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Abstract: Nowadays, the systems for visual information processing are significantly extending their
application field. Moreover, an unsolved problem for such systems is that the classification procedure
has often-conflicting requirements for performance and classification reliability. Therefore, the goal
of the article is to develop the wavelet method for classifying the systems for visual information
processing by evaluating the performance and informativeness of the adopted classification solutions.
This method of classification uses the Haar wavelet functions with training and calculates the ranges
of changes in the coefficients of the separating surfaces. The authors proposed to select the ranges
of changes in these coefficients by employing the Shannon entropy formula for measuring the
information content. A case study proved that such a method will significantly increase the speed of
detecting the intervals of coefficient values. In addition, this enables us to justify the choice of the
width of the ranges for the change of coefficients, solving the contradiction between the performance
and reliability of the classifier.

Keywords: classification method; wavelet transform; Haar wavelet function; visual information
processing systems; Shannon entropy formula

1. Introduction

The application field of visual information processing systems and/or non-stationary
periodic signals is actively expanding at present [1–5]. For example, such systems are
in demand in technical diagnostics, in quality management, in traffic control, in many
military fields, in fields related to decision support in medicine, security, and so on. Visual
information processing in such systems investigates physical processes and phenomena
that are unambiguously described by random signals or images. In particular, this applies
to the tasks of remote parameter control of stationary and moving control objects [3], as well
as the remote sensing and tracking of objects in different backgrounds [4], object counting,
and product manufacturing control [5].

The modern approach to the creation of such systems involves extensive use of com-
puter information technology (IT). The implementation of such an approach involves
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adaptation to a specific application of existing IT. Such an adaptation is based on a prag-
matic approach; that is, an effort to achieve the goal with the minimum values of the
procedures parameters sufficient to make the right decision.

An important computational procedure in the above systems is the classification
procedure [6]. The development of actual IT often requires training the classifier on new
datasets. Such datasets may have a small volume; clusters of data may overlap in the
feature space [2,6,7]. In addition, when a system is functioning, the data for classification
may be distorted in shape (scale, shift, rotation) and with an increased level of noise due to
changes in capture conditions [1,2,4–6].

In such a situation, the quality and/or efficiency of decisions made in the system may
decrease [4]. However, increasing the dataset for training the classifier by measurements
(e.g., when researching new drug methods in medicine, security methods in military
applications, etc.) can reduce the speed of training such systems.

Increasing the set of images and/or signals under study based on known augmen-
tation methods [8,9] with unknown parameters of noise distribution laws and/or shape
distortions may not acheive the required values of quality and efficiency of such systems
within the limits of acceptable resource intensity.

In such cases, it is necessary to choose a classification method and its parameters.
However, when making such a choice for a particular applied task, it is often difficult to
implement a systematic pragmatic approach, taking into account the information suffi-
ciency. Such an approach, as a rule, requires a quantitative assessment of the effectiveness
and/or quality of the investigated classifiers variants. For most classification methods, the
implementation of such an approach requires a large number of experiments, i.e., up to a
complete enumeration of parameter variants.

Classification training enables us to calculate the coefficients that determine the shape
of the surfaces and separate classes in the feature space. Tasks traditionally solved in
the system (pattern recognition, clustering, and finding informative features) often differ
in the fact that their solution algorithms contain objective functions defined implicitly
by measuring their parameters. The classification problem also belongs to this category
of problems.

Classifier training is often complicated by the high level of noise in the training sample
data. The quality functional is not explicitly known and may have a multi-extremal surface
(this is due to the complex shape of clusters) and be noisy, especially when the analysis is
performed on small datasets.

The existing classification methods in systems for visual information processing are
usually based on optimization techniques, determining the direction of search for an
extremum of the objective function using the first derivative. Such methods include the
following: steepest descent, gradient, Gauss-Seidel, Rosenbrock, Powell, and Southwell [10].
Under the above conditions, these methods have a low reliability and (often) do not meet
the requirements of practice since they find local extrema only. This can also occur due
to different levels of noise in the data during the training of the classifier and in the
working mode of classification. In addition, the quantity of objects and the variance of
their parameters in the class may be different during the training of the classifier. Such
peculiarities may appear in classification with a complex form of clusters.

A number of References are devoted to determining the quality of information tech-
nologies and systems based on them. In particular, in [11], the main components of systems
quality in terms of the information component—syntactic, semantic, and pragmatic—are
highlighted as well as the features of information quality for healthcare, energy, and
transport devices. The methodology assumes the presence of 16 attributes, which are
used to assess the quality of systems. A similar approach is also implemented in other
studies [12,13].

