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Abstract

Malaria is an infectious disease that affects over 216 million people worldwide, killing over

445,000 patients annually. Due to the constant emergence of parasitic resistance to the cur-

rent antimalarial drugs, the discovery of new drug candidates is a major global health prior-

ity. Aiming to make the drug discovery processes faster and less expensive, we developed

binary and continuous Quantitative Structure-Activity Relationships (QSAR) models imple-

menting deep learning for predicting antiplasmodial activity and cytotoxicity of untested

compounds. Then, we applied the best models for a virtual screening of a large database of

chemical compounds. The top computational predictions were evaluated experimentally

against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falcipa-

rum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent

antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity

in mammalian cells. Therefore, the computational approach employing deep learning devel-

oped here allowed us to discover two new families of potential next generation antimalarial

agents, which are in compliance with the guidelines and criteria for antimalarial target

candidates.

Author summary

Malaria is a serious infectious disease caused by parasites of the genus Plasmodium. The

recommended treatment is a combination of antimalarial drugs. However, the rise of par-

asites resistant to the current antimalarial drugs means that new therapeutics are continu-

ally required. To meet this challenge, we developed and applied models using deep

learning, a powerful artificial intelligence method, supported by experimental validation
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to identify new drug candidates against malaria. We used the developed computational

models to prioritize novel, active, and nontoxic compounds from virtual chemical librar-

ies for experimental evaluation. Then, the predicted antimalarial compounds were experi-

mentally validated in assays on Plasmodium falciparum culture. This allowed us to

discover two new potential antimalarial candidates. The use of computational approaches

is an attractive route to expedite the discovery of new therapeutics, especially to infectious

tropical diseases, as it can reduce time and development costs. Future directions include

in vivo studies on animal models.

Introduction

Malaria is a serious worldwide health problem that affects 216 million people, killing over

445,000 patients annually, especially children younger than five-years-old and pregnant

women in Sub-Saharan Africa [1]. The disease is transmitted to humans through the bites of

infected female Anophelesmosquitoes and caused by parasites of the genus Plasmodium [2,3].

Among them, P. falciparum is the most prevalent and dangerous species, causing the severe

form of the disease, i.e., cerebral malaria [3,4].

Current control and eradication of malaria demands a multifaceted approach. The World

Health Organization recommends a combination of at least two drugs with different mecha-

nism of action. However, the efficacy of antimalarial drugs is threatened by the emergence and

spread of resistant strains to all major antimalarial drugs, such as chloroquine [5], atovaquone

[6], pyrimethamine [7], and sulfadoxine [8]. More recently, drug resistance has also been

reported to front-line artemisinin-based combination therapies (ACTs) in the Greater Mekong

Subregion and southeast Asia [9–11]. All these aspects highlight the compelling need for the

development of new therapies to solve the challenges of drug resistance and treatment adher-

ence by identifying molecules with novel mechanisms of action and activity against all known

resistant parasite strains [12].

In this context, computational approaches, especially quantitative structure-activity rela-

tionships (QSAR) modeling, have had a profound impact in drug discovery [13]. Methodolog-

ically, QSAR modeling can be presented as a three-part process. Initially, a set of chemicals

with experimentally-determined biological properties is converted into molecular descriptors

(independent variables). Then, statistical methods are employed to establish relationships

between descriptors and the biological properties (dependent variable) [14,15]. Early statistical

methods used in QSAR applications were linear regression models [16–18], but these were

quickly supplanted by Bayesian neural networks [19,20], followed by Support Vector Machines

[21] and Random Forests [22–24]. Once statistically validated using appropriate metrics, the

generated model represents a helpful tool for the virtual screening (VS) of new chemicals with

desired biological properties.

The availability of large datasets of chemical compounds with at least one biological prop-

erty measured [25,26], associated with thousands of molecular descriptors paired with the pop-

ularization of in silico approaches resulted in the widespread use of QSAR for a diverse array

of biological properties relevant to drug discovery [27–32]. However, dealing with big datasets

has posed a challenge to model biological properties using classical machine learning algo-

rithms [33,34]. To address this issue, deep learning methods (deep neural networks) have been

presented as a practical solution [35,36]. Deep learning is particularly well-suited for QSAR

modeling because it possesses multiple hidden layers capable of computing adaptive non-
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linear features that increasingly capture complex data patterns with each iterative additional

layer, which makes this approach useful for tackling more complex chemical data [37,38].

