION
Geometric complex analysis has arisen from two fundamental statements:

the Koebe Quarter Theorem and the Bieberbach Conjecture. Koebe’s theo-
rem states that for any function f P S the image f(D) contains a disc of
radius 1/4, where D = t|z| ă 1u and

S = tf(z) : f(0) = 0, f 1(0) = 1, f(z) is univalent in Du.
The Bieberbach Conjecture says that |ak| ď k for all k = 1, 2, . . . where
f P S and the ak are the Taylor coefficients of f . For many decades this
conjecture was a driving force of the development of geometric complex
analysis. Many outstanding mathematicians contributed through partial
solutions until it was resolved in full generality by Louis de Brange in 1984.

Both theorems offer sharp bounds as the so-called Koebe function
K(z) :=

z

(1 ´ z)2
= z + 2z2 + 3z3 + ¨ ¨ ¨ , z P D,

is an extremizer for both statements. One can see that the radius 1
4 in

Koebe’s theorem is optimal, as also is the estimate |ak| ď k in de Brange’s
result. A natural question is whether the constant 1/4 as well as the es-
timate |ak| ď k can be improved for polynomials of a specific degree and
what would be a polynomial analogue of the Koebe function. Say, for poly-
nomials of the first degree the constant is trivially 1; a simple computation
demonstrates that for polynomials of degree 2 it is 1/2. The task was
formalized by Dimitrov who asked:
Problem 1.1. [8, Problem 5] For any N P Z+, find a polynomial

pN (z) = z + a2z
2 + ...+ aNz

n P S
for which the infimum rN := inft|pN (z)| : z = eit, 0 ď t ď 2πu is attained.

Let us call rN the Koebe radius. Obviously, we have rN ě 1/4. In this
article a new interesting family of typically real polynomials is introduced.
We conjecture that they are univalent (this is proven for degree ď 6) and
that they attain the value of the Koebe radius.

The following statement a central in the paper:

Conjecture 1.2. The value of the Koebe radius for the polynomials of
degree N is

1

4
sec2 π

N + 2
.
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One cannot emphasize enough the relation between this work and earlier
work of Dimitrov. In particular, in [9], the author established a relation
between Egerváry-Szász and Suffridge polynomials. Dimitrov’s main result
was actually hinted at by the surprising link between Suffridge polynomials
and Fejér’s kernel. His so-called Féjer polynomials [9, Eq. (3.3)] correspond
to our Egerváry-Szász polynomials, EN (t). So in a sense, our work parallels
that of Dimitrov even though our initial motivations were different.

2. SUFFRIDGE POLYNOMIALS
A natural approach to Dimitrov’s problem would be to look at trun-

cations of the Koebe function. However, there is a significant difference
between extremal analytic functions and polynomials. Since the derivative
of a function univalent in D has roots outside D, Vieta’s theorem implies
the estimate on the leading coefficient

|aN | ď 1

N
. (2.1)

Since the coefficients of the Koebe function increase, the truncation is not
a univalent in D polynomial.

Unfortunately, the variety of known polynomials univalent in D is quite
limited. The estimate (2.1) suggests considering the polynomials

AN (z) =
Nÿ

k=1

1

k
zk.

These are partial sums of the function ´ log(1´ z) which is univalent in D.
They were proven to be univalent in D by G. W. Alexander in the milestone
paper [1]. For these polynomials, |AN (´1)| ě 1

2 and 1
2 is sharp.

Other popular extremal polynomials satisfying (2.1) are the Fejér poly-
nomials

FN (z) =
Nÿ

k=1

(
1 ´ k ´ 1

N

)
zk.

These again indicate that the constant 1
2 might be sharp in general. Cer-

tainly, we need more polynomials to test. However, to construct new ex-
tremal univalent polynomials is a quite challenging task.

Returning to the Koebe function, we should recall that it is extremal for
the Bieberbach conjecture and has increasing coefficients, while the coeffi-
cients in the above examples are decreasing. A powerful idea of Ted Suf-
fridge [15] was to multiply the Fejér coefficients by the sine factor sin πk

N+1 ,
making the new coefficients increase up to some level. He introduced a
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remarkable family of extremal polynomials

SN,j(z) =
Nÿ

k=1

(
1 ´ k ´ 1

N

)sin(πkj/(N + 1))

sin(πj/(N + 1))
zk, j = 1, . . . , N,

which turn (2.1) into equality. He proved that they are univalent in D.
Below instead of SN,1(z) we will simply write SN (z).