When designing systems for visual information processing, the required performance
must be ensured. In addition, an important direction is the creation of adaptive systems, i.e.,
those capable of changing their parameters depending on changing surveillance conditions.
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Moreover, it is necessary to achieve the coordination of the characteristics for the individual
procedures of the system. At the same time, some authors [14] state that estimating the
parameters of individual procedures when assessing the quality of new or adapted-to-the-
applied-task information technologies is a labor-intensive process.

To solve such problems by successively coordinating the characteristic procedures, the
multicriteria decision analysis (MCDA) can be considered as a legitimate solution [15]. It is
also called multi the object optimization (MOO) or post Pareto optimization (PPO) [16]. For
this purpose, a wide range of methods has been developed [17]. In practice, approximate
methods for solving MCDA problems are also used [18]. Among them, one can single
out the main criterion method and the linear convolution method [19]. At the same time,
the application of the main criterion method is limited due to the difficulties associated
with the choice of the main criterion and limitations [20]. The linear convolution method
requires the determination of the weight coefficients necessary to combine partial objective
functionals [21]. Experts formulate requirements for speed and classification reliability
in different ways in different application areas; that is, the methods of both groups can
require additional information from experts in order to formulate and solve various types
of constrained scalar optimization problems.

To solve a problem by matching the characteristics of individual procedures, a number
of studies suggest using the well-known Shannon entropy formula to measure the infor-
mation content [22]. For example, such an approach has been proposed for choosing the
procedures for segmentation [23,24], clustering [25], and classification [26–29].

The authors have previously developed a classification method using Haar’s wavelet
transform (WT) and hyperbolic WT with improved noise immunity and reduced er-
ror [30,31]. In this case, the error in determining the extremum of the objective function
during processing with the Haar WT can be high (due to the asymmetry of the objec-
tive function). It has been shown that this error can be reduced by processing with the
hyperbolic WT.

In [30], the classification, determining the coefficients of separating surfaces using
multistage processing by the Haar WF and hyperbolic WFs, was described. Such an
approach enabled us to obtain a set of the nested intervals for these coefficients. However,
due to such complex processing, its performance is low.

Therefore, the goal of this article is to develop an improved wavelet method for
classifying the systems for visual information processing by evaluating the performance
and informativeness of the adopted classification solutions and employing the Shannon
entropy formula for measuring the information content.

2. Materials and Methods

The classification consists in assigning the presented objects to one class by comparing
their parameters. It is based on the compactness hypothesis—the assumption that objects
of the same class are similar in terms of parameter values. In the classification, we search
for the minimum of the functional Q(x, c) over the vector of coefficients c = (c1, . . . , cN).
The probability of incorrect classification was estimated as the ratio of the number of
incorrectly recognized objects to the total number of objects in the sample. These coefficients
c = (c1, . . . , cN) define the type of surface separating the classes in the parameter space. At
the first stage (during training the classifier), the separating surface y = f (x) is constructed
by training samples of known classes; at the second stage (in the “working” mode), the
class of the object under study is determined.

Depending on which dataset is provided for research (for pragmatic reasons), three
possible approaches to classification in a system for visual information processing can
be considered.

1. If the parameters of the general population are known, it is recommended to carry
out a point estimation of the coefficient values separating the classes of surfaces;
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2. If random sample data with a known type of distribution law with unknown pa-
rameters are presented, it is recommended to carry out interval estimates of these
coefficient values;

3. If the law of distribution is unknown, we suggest using the iterative method of
intelligent data analysis—in particular, the method of classification with WT. This
method enables us to select areas where the value of the coefficient is located, at which
the necessary values of reliability and performance are achieved during the training
of the classifier, as well as the adaptation of the system parameters using the Shannon
entropy formula.