Recently, there have been some exciting studies implementing deep learning for de novo
design of molecules [39–41] compounds with desired activity. Here, we developed a modeling

protocol employing deep learning to build binary and continuous QSAR models based on

large datasets and applied them for predicting the antiplasmodial activity and cytotoxicity of

untested compounds. Then, the prioritized compounds were experimentally evaluated against

asexual blood stages P. falciparum and mammalian cells. The general study design is presented

in Fig 1. Briefly, we followed the following successive steps: (i) dataset collection, curation, and

integration of molecules with activity against P. falciparum and cytotoxicity in fibroblasts; (ii)

chemical space analysis of curated datasets; (iii) development of both binary and continuous

QSAR models using deep learning; (iv) mechanistic interpretation of continuous models to

provide structural and biological insights useful for design of new antiplasmodial compounds;

(v) VS of ChemBridge chemical database (*500,000 compounds); (vi) experimental validation

of prioritized compounds on asexual blood stages of P. falciparum (sensitive and multi-drug

resistant strains) and mammalian cells; and (vii) identification of novel antiplasmodial

compounds.

Results

Chemical space analysis

Initially, an activity threshold of 1 μM based on half maximal effective concentration (EC50)

against P. falciparum was defined for discrimination between active and inactive com-

pounds previously tested against asexual blood stages of P. falciparum. In addition, a thresh-

old of 10 μM based on half-maximal cytotoxic concentration (CC50) for the NIH/3T3 cells

was defined for discrimination between toxic and nontoxic compounds [42]. The analysis

of chemical space was performed by using the curated datasets (see Materials and Methods)

for erythrocytic stages of P. falciparum 3D7 strain (chloroquine sensitive) dataset contain-

ing 1,162 compounds (P. falciparum dataset) and cytotoxicity dataset tested against mouse

embryonic fibroblasts (NIH/3T3 cell line) containing 1,270 compounds (cytotoxicity data-

set). This analysis has been performed by clustering both datasets separately, which revealed

that both are very structurally dissimilar, containing smaller clusters of similar compounds

(Fig 2).

Although the datasets are structurally diverse, they share the same regions of chemical

space. When analyzing the chemical space of both datasets together, by protting the two-

dimensional barcentric coordinates [43] (Fig 3, see Materials and Methods for details), one

can see that most of the active and inactive compounds from P. falciparum dataset overlap

within the same regions of chemical space of toxic and nontoxic compounds from the cytotox-

icity dataset. This analysis reveals that multiple compounds active against P. falciparum in the

erythrocytic stage are potentially toxic in mouse embryonic fibroblasts. For this reason, we

developed predictive computational models for both biological properties in order to select

only compounds predicted as active for P. falciparum and nontoxic for mammalian cells.

Performance of binary QSAR models

Binary QSAR models were built to distinguish active vs. inactive compounds for P. falciparum
and toxic vs. nontoxic compounds for NIH/3T3 cells. According to the statistical results of a

5-fold external cross-validation procedure (see Materials and Methods), the combination of

Morgan and FeatMorgan fingerprints (radius 2: FeatMorgan_2, Morgan_2; radius 4: FeatMor-

gan_4, Morgan_4) with deep learning (see Materials and Methods for details) led to predictive
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binary QSAR models. Statistical characteristics of developed QSAR models estimated by

5-fold external cross-validation are reported in Table 1. Briefly, correct classification rate

(CCR) values were ranging between 0.82–0.87; sensitivity (SE)– 0.82–0.87; specificity (SP)–

0.82–0.87, and a coverage– 0.77–0.87. Table 1 shows the detailed performances of the binary

QSAR models. The model built using Morgan_2 demonstrated the best performance among

all other models developed for P. falciparum (CCR = 0.84; SE = 0.82; SP = 0.86; and

PPV = 0.86). On the other hand, the best model developed for prediction of cytotoxicity for

mammalian fibroblasts was built using FeatMorgan_4 (CCR = 0.87; SE = 0.87; and SP = 0.87).

Fig 1. Study design. (i) dataset collection, curation, and integration of molecules with activity against P. falciparum and cytotoxicity in fibroblasts; (ii)

chemical space analysis; (iii) development of QSAR models using deep learning; (iv) mechanistic interpretation of models; (v) VS of ChemBridge

chemical database; (vi) experimental validation of prioritized compounds; and (vii) identification of novel antiplasmodial compounds.

https://doi.org/10.1371/journal.pcbi.1007025.g001

Fig 2. Cluster analysis of A) 1,162 compounds from P. falciparum dataset and B) 1,270 compounds from cytotoxicity dataset. Dendrogram and heatmap

of the distance matrix are both colored according to structural similarity (orange/red = similar; blue/violet = dissimilar). The x- and y-axis labels of the heatmap

represent compounds.

https://doi.org/10.1371/journal.pcbi.1007025.g002

Deep Learning-driven research for tackling Malaria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007025 February 18, 2020 5 / 21

https://doi.org/10.1371/journal.pcbi.1007025.g001
https://doi.org/10.1371/journal.pcbi.1007025.g002
https://doi.org/10.1371/journal.pcbi.1007025


Performance of continuous QSAR models

We have developed continuous QSAR models aiming to predict negative logarithmic units of

EC50 values (pEC50) against P. falciparum and CC50 values (pCC50) against NIH/3T3 cell line.