Also, Suffridge showed that whenever pN (z) is a polynomial in S with
real coefficients and |aN | = 1/N , the remaining coefficients of pN (z) are
also dominated by the coefficients of SN (z).

Moreover,
|SN (´1)| = 1

4

N + 1

N
sec2 π

2(N + 1)
Ñ 1

4
,

hence these polynomials indicate that 1/4 is asymptotically sharp for the
polynomial version of the Koebe Quarter Theorem (cf. [6]). Thus, Suffridge
polynomials may be considered as a counterpart of the Koebe function.

Note that the value |SN (´1)| is the smallest distance from the image
of the unit circle to the origin for polynomials SN (z), but only for even
degree. For polynomials of odd degree the infimum inft|SN (z)| : |z| = 1u is
not achieved at z = ´1, but at a different point ξ such that S1

N (ξ) = 0 [10]
(see Fig. 1).

Fig 1: The image and fragment for S3(D).
Also, note that the roots of the derivative of a Suffridge polynomial are on

BD, and the leading coefficient is 1/N – the extremal case of the univalence
property. What could be a better candidate to be a solution to Dimitrov’s
problem? Actually, Dimitrov [8, p. 16] asked a specific question about the
Suffridge polynomial SN (z): Is it extremal for every fixed N? Note that it
is indeed extremal for N = 1, 2.

Later in this work we will provide evidence that the range of Brandt
polynomials contain a central disc of radius 1

4 sec2(π/N+2) by working out
explicit cases. Our conjecture is that this holds for all N which would allow
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Brandt polynomials to be used in future work as probes to text extremal
constructions.

3. NEW POLYNOMIALS
We have analyzed the way the Suffridge polynomials emerged. They

came out as multiplier operators with some sine multipliers applied to the
Fejér polynomials. In turn, the Fejér polynomials arose as a solution of the
following extremal problem.

Let fN (t) = 1+a1 cos t+¨ ¨ ¨+aN cosNt ě 0. Then fN (t) ď N+1 and the
Fejér polynomials are extremal here. Their coefficients can be computed
from the Fejér–Riesz representation

ΦN (t) =
1

N + 1

ˇ̌
ˇ̌
ˇ
Nÿ

k=0

eikt

ˇ̌
ˇ̌
ˇ

2

= 1 + 2
Nÿ

k=1

(
1 ´ k

N + 1

)
cos kt.

Furthermore, for the trigonometric polynomial

FN (t) = 1 + 2
Nÿ

k=1

ak cos kt

the following Fejér inequality is valid:

|a1| ď 2 cos π

N + 2
,

and here the extremal polynomials are the Egérvary-Szász polynomials [17]

EN (t) =
N + 2

2
+

Nÿ

k=1

(
(N + 1 ´ k) cos kπ

N + 2
+

sin π(k+1)
N+2

sin π
N+2

)
cos kt.

The expression 2
N+2EN (t) can be written in the following form [5]:

2

N + 2

ˇ̌
ˇ̌
ˇ
Nÿ

k=0

sin π(k + 1)

N + 2
eikt

ˇ̌
ˇ̌
ˇ

2

=
Nÿ

k=0

bk cos kt,

where b0 = 1 and for k = 1, . . . , N ,

bk =
(N ´ k + 3) sin (k+1)π

N+2 ´ (N ´ k + 1) sin (k´1)π
N+2

(N + 2) sin π
N+2

. (3.1)

Now, let us apply the same approach to the Egerváry-Szász polynomi-
als, i.e. multiply the coefficients (3.1) by sin kπ

N+1 and introduce the new
polynomials

PN (z) = csc 2π

N + 2

Nÿ

k=1

bk sin
πk

N + 2
zk. (3.2)
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Below are some examples:
P1(z) = z, P2(z) = z + 1

2z
2,

P3(z) = z + 2?
5
z2 + 1

2

(
1 ´ 1?