When training the classifier, the class of separating surfaces y = f (x) is set after
the formation of the training sample of parameters. After that the following functional
is formulated—Q(x, c) = F

(
y− f̂ (x, c)

)
, with f̂ (x, c) = ∑N

v=1 cv ϕv(x)—the method of
searching the extremum of this functional has to be selected. For this purpose, authors
chose the WT-based method, employing the WT property as equal to zero at the optimum
point [32]. The WT has this property if real wavelets are used as base ones in the form of
odd symmetric functions that have compact or efficient support. At the same time, the
WT enables us to search efficiently for the extremum of objective functions for the “ravine”
type, and it has high noise immunity (compared to the differentiation operation). The
Haar wavelet function is also characterized by low computational complexity. The impulse
response of the Haar wavelet function (WF) is shown in Figure 1a. The illustration of the
estimation of the trend towards an extremum is given in Figure 1b.
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At the stage of classification with training, the coefficients of the ranges of the separat-
ing surfaces between classes are determined using Haar WT:

c[n] = c[n− 1]− γ[n]WTk(Q(x[n], c[n− 1])), (1)

where Q(x, c) is the functional that depends on the vector of coefficients for separating
surfaces c = (c1, . . . , cN) and measurement data x = (x1, . . . , xM); γ[n] is the step; n is the
iteration number (order); and k is the start number. In (1),

WTk(Q(x[n], c[n− 1])) = {G1k, G2k, . . . , GNk} (2)

determines the direction of movement to the extremum, where

Gjk =
1
sk

∑
sk
2

i = − sk
2

i 6= 0

Q
(

x[n], cj + ia
)
·Ψk(i)). (3)

In (3), sk is the carrier length of WF at k-th start; a is the sampling interval; Ψk(i) is that
Haar WF at k-th start; j = 1, . . . N is the dimension of the parameter vector.
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According to (1), the iterative scheme is similar to the iterative scheme for finding
a first-order optimum. In the last one, the direction of movement to an extremum is
determined using a finite-difference estimate of the derivative (Figure 2a,b).
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To estimate the direction of search for the optimum in (2), the symmetric and nonsta-
tionary Haar WF were selected (see Figure 1). This enables us to use the integral character of
WT, as well as to identify the segment of the objective function where the global extremum
is located. Changing the WF carrier length in the subsequent steps of the search allows us
to reduce the error of extremum determination inside the segment of the objective function
found in the previous steps (to narrow the interval).

Determination of the variation range of the separating surfaces coefficients is based
on Haar WT optimization with initial data: δ1—start error; δ2—error of coefficient value;
δ3—error in determining the coefficient range.

Step 1. Setting: c[0]—initial approximation to the optimum coordinate; γ[1]—step;
a—WF sampling step; s1—WF carrier length of the first start Ψ1(i); sk—the step of changing
the length of Ψ1(i) in determining the value ranges of coefficients (in this article sk = 1);
start number k = 1; iteration number n = 1;

Step 2. According to (2), the direction of search is estimated for the start k. At k = 1,
for this, a weighted sum with WF Ψ1(i) is used. The carrier length s1 for WF Ψ1(i) is
determined by analyzing the objective. The integral character of such WT enables us to
reduce the sensitivity to local extrema and allocate a segment of the objective function and
determine the range of change for its coordinates with a low error;

At this step, the sign of the estimate by (3) is checked. If the sign changes, then a
number of nested ranges for extremum coordinate changes are determined. The maximum
range is determined at the start—k = 1 c s = s1—by the length of the WF carrier for the first
start, Ψ1(i), in the subsequent processing steps with the WF carrier length, which varies as
s = s− sk;

Step 3. The range of the coefficient value is searched using (1);
Step 4. If the condition is satisfied at the iteration n: |c[n]− c[n− 1]| ≤ δ1, then the

search at the current start ends, otherwise—n = n + 1 and go to step 2;
Step 5. If k > 1 and the coefficient value found at the k-th step differs from the result

of the k− 1 start by no more than δ2, then the algorithm is ended. In the opposite case (or
k < kmax), the start number is increased k = k + 1. In particular, having 1 < k < kmax, the
WF is represented by Ψ1(i), and at k = kmax, the search direction is evaluated by discrete
differentiation (see Figure 1) and the jump to Step 2 is performed.

When the sign changes, a number of nested ranges of extremum coordinate changes
are defined. In classification, these are the ranges of coefficient values for the segments
separating the classes in the feature space. The maximum range is defined with the
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maximum length of the WF carrier; the other ranges are defined with increasingly shorter
lengths of the WF carrier.

3. Case Study

The effect of the interval width changing for the coefficient of the separating surface
on the relative value of the average risk R was investigated. The sample was synthe-
sized artificially to study the capabilities of the method for the simplest case: linearly
separable classes.