According to the statistical results of a 5-fold external cross-validation procedure, the combi-

nation of Morgan and FeatMorgan fingerprints (radius 2: FeatMorgan_2, Morgan_2) with

Fig 3. Chemical space of investigated compounds. The plot was obtained using barycentric coordinates from 2D RDKit descriptors showing active (blue dots) and

inactive (black diamonds) compounds of P. falciparum dataset and toxic (red stars) and nontoxic (green triangles) from cytotoxicity dataset.

https://doi.org/10.1371/journal.pcbi.1007025.g003

Table 1. Summarized statistical characteristics of binary QSAR models.

Model CCR SE SP PPV NPV Coverage

P. falciparum
FeatMorgan_2 0.84 0.82 0.86 0.85 0.83 0.80

FeatMorgan_4 0.82 0.82 0.83 0.83 0.83 0.78

Morgan_2 0.84 0.82 0.86 0.86 0.83 0.80

Morgan_4 0.84 0.83 0.85 0.85 0.83 0.77

Cytotoxicity

FeatMorgan_2 0.84 0.85 0.84 0.84 0.85 0.80

FeatMorgan_4 0.87 0.87 0.87 0.87 0.87 0.85

Morgan_2 0.84 0.86 0.83 0.83 0.85 0.79

Morgan_4 0.84 0.84 0.85 0.85 0.84 0.87

CCR: correct classification rate; SE: sensitivity; SP: specificity; PPV: positive predictive value; and NPV: negative predictive value; Coverage: percentage of test set

compounds within the applicability domain.

https://doi.org/10.1371/journal.pcbi.1007025.t001

Deep Learning-driven research for tackling Malaria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007025 February 18, 2020 6 / 21

https://doi.org/10.1371/journal.pcbi.1007025.g003
https://doi.org/10.1371/journal.pcbi.1007025.t001
https://doi.org/10.1371/journal.pcbi.1007025


deep learning led to statistically predictive models (Table 2), with predictive squared correla-

tion coefficient for the test set (Q2
ext) values ranging between 0.70–0.88, root mean square error

of cross-validation (RMSECV) of 0.44–0.55, mean absolute error (MAE) of 0.31–0.43, and

coverage of 0.79–0.81. The model built using Morgan_2 demonstrated the best performance

among all other models developed for P. falciparum (Q2
ext = 0.88, RMSECV = 0.49, and

MAE = 0.43). On the other hand, the best model developed for prediction of cytotoxicity for

mammalian fibroblasts was built using FeatMorgan_2 (R2
ext = 0.74, RMSECV = 0.44, and

MAE = 0.31).

Model interpretation

To provide a mechanistic interpretation and shed some light from the structural and biological

data used to build the continuous QSAR models, we plotted the predicted feature (fingerprint)

importance to visualize how the fragments contributed for the antiplasmodial activity and the

cytotoxicity (Fig 4 and S1 Fig). According to our results, atoms or fragments promoting posi-

tive contribution for the antiplasmodial activity are highlighted in red, while structural moie-

ties decreasing the activity are highlighted in green.

By analyzing the contribution maps generated for the P. falciparum dataset, we identified

six major fragments with favorable contribution for antiplasmodial activity. Examples of favor-

able fragments are as follows: 1,2,4,5-tetraoxaspiro[5.5]undecane; 7-chloroquinoline;

2,5-dimethylhexa-1,5-diene; pyridin-2-amine; 1,4-dihydroquinolin-4-one; and 1,3,5-triazine-

2,4,6-triamine. We also identified six fragments with unfavorable contribution for antiplasmo-

dial activity, such as: 1,2-dimethyl-1,4-dihydropyridin-4-one; 2-methylfuran; 5-guanidine; N-

ethylpropanamide; 2,6-dimethylhepta-1,5-diene; and 4H-pyrido[1,2-a]pyrimidin-4-one.

Moreover, we also calculated the predicted influence of structural fragments on the cytotoxic-

ity. A summarized list of atoms or fragments with favorable and unfavorable contribution for

cytotoxicity on mammalian fibroblasts is available in S1 Fig. The structural and biological

information provided by the QSAR models developed using deep learning could be useful for

designing or optimizing potent and selective antiplasmodial compounds by replacing unfavor-

able fragments by favorable fragments, assuming true independence of physicochemical

effects.

Virtual screening

The virtual screening (VS) was carried out following the workflow presented in Fig 5. Initially,

486,115 compounds available on EXPRESS-Pick collection of ChemBridge were downloaded

and standardized for VS. Then, drug-likeness filters (Veber [44] and Lipinski’s rules [45]) were

Table 2. Statistical characteristics of developed continuous QSAR models.