5

)
z3,

P4(z) = z + 7
6z

2 + 2
3z

3 + 1
6z

4,

P5(z) = z +
8 ´ 40 cos2

(
π
7

)
+ 32 cos3

(
π
7

)´ 24 cos
(
π
7

)

40 cos3
(
π
7

)´ 30 cos
(
π
7

)´ 32 cos2
(
π
7

)
+ 7

z2+

+
24 cos3

(
π
7

)´ 28 cos2
(
π
7

)´ 18 cos
(
π
7

)
+ 4

40 cos3
(
π
7

)´ 30 cos
(
π
7

)´ 32 cos2
(
π
7

)
+ 7

z3+

+
16 cos3

(
π
7

)´ 16 cos2
(
π
7

)´ 12 cos
(
π
7

)
+ 4

40 cos3
(
π
7

)´ 30 cos
(
π
7

)´ 32 cos2
(
π
7

)
+ 7

z4+

+
8 cos3

(
π
7

)´ 4 cos2
(
π
7

)´ 6 cos
(
π
7

)
+ 1

40 cos3
(
π
7

)´ 30 cos
(
π
7

)´ 32 cos2
(
π
7

)
+ 7

z5,

P6(z) = z + 9+8
?
2

4
?
2+8

z2 + 6
?
2+10

4
?
2+8

z3 + 4
?
2+6

4
?
2+8

z4 + 2
?
2+2

4
?
2+8

z5 + 1
4

?
2+8

z6.

Theorem 3.1. The following representation is valid for t P (0, π), t ‰ 2π
N+2 :

PN (eit) =
1

2
(
cos t´ cos 2π

N+2

)+

+
1 ´ cos 2π

N+2

(N + 2)(1 ´ cos t)
sin t sin N+2

2 t
(
cos t´ cos 2π

N+2

)2 e
N+2

2
it.

(3.3)

Proof. We begin with

PN (z) =
1

(N + 2) sin 2π
N+2 sin π

N+2

ˆ

ˆ
Nÿ

k=1

[
(N ´ k + 3) sin (k+1)π

N+2 ´ (N ´ k + 1) sin (k´1)π
N+2

]
sin kπ

N+2z
k.

Having in mind that
[
2 sin(π) ´ 0 ¨ sin Nπ

N+2

]
sin (N+1)π

N+2 zN+1 ” 0

we can sum up to N + 1. A further modification produces

PN (z) =
1

(N + 2) sin 2π
N+2

N+1ÿ

k=1

[
(N´k+2) sin 2kπ

N+2 + 2
cos π

N+2

sin π
N+2

sin2 kπ
N+2

]
zk.



On the Koebe quarter theorem for polynomials 225

An important observation is that

N+1
N+2 ¨ SN+1,2(z) =

1

(N + 2) sin 2π
N+2

N+1ÿ

k=1

(N ´ k + 2) sin 2kπ
N+2 ¨ zk,

where SN+1,2(z) is the second Suffridge polynomial of order N + 1. By
using formula (5) in [15, p. 496] for n = N + 1 and j = 2 we get

N+1
N+2 ¨ SN+1,2(e

it) =
1

2
(
cos t´ cos 2π

N+2

)+

+ 1
N+2 ¨ sin t ¨ sin N+2

2 t
(
cos t´ cos 2π

N+2

)2 ¨ eN+2
2

it.

Meanwhile,
N+1ÿ

k=1

sin2 kπ
N+2e

ikt = sin2 π
N+2 ¨ sin N+2

2 t

cos t´ cos 2π
N+2

¨ sin t
1 ´ cos t ¨ eiN+2

2
t.

By combining both formulas, we get the formula in the theorem. □

Note that the right hand side of (3.3) has removable singularities, thus
it is in fact a trigonometric polynomial.

Theorem 3.2. The following representation is valid for t P (0, π), t ‰ 2π
N+2 :

4|PN (eit)|2 =

=

( cos N+2
2 t

cos t´ cos 2π
N+2

+ 2
N+2

1 ´ cos 2π
N+2

1 ´ cos t
sin t

(
cos t´ cos 2π

N+2

)2 sin N+2
2 t

)2

+

+

( sin N+2
2 t

cos t´ cos 2π
N+2

)2

.