The authors illustrate the classification method using the example of separating objects
in the feature space into two classes for clarity. The article considers a rather simple case: the
division by a straight-line segment, when only two coefficients are calculated. According
to this, the research was conducted with variance in two classes of 70 objects-values of
parameters (features) per each, separated into the two-dimensional feature space by the
segment f̂ (x, c) = c0 + c1x.

Such a situation can occur when the dispersion of classes in the operating mode
increases due to changes in operating conditions. A similar result can be obtained if the
classifier is trained based on a small sample of data.

The article investigates a method that allows us to determine a set of nested ranges for
coefficient values. In this case, the classes of patterns in the feature space can be divided not
by a segment, but by a “range”. Next, the situation is investigated when classes of patterns
become less compact in the working mode of classification due to an increase of dispersion.
If the pattern comes into the range, it is difficult to determine which class it belongs to. The
classification error is also registered when the pattern belongs to the wrong class. Thus, the
influence of the “range” width and variance on the classification result is evaluated.

Figure 3 shows the result of division in the two-dimensional space of the parameter
features, X1, X2 by three intervals: 1, 2, 3. The result was obtained by studying the
influence of changing q—relative mean-square deviation (RMSD)—in the working mode
of classification.
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the second interval ∆3c1 (2); and the third one ∆7c1 (3).

Here, q =
qp

q0·D , where qp and q0 are the RMSDs in classes in working mode and
“teaching” mode, respectively; D is the distance between the centers of the classes for the
training sample; H = δ

D , where δ represents a width of coefficient interval c1; R = P1+P2
P1

,
where P1 is a probability of wrong classification and P2 is a probability of hitting the interval
correspondingly.
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Based on the research results, it can be concluded that with the relative interval width
H = 0.007 and qp = 4q0 (Table 1, column 2), the amount of the relative value of the average
risk R is practically equal to one. That is, for further research, and the choice of system
parameters for a given increase of noise in the data, an interval of this width can be selected
without loss of reliability.

Table 1. Dependence of the relative average risk R on H for different RMSDs of parameters in the
classes in the classification working mode.

Interval Width Changing for
Coefficient of the Separating

Surface, H

Relative Value of the Average Risk, R

qp=3q0 qp=4q0 qp=5q0 qp=6q0

1 2 3 4

0.005 0.8 0.6 0.4 0.3

0.007 1.4 0.9 0.5 0.3

0.009 2.3 1.4 0.7 0.3

0.012 2.9 1.7 1.3 0.4

0.014 3.7 2.4 1.7 0.5

0.016 4.3 3.3 2.3 1.2

0.018 4.9 4.2 2.8 1.6

0.020 5.9 5.3 3.4 2.2

0.022 7.1 6.2 3.8 2.6

To estimate the time consumption depending on classification error and speed, the
authors conducted a second series of experiments. Here, the time for determining the
ranges for coefficients was validated experimentally using the example of two classes
for 15 values of parameter features per each class. When classifying, the search for the
minimum of the functional was performed. The functional Q(x, c) in this case is the
probability of the incorrect classification over the vector of coefficients c = (c0, c1). The
probability of incorrect classification was estimated as the ratio of the number of incorrectly
recognized objects to the total number of objects in the sample. The classes were divided in
a two-dimensional feature space by the segment f̂ (x, c) = c0 + c1x. When calculating for
given values of error δ1 = 0.1 and the training step γ = 0.7, one range for c0 and two ranges
for c1 were obtained. The time (by timer) when determining the range for the coefficients
c0 and c1 was, respectively, 0.08 s and 0.1 s.

The step γ = 0.3 was selected for the further research. During calculation, the one
range for the class ∆1c0 = [−4.0083,−4.00] and seven nested ranges for the class c1 are
obtained. Figure 3 shows the result of separating these two classes with the help of
f̂ (x, c) = −4.0 + ∆jc1x at ∆1c1 = [1.0, 2.36] (a line 1 in Figure 3), ∆3c1 = [1.15, 2.24] (a line
2 in Figure 3), and ∆7c1 = [1.43, 1.68] (a line 3 in Figure 3). Range detection time for c0 was
0.23 s, and for c1 was 13.1 s.

Based on results above, we may conclude firstly that reducing the parameter γ enables
us to determine a greater number of ranges. At the same time, time costs can increase by
more than two orders of magnitude. However, obtaining a set of ranges when debugging
the classification method allows us to evaluate the relationship between the parameter γ,
the error δ1, and the classification performance.