Model R2
ext RMSECV MAE Q2

ext Coverage

P. falciparum
Morgan_2 0.88 0.49 0.43 0.88 0.79

FeatMorgan_2 0.71 0.55 0.40 0.72 0.81

Cytotoxicity

Morgan_2 0.70 0.51 0.38 0.70 0.79

FeatMorgan_2 0.73 0.44 0.31 0.74 0.79

R2: correlation coefficient; RMSECV: root mean square error of cross-validation; MAE: mean absolute error; Q2
ext : predictive squared correlation coefficient for the test

set; Coverage: percentage of test set compounds within the applicability domain (AD).

https://doi.org/10.1371/journal.pcbi.1007025.t002
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applied to prioritize molecules with good oral bioavailability, to ensure that the compound has

basic properties of active drugs. In parallel, colloidal aggregation tool was used to filter out

molecules that are known to aggregate in experimental assays [46,47] After these steps, 72,260

compounds were excluded. Afterwards, the remaining compounds were submitted to conser-

vative binary and continuous QSAR models for prediction of the activity against blood stages

of P. falciparum and cytotoxicity against mammalian cells. The final selection of candidate

Fig 4. Predicted influence of structural fragments on the antiplasmodial activity. Compounds experimentally tested in P. falciparum assay, extracted from the

literature and used to build/validate our models. Fragments increasing the activity are colored in red; structural moieties decreasing the activity are highlighted in green;

indifferent fragments are not highlighted. pEC50 exp = pEC50 experimental; pEC50 pred = pEC50 predicted.

https://doi.org/10.1371/journal.pcbi.1007025.g004
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compounds can be summarized as follows: (i) the compounds predicted as active and non-cyto-

toxic by the binary QSAR models; (ii) compounds with pEC50�6.00 (i.e., EC50�1 μM for P.

falciparum) and pCC50 <5.00 (i.e., CC50 >10 μM for mammalian cells) predicted by the contin-

uous QSAR models; (iii) and compounds inside the applicability domain (AD) of the QSAR

models. The combination of binary and continuous QSAR models was implemented to increase

success rates in virtual screening campaign. In addition, the AD was determined in order to set

“reliable” and “unreliable” predictions [48,49]. The predictions were considered reliable when

they were within the chemical space used for training the models. Finally, we performed a

chemical similarity analysis to select a subset of structurally diverse compounds. At the end of

this process, five candidate compounds were selected for biological evaluation (Fig 6).

Experimental validation

The five candidate compounds were evaluated in vitro against asexual blood stages of P. falcip-
arum sensitive (3D7), and multi-drug-resistant (W2) strains. The EC50 for each compound

Fig 5. Virtual screening workflow used for identifying new compounds active against P. falciparum and non-toxic to mammalian cells. Veber and

Lipinski rules were used to prioritize candidate compounds with good oral bioavailability, to ensure that the compound has basic properties of active drugs;

colloidal aggregation tool was used to filter out molecules that are known to aggregate in experimental assays; chemical similarity analysis and visual inspection

were performed to select a subset of structurally diverse candidate compounds.

https://doi.org/10.1371/journal.pcbi.1007025.g005
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(Table 3) indicate that two compounds, 2-(4,6-diphenyl-1,2-dihydro-1,3,5-triazin-2-yl)phenol

(LabMol-149), 4-{N-[3-(morpholin-4-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl]acetamido}

benzoic acid (LabMol-151) and N2-(3-fluorophenyl)-N4-[(oxolan-2-yl)methyl]quinazoline-

2,4-diamine (LabMol-152), were potent at inhibiting the parasite growth, showing activities in

submicromolar and low nanomolar range against both 3D7 and W2 strains. Moreover, the

compound LabMol-152 (EC50 = 0.049 μM and 0.078 μM for 3D7 and W2, respectively)

showed efficacy in the same range of activity of the reference drugs, chloroquine (EC50 =

0.011 μM) and pyrimethamine (EC50 = 0.037 μM). The candidate compounds were also evalu-

ated for their cytotoxicity against fibroblast-like cell lines derived from monkey kidney (COS-

7 cells). With respect to selectivity, LabMol-149 and LabMol-152 showed the most promising

results (selectivity index, SI, ranging between 71.4–340.8, Table 3).

Discussion

In this work, we used a deep learning technique to obtain both binary and continuous QSAR

models to predict the antiplasmodial activity and cytotoxicity of untested compounds. Models

Fig 6. Five computationally-determined candidate compounds prioritized for further experimental evaluation. Atoms or fragments promoting positive

contribution for the antiplasmodial activity are highlighted in red.

https://doi.org/10.1371/journal.pcbi.1007025.g006
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were developed following the best practices of QSAR modeling [14,15], which are fully compli-

ant to Organization for Economic Co-operation and Development (OECD) guidance [50],

such as (i) a defined endpoint (biological properties in our case), (ii) an unambiguous algo-

rithm, (iii) a defined applicability domain (AD), (iv) appropriate measures of goodness-of-fit,

robustness, and predictivity, and (v) mechanistic interpretation, if possible [50].