Theorem 3.2 can be directly verified by tedious standard computations.
Further, in order to better understand the behaviour of PN , we will pull

back its norm to R+
0 via the Weierstrass map. The pull back,

RN (x) = |PN (eit)|2|t=2 arctanx

allows us to study a single period of the function.

Theorem 3.3. If (RN (x))1 ă 0 for all x P (0,8) then PN (D) contains a
central disc of radius

1

4
sec2 π

N + 2
.
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Proof. Taking the imaginary part we get

ℑ(PN (eit)) =
1 ´ cos 2π

N+2

(N + 2)(1 ´ cos t)
sin t

(
sin N+2

2 t
)2

(
cos t´ cos 2π

N+2

)2 . (3.4)

Since ℑ(PN (eit)) ě 0 on [0, π], the monotonicity of RN (x) in x implies the
monotonicity of |PN (eit)| in t which implies that the shortest distance from
the boundary BP (D) to the origin is at

PN (´1) =
1

2
(
cosπ ´ cos 2π

N+2

) = ´1

4
sec2 π

N + 2
.

□
Theorem efthm3 motivates the following:

Conjecture 3.4. For every polynomial PN (z) the range PN (D) contains a
central disc of radius

1

4
sec2 π

N + 2
.

4. PROOF OF THE CONJECTURE FOR SMALL N
Our first observation is that RN (x) is of the form

QN (x)

(1 + x2)N´1
(4.1)

where QN is an even polynomial of degree 2(N ´ 1). Indeed, one shows by
induction that cos(n arctanx) (or sin(n arctanx)) is a rational function of
the form

cn(x)

(1 + x2)
n
2

where cn is a polynomial. An ugly but elementary computation implies
then that RN is of the form shown in equation (4.1).

The benefit is that the monotonicity can now checked by a deterministic
algorithm: using a Sturm sequence one can count the real roots of the
numerator of the derivative of RN (x):
(1 + x2)N´2∆N (x) := (1 + x2)N´2

(
Q1

N (x)(1 + x2) ´ 2(N ´ 1)xQN (x)
)
.

This allows us to determine the univalence of the function P :

4.1. The case N = 1. In this case P1(z) = z, R1(x) = 1, thus the Koebe
radius is 1.

4.2. The case N = 2. In this case Q2(x) =
9+x2

4 , and the Koebe radius
r2 is |P2(´1)| = 1/2.
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4.3. The case N = 3. In this case

Q3(x) =
1

10

(
27 + 9

?
5 + (10

?
5 ´ 18)x2 + (35 ´ 15

?
5)x4

)

As ∆3 is quadratic, is easy to check that R3 is decreasing. on R+. This
implies the estimate r3 ď |P3(´1)| = 3´?

5
2 = 0.382 . . . for the Koebe radius.

Note that for the Suffridge polynomial we have |S3(´1)| = 0.3905 . . . and
the minimal distance from the image of the unit circle to the origin is
0.3849 . . . [10]. These estimates imply a negative answer to Dimitrov’s
question for cubic polynomials.

4.4. The case N = 4. In this case

Q4(x) =
1

9

(
x2 + 9

) (
x4 ´ 2x2 + 9

)

(This can also be seen from ∆ which is biquadratic). The discriminant is
negative, and therefore the smallest value for R4(x) is at ´1, which implies
r4 ď |P4(´1)| = 1/3.

4.5. The case N = 5. We have that

Q5(x) = ´49x8
(
121 sin π

14 ´ 42
(
3 + 5 sin 3π

14

)
+ 55 cos π

7

)
+

+ 4x6
(
8924 ´ 9107 sin π

14 + 15094 sin 3π
14 ´ 4507 cos π

7

)
+

+ 2x4
(
84326 ´ 20935 sin π

14 + 116342 sin 3π
14 + 33443 cos π

7

)
´

´ 4x2
(
37328 + 61431 sin( π

14 + 31802 sin 3π
14 + 133139 cos π

7

)
+

+ 21
(
22702 + 3859 sin π

14 + 30218 sin 3π
14 + 31141 cos π

7

)
ˆ

ˆ 1

784
(
sin 3π

28 +cos 3π28
)14

and
∆

16x
= x6

(
´1375 + 1589 sin π

14 ´ 2402 sin 3π
14 + 906 cos π

7

)
´

´ x4
(
28777 + 3193 sin π

14 + 35530 sin 3π
14 + 23482 cos π

7

)
+

+ x2
(
98155 + 81679 sin π

14 + 105874 sin 3π
14 + 216430 cos π

7

)
´

´ 5
(
51407 + 14247 sin π

14 + 66638 sin 3π
14 + 78710 cos π

7

)
.

Again P5(z) is univalent and this gives us an estimate on the Koebe radius
r5 ď |P5(´1)| = 0.3080 . . . .
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4.6. The case N = 6. In this case
Q6(x) =

(
6 ´ 4

?
2
)
x10 +

(
246 ´ 172

?
2
)
x8 + 4

(
70

?
2 ´ 99

)
x6´

´ 4
(
30

?
2 ´ 61

)
x4 ´ 10

(
9 + 2

?
2
)
x2 + 36

?
2 + 54

and
∆

16x
=
(
19

?
2 ´ 27

)
x8 +

(
222 ´ 156

?
2
)
x6+

+
(
150

?
2 ´ 240

)
x4 +

(
106 ´ 20

?
2
)
x2 +

(´45 ´ 25
?
2
)
.

This is the last situation where we can find the roots exactly and this
implies the estimate for the Koebe radius r6 ď |P6(´1)| = 0.2929 . . .. We
conjecture that the estimates obtained are in fact true values.

4.7. Larger N . As mentioned above, by using the Weierstrass transform,
univalence follows from the study of the roots of∆N . We used Mathematica
that checks exactly that ∆(x) has no real roots outside 0 for N up to 51,
and the growth of RN can be checked exactly for any N .

5. KOEBE RADIUS FOR UNIVALENT POLYNOMIALS
When this article was in preparation, the authors learned that these

polynomials were discovered earlier and independently by Brandt [4] and
Dimitrov [7]. Neither considered the problem of uniqueness and their univa-
lence was proved through two different methodologies by Brandt [4] and by
Kayumov and Khammatova [11]. Note that the monotonicity of |PN (eit)|
implies that PN (z) takes no value more than once on BD, whence the poly-
nomial PN (z) is univalent in D (cf. [16, 6.45, p. 201]). This gives a third
proof of the univalency of PN (z) for small values of N .

Let us thus focus directly on their Koebe radius. Theorem 3.3 implies
the following estimate on the Koebe radius for univalent polynomials:

rN ď 1

4
sec2 π

N + 2
. (5.1)

This estimate may be complemented by an estimate from below. In 1916
Bieberbach provided the estimate

|a2| ď 2 (5.2)
for the the second Taylor coefficient of a function from S. This estimate
implies the Koebe conjecture by the following beautiful argument. Let
f P S, f(z) = z + α2z

2 + ¨ ¨ ¨ and γ R f(D). Then
f(z)

1 ´ f(z)
γ

= f(z)

(
1 +

f(z)

γ
+ ¨ ¨ ¨

)
= (z + α2z

2 + ¨ ¨ ¨ )
(
1 +

z

γ
+ ¨ ¨ ¨

)
=
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= z +

(
a2 +

1

γ

)
z2 + ¨ ¨ ¨ .

By the Bieberbach estimate we have |α2 +
1
γ | ď 2, hence |γ| ě 1

2+|α2| , and
again by (5.2) we get |γ| ě 1

4 which is a statement of Koebe Theorem.
The above argument implies that rN ě 1

2+sup |a2| . W. Rogosinski and
G. Szegő [13] obtained an estimate for the second coefficient of a typically
real polynomial, |a2| ď 2 cos 2ψN , where ψN = π/(N + 3) if N is odd, and
ψN is the smallest positive root of the equation

(N + 4) sin (N + 2)ψN + (N + 2) sin (N + 4)ψN = 0

if N is even. (Recall that a polynomial p(z) with real coefficients is called
typically real in D if ℑ(p(z))ℑ(z) ě 0 for z P D.) Since a univalent polyno-
mial with real coefficients is typically real we thus get an estimate on the
Koebe radius for univalent polynomials:

rN ě 1

4
sec2 ψN . (5.3)

An alternative approach to the problem of estimating the functionals in
complex domains can be found in [2, 3, 12,14]
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