Our study follows the most recent tendencies in the usage of deep learning to probe chemi-

cal space of drug-like molecules [38,51]. As a result, we have obtained predictive QSAR mod-

els, with CCR values ranging between 0.82–0.87 (binary models) and Q2
ext values ranging

between 0.70–0.88 (continuous models). These results suggest that deep learning can be effi-

ciently used to rationalize the identification of potent and selective antiplasmodial compounds

in early stages of drug discovery. In addition, analysis of chemical space of P. falciparum and

cytotoxicity dataset revealed that the compounds active against P. falciparum share the same

chemical space of many compounds that are toxic in mouse embryonic fibroblasts.

By applying the workflow presented on Fig 5, we were able prioritize five new compounds

for further experimental testing in vitro against sensitive (3D7) and multidrug-resistant (W2)

strains of P. falciparum. Two compounds (LabMol-149 and LabMol-151) showed activity at

submicromolar concentrations against asexual blood stages and low cytotoxicity in mammalian

cells. More remarkable, the compound LabMol-152 showed efficacy in the same range of activ-

ity as the reference drug pyrimethamine against 3D7 strain (EC50 = 0.049 and 0.037 μM, respec-

tively). Drug resistance in Plasmodium spp. is a complex daunting issue, and there is an opinion

that resistant parasite strains will always emerge [12]. Although not fully understood, clinical

resistance is probably due to high parasite genetic diversity and the misuse of therapeutics. The

compounds tested here present chemical scaffolds dissimilar from current antimalarial drugs,

according to the Tanimoto coefficient calculated using MACCS structural keys descriptors (Fig

7, S2 and S3 Figs, Supporting Information). Furthermore, no compound showed cross-resis-

tance with a P. falciparummultidrug-resistant strain, thus indicating new mechanisms of action

and potentially representing new weapons in our arsenal of antimalarials. However, parasite

resistance to new compounds seems more likely to be a problem by de novo acquisition than

pre-existing resistance [52]. Thus, how quickly resistance against our compounds would occur

is an interesting question and needs to be better elucidated in future studies.

To summarize, the approach developed in this study allowed us to discover three new

chemicals belonging to three different structural families (triazines, naphtoquinones, and

Table 3. In vitro evaluation of selected compounds against asexual blood stage of P. falciparum 3D7 and W2 strains, cytotoxicity on mammalian cells (COS7), and

selectivity indices.

Compound EC50 (Pf3D7)

(μM)

EC50 (PfW2)

(μM)

CC50 (COS-7) (μM) SIa SIb

LabMol-148 >40 >40 >200 − −
LabMol-149 1.450 ± 0.524 0.509 ± 0.177 >100 >71.4 >196

LabMol-150 >40 >40 >200 − −
LabMol-151 1.911 ± 0.292 1.616 ± 0.321 140.8 ± 11.2 73.7 87.1

LabMol-152 0.049 ± 0.029 0.078 ± 0.014 16.7 ± 10.3 340.8 214.1

Chloroquine 0.011 ± 0.001 0.173 ± 0.020 >50 4,545 289

Pyrimethamine 0.037 ± 0.007 18.240 ± 4.537 >100 2,702 5.5

EC50: half maximal effective concentration on 3D7 and W2 Plasmodium falciparum strains; CC50: half maximal cytotoxic concentration on COS7 cells; COS7:

fibroblast-like cells derived from monkey kidney tissue; SIa: Selectivity index calculated by COS7 CC50/3D7 EC50; and SIb: Selectivity index calculated by COS7 CC50/

W2 EC50; The data are expressed as mean ± SD of three independent assays. Dashed SI values means that SI could be calculated because compounds did not show

activity even at highest concentrations used in the assay.

https://doi.org/10.1371/journal.pcbi.1007025.t003
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quinazolines), which are promising starting points for developing of potential next generation

antimalarial agents. Moreover, two of these compounds (LabMol-149 and LabMol-152)

completely satisfy the guidelines and criteria for discovery of new antimalarial drugs, i.e., activ-

ity at low nanomolar concentrations (EC50 <500nM) against sensitive and multiple resistant

strains of Plasmodium spp. and SI greater than 10 folds [12,42]. Future directions include

structural optimization of potency and selectivity, determination of the stage in the asexual life

cycle of P. falciparum where these compounds seem to act, as well as in vivo assays.

Fig 7. Radial plot showing the similarities of LabMol-149 to known anti-malarial drugs (red). The similarity was accessed by the Tanimoto coefficient (Tc) and

MACCS structural key fingerprints.

https://doi.org/10.1371/journal.pcbi.1007025.g007
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Materials and methods

Computational

Datasets. In this study, deep learning algorithms were explored to build binary and con-

tinuous QSAR models using two datasets extracted from the ChEMBL database (https://www.

ebi.ac.uk/chembl/) [25]. A brief description of the datasets is presented below.

• P. falciparum (Target ID: CHEMBL2366922): 1,757 compounds with EC50 data for asexual

blood stages of P. falciparum 3D7 strain (chloroquine sensitive). Based on a threshold of

1 μM, it consisted of 1,058 active compounds with EC50� 1 μM, and 699 inactive com-

pounds (EC50 > 1 μM).

• Cytotoxicity (Target ID: CHEMBL614822): 2,061 compounds with CC50 data for mouse

embryonic fibroblasts (NIH/3T3 cell line). Based on a threshold of 10 μM, it consisted of 773

toxic compounds with CC50� 10 μM, and 1,288 nontoxic compounds (CC50 > 10 μM).

Data curation. All chemical structures and correspondent biological information were

carefully standardized using Standardizer v.16.9.5.0 (ChemAxon, Budapest, Hungary, http://

www.chemaxon.com) according to the protocols proposed by Fourches and colleagues [53–

55]. Briefly, explicit hydrogens were added, whereas polymers, salts, metals, organometallic

compounds, and mixtures were removed. In addition, specific chemotypes such as aromatic

rings and nitro groups were normalized. Furthermore, we performed the analysis and exclu-

sion of duplicates. Different criteria were adopted, as follows:

• Binary QSAR models: (i) if duplicates presented discordance in biological activity, both

entries would be excluded; and (ii) if the reported outcomes of the duplicates were the same,

one entry would be retained in the dataset and the other excluded. This analysis showed high

concordance between duplicate records for P. falciparum dataset (92%), and cytotoxicity

dataset (100%), revealing the high quality of these datasets. Considering the different size of

classes in P. falciparum dataset (789 actives and 581 inactives), and cytotoxicity dataset (635

toxic compounds and 933 nontoxic compounds), the curated datasets were balanced using a

linear under-sampling approach (i.e., reducing the size of the majority class) [29]. The

under-sampling strategy used here retains most of the representative molecules of the major-

ity class in balanced dataset, ensuring the structural diversity of original chemical space [29].

Initially, the Euclidean distances between each compound in majority class and whole set of

minority class are measured using k-Nearest Neighbor (k-NN) algorithm [56]. Then, the

samples on majority classes were linearly extracted over the whole set by using k-distances

and used to generate balanced datasets. Finally, we obtained two under-sampled datasets

with 1,162 compounds (see full P. falciparum dataset in S1 File, Support Information), and

1,270 compounds (see full cytotoxicity dataset in S2 File, Support Information).

• Continuous QSAR models: (i) duplicates were inspected visually, (ii) if duplicates presented

discordant potencies, both entries would be excluded; and (iii) if the reported potencies were

similar, an average of the values was calculated, and one entry would be retained in the data-

set. Subsequently, the EC50 (P. falciparum) and CC50 (cytotoxicity) values were converted to

negative logarithmic (−log) units, pEC50 and pCC50, respectively. At the end of this process,

the P. falciparum dataset had 1,246 compounds (full dataset available on S3 File, Support

Information) while the cytotoxicity dataset had 1,144 compounds (full dataset available on

S4 File).
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Chemical space analysis. Chemical space formed by P. falciparum and cytotoxicity data-

sets was analyzed by plotting the barycentric coordinates of all the structures encountered in

both datasets, which were defined by the 2D RDKit descriptors. Barycentric coordinates corre-

spond to the location of the points of a simplex (a triangle, tetrahedron, etc.) in the space,

defined by the vertices [43]. In other words, the location of a chemical in a multidimensional

space of 2D RDKit descriptors has been scaled to two dimensions. In this case, a simplex is

defined by all the RDKit descriptors of a particular chemical substance. Barycentric coordi-

nates were determined using Methods of Data Analysis module of HiT QSAR software [57]. In

addition, both datasets were independently clustered using the Sequential Agglomerative Hier-

archical Non-overlapping method [58] implemented in Python v.3.6. Briefly, a dendrogram of

the parent-child relationships between clusters and a heatmap of the proximity matrix colored

according to the pairwise chemical similarity between compounds. To better visualize the clus-

ters, the distance matrix of the compounds from the two datasets were independently calcu-

lated and the compounds were clustered.

Molecular fingerprints. Morgan and FeatMorgan fingerprints were calculated in the

open-source cheminformatics software RDKit (http://www.rdkit.org, [59]) executed on

Python v.3.6 (https://www.python.org). Both fingerprints were generated with radius 2−4 and

bit vector of 2,048 bits. Morgan is a type circular fingerprint built by applying the Morgan

algorithm to a set of user-supplied 2D chemical structures [60,61]. The fingerprint generation

process systematically records the neighborhood of each non-hydrogen atom into multiple cir-

cular layers up to a stablished radius. The radius is a dominant parameter which controls the

number and the maximum size of considered atom neighborhoods, thus it controls the com-

plexity of fragment representation. These atom-centered substructural features are interpreted

as indexes of bits in a huge virtual bit string. Each position in this bit string accounts for the

presence or absence of a specific fragment feature [60,61]. The Morgan captures highly specific

atomic information enabling the representation of a large set of precisely defined structural

features [60]. Additionally, invariants of Morgan called as FeatMorgan fingerprints can also be

calculated by including functional features (i.e., hydrogen-bond donor and acceptors, aro-

matic, halogen, basic and acid groups) [62].

Deep learning. The binary and continuous QSAR models were developed using Keras

(https://keras.io/), a deep learning library, and Tensorflow (www.tensorflow.org), a GPU train-

ing and CPU for prediction), as backend. Binary models were trained using previously estab-

lished activity/toxicity thresholds, while continuous models were developed using pEC50 (P.

falciparum) and pCC50 (cytotoxicity). The following parameters of the deep learning method

were optimized prior to model training: layer type (dense), hidden layers (8), activation func-

tion (ReLU), output layer function (sigmoid), model optimizer (Adam). The “binary cross-

entropy” and “mean squared error” were used as loss functions in binary and continuous

QSAR modeling, respectively. The “accuracy” and “mean absolute error” were used as parame-

ters to judge the performance of binary and continuous models, respectively. The following

hyperparameters were used for further deep learning training: epochs (5, 10, 50, 100), and

batch size (10, 20, 40, 60, 80, 100).

5-fold external cross-validation (5FECV). According to the best practices of QSAR

modeling [15], we chose five-fold external cross-validation for the estimation of predictivity of

developed models. The procedure can be described as follows: the entire dataset of compounds

was randomly divided into five subsets of equal size; then one of these subsets (20% of all com-

pounds) is set aside as an external validation set and the remaining four sets together form the

modeling set (80% of the full set). This procedure was repeated five times, allowing each of the

five subsets to be used as an external validation set. Models were built using the modeling set
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while the compounds in momentary external set (fold) were employed to evaluation of predic-

tive performance.

Performance of QSAR models. The predictive performance of binary QSAR models was

evaluated using sensitivity (SE), specificity (SP), correct classification rate (CCR), positive pre-

dictive value (PPV), and negative predictive value (NPV). These metrics were calculated as fol-

lows:

SE ¼
TP

TPþ FN
ð1Þ

SP ¼
TN

TNþ FP
ð2Þ

CCR ¼
SEþ SP

2
ð3Þ

PPV ¼
TP

TPþ FP
ð4Þ

NPV ¼
TN

TNþ FN
ð5Þ

Here, TP and TN represent the number of true positives and true negatives, respectively,

while FP and FN represent the number of false positives and false negatives, respectively.

The predictive performance of continuous QSAR models was evaluated using correlation

coefficient (R2), root mean square error of cross validation (RMSECV), mean absolute error

(MAE), and predictive squared correlation coefficient for the test set (Q2
ext) [63]. These metrics

were calculated as follows:

R2 ¼ 1 �

Pntest
i¼1
ðYobs � YpredÞ

2

Pntest
i¼1
ðYobs � �Y trainÞ

2
ð6Þ

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPntest
i¼1
ðYobs � YpredÞ

2

ntest

s

ð7Þ

MAE ¼
Pntest
i¼1
jYobs � Ypredj
ntest

ð8Þ

Q2

ext ¼ 1 �
½
Pntest

i¼1
ðYobs � YpredÞ

2
�=ntest

½
Pntest
i¼1
ðYobs � �Y trainÞ

2
�=ntrain

ð9Þ

In the above equations, Yobs represents experimental pEC50 or pCC50 value, Ypred represents

the predicted pEC50 or pCC50 value, ntrain and ntest are the number of compounds in training

and test set, respectively, and �Y train is the average of experimental values of the training set.

Applicability domain. The AD was estimated based on the Euclidean distances among

the training set of each QSAR model generated in the 5-fold external cross-validation proce-

dure. The distance of a test set compound to its nearest neighbor in the training set was com-

pared to the predefined AD threshold level. The prediction was considered to be less reliable if

the distance was greater than the threshold level. In our study, the AD was defined as a distance
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threshold (DT) between a compound under prediction and the closest nearest neighbors in

training set. The following equation was used for calculation of distance threshold [64]:

DT ¼ �y þ Zs ð10Þ

In which ӯ is the average Euclidean distance of the k nearest neighbors within the modeling

set, σ is the standard deviation of these Euclidean distances, and Z is an arbitrary parameter to

control the significance level. We set the default value of this parameter Z at 0.5. If the com-

pound distance exceeded the threshold, the prediction was considered to be less trustworthy

[65].

Mechanistic interpretation. Contribution maps were generated from continuous QSAR

models to visualize the atomic and fragment contributions for antimalarial activity and cyto-

toxicity. Here, the "weight" of an atom was considered as predicted-potency difference

obtained when the bits in the fingerprint corresponding to the atom are removed. Then, the

normalized weights were used to color the atoms in a topography-like map in which green

indicating a negative difference (i.e., potency increases when the bits are removed), and red

indicating a positive difference in biological property.

Virtual screening (VS). Developed QSAR models were used for VS of EXPRESS-Pick col-

lection of ChemBridge Corporation (http://www.chembridge.com/) aiming to identify new

potential antiplasmodial compounds, which could be potentially selective against the parasite

(i.e. non-toxic to mammalian cells). Prior to screening, the database was filtered using a aggre-

gator advisor tool to identify molecules that are known-to aggregate in experimental assays

[46,47]. Subsequently, Veber [44] and Lipinski’s rules [45] were employed in screening to pri-

oritize drug-like compounds. Then, the remaining compounds had their antiplasmodial activ-

ity and cytotoxicity against mammalian cells predicted by binary and continuous QSAR

models. In addition, the structural diversity of candidate compounds was investigated using

pairwise Tanimoto coefficients between compounds. Finally, the selected candidate com-

pounds were purchased and submitted to in vitro experimental evaluation.

Experimental

Materials. Candidate compounds were purchased from ChemBridge (San Diego-CA,

USA) and resuspended in 100% DMSO. It is important to mention that all compounds had a

minimum purity of 95%. The DMEM and RPMI 1640 media were purchased from Vitrocell

Embriolife (Campinas-SP, Brazil). All other reagents were purchased from Sigma-Aldrich

(St. Louis-MO, USA).

Parasite culture. The 3D7 and W2 strains were cultured in RPMI 1640 medium supple-

mented with 0.05 mg/mL gentamycin, 38.4 mM HEPES, 0.2% sodium bicarbonate, and 10%

O+ human serum, as previously described in standardized protocol [66]. Then, erythrocytes

were added to the culture to obtain a 5% of hematocrit, and incubated at 37˚C under 5% CO2

atmosphere, with daily exchange of medium. The parasitemia was monitored daily in smears,

stained with Giemsa. Synchronic cultures in ring stage were obtained by two consecutive treat-

ments, at 48h intervals with a 5% solution of D-sorbitol [67].

Antiplasmodial assay. Parasites synchronized at the ring stage, with 0.5% parasitemia

and 2% hematocrit, were distributed in the wells of a 96-well plate. The compounds were

tested in triplicates using 12-point dilution series (0.019 μM– 40 μM) over 72h. Chloroquine

and pyrimethamine were used as positive controls. The in vitro susceptibility of parasite to

tested drugs was measured by SYBR Green according to Hartwig and colleagues [68]. Briefly,

100 μL of lysis buffer (20 mM Tris, 5 mM EDTA, 0,008% wt/vol saponin, 0,08% vol/vol Triton

X-100 and 0.4 μL/mL of SYBR Green) were added in each well of a new black 96-well plate
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and 100 μL of parasite culture incubated with drugs were transferred. After homogenization,

the plates were incubated for 1h in the dark. Fluorescence was measured at 490 nm excitation

and 540 nm emission (CLARIOstar, Labtech BMG).

Cytotoxicity assay. Cytotoxicity assays used fibroblast-like cell lines derived from monkey

kidney tissue (COS7 cells), grown in DMEM medium supplemented with 10% fetal bovine

serum and 0.05 mg/mL gentamicin in atmosphere containing 5% CO2 at 37˚C. Drug cytotox-

icity in COS-7 cells was determined in duplicate, using 12 dilution series (0.097 μM– 200 μM).

After an incubation period (72 hours), cell viability analysis was performed via the MMT

reduction method (3- [4,5- dimethyl-thiazol-2-yl] -2,5-diphenyltetrazolium chloride) [69].

The optical density was determined at 570 nm (CLARIOstar, Labtech BMG) and the 50% cyto-

toxicity concentrations (CC50) was expressed as the percent viability relative to the control.

Statistics. The EC50 and CC50 values were calculated by plotting the Log doses vs. inhibi-

tion (expressed as a percentage relative to the control) in GraphPad Prism v.6 (GraphPad Soft-

ware, La Jolla California USA, www.graphpad.com).

Supporting information

S1 File. Full P. falciparum dataset used to build binary QSAR models.

(XLSX)

S2 File. Full cytotoxicity dataset used to build binary QSAR models.

(XLSX)

S3 File. Full P. falciparum dataset used to build continuous QSAR models.

(XLSX)

S4 File. Full cytotoxicity dataset used to build continuous QSAR models.

(XLSX)

S1 Fig. Predicted influence of structural fragments on cytotoxicity. Fragments contributing

for the cytotoxicity are colored in red, atoms or fragments decreasing the cytotoxicity are

highlighted in green, and no highlighting means no influence to cytotoxicity.

(TIF)

S2 Fig. Radial plot of the similarity of LabMol-151 compared to known antimalarial drugs.

The similarity was calculated using Tanimoto coefficient (Tc) and MACCS structural keys

descriptors.

(TIF)

S3 Fig. Radial plot of the similarity of LabMol-152 compared to known antimalarial drugs.

The similarity was calculated using Tanimoto coefficient (Tc) and MACCS structural keys

descriptors.

(TIF)
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