Secondly, we may conclude that the time for determining the set of nested ranges for
coefficients depends on the variance in the training sample at the training mode and the
variance in the working mode of classification. Moreover, for the widest range, it can be
less by several times than for subsequent ranges.

To evaluate the classifier parameters in terms of pragmatic sufficiency, we propose
to carry out the definition of the classification efficiency indicator based on the statistical
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approach using the Shannon entropy formula for measuring the information content. For
this purpose, the following designations were employed:

P(Ω) = {P(Ω1), P(Ω2), . . . , P(ΩL)}—the priori probability distribution for occur-
rence of a class of objects;

P(D) = {P(D1), P(D2), . . . , P(DL)}—the probability distribution of deciding whether
objects belong to the appropriate class;

P(Ω)/D—the conditional probability distribution for occurrence of the object Ωi
under the condition that the classifier makes a decision Dj.

Then, the information measure [33]:

I(Ω, D) = I(D, Ω) = −∑L
i=1 P(Di)log2 (P(Di)) + ∑L

j=1 P(Ωi)∑L
i=1 P

(
Di/Ωj

)
log2

(
P
(

Di/Ωj
))

. (4)

Usage of (4) is complicated by the difficulty of calculating the conditional probabilities
P
(
Ωi/Dj

)
. Therefore, the symmetry property of information measure is employed for

calculations I(Ω, D) = I(D, Ω). The probability distributions can be found using the matrix
P data:

P(Di) = ∑L
j=1 P

(
Ωj

)
pij, ∀i = 1, L, (5)

P
(

Dj/Ωi
)
= pij, ∀i = 1, L. (6)

Since the priori probabilities are unknown, we assume P(Ωi) = 1
L . For an ideal

classifier, the maximum possible amount of information Imax = log2(L), and for arbitrary
P(Ωi),

Imax = −∑L
i=1 P(Ωi)log2(P(Ωi)). (7)

To compare different classification procedures, we introduce an indicator of classifica-
tion efficiency:

I0 =
I(Ω, D)

Imax
. (8)

Then, we estimated the indicator I0 for two classes with 15 parameter features each.
Those two classes were separated using f̂ (x, c) = −4.0 + ∆jc1x at ∆1c1 = [1.0, 2.36] and the
«exact» value of c1 = 1.438, determined with an error of 0.001.

Note that in determining the parameters (6), the following probabilities were calcu-
lated: p11—the probability of correctly classifying an object into class 1; p22—the probability
of correctly classifying an object into class 2; p12—the probability of correctly classifying an
object of class 1 into class 2; p21—the probability of correctly classifying an object of class 2
into class 1. Some of the objects fall into the “range” because of increasing variance in the
classes. As the result, the informativity of indicator I0 decreases.

The results of the investigation are represented in Table 2.

Table 2. Assessment of classification.

Relative Mean-Square
Deviation, q

Indicator of Efficiency for Classification Procedure, I0

c0=−4.0, c1=1.438 ∆1c1=[1.0,2.36]

1 2

0.050 0.9 1.0

0.075 0.63 0.71

0.100 0.51 0.59

0.125 0.43 0.50

0.150 0.38 0.45

0.175 0.33 0.41

0.186 0.31 0.39
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The “widest” range of c1 coefficient values was selected for the investigation. However,
as can be seen from Table 2, changes of indicator I0 are considerably close. Therefore, if
requirements to the system performance are high, then classification in the above example
can be made by choosing the coefficient value from the range ∆1c1 = [1.0, 2.36] in order to
increase the procedure productivity.

For example, when adapting existing IT to new application tasks in a system for
visual information processing, it is often necessary to carry out an identification procedure
(determination of parameter features). This procedure may require reducing the dimen-
sionality of the feature space. In such a reduction, the classification is performed repeatedly,
increasing the set of features consistently in order to ensure the required reliability. To
improve the performance of the initial and intermediate stages of classification and enhance
the visualization of the result, we can recommend using classification based on the Haar
WT with the definition of the classification efficiency indicator I0.

4. Discussion

This article is a significant extension of [30] with further details regarding classification
by training and determining a set of nested coefficient value ranges for separating surfaces
with a reduced number of coefficient ranges using the Haar WT only. Moreover, by choosing
the search parameters—error δ1 = 0.1 and interval γ = 0.7—one range is obtained for c0 and
two ranges for c1. This reduced the time taken determining the coefficient ranges c0 and c1
as 0.08 s and 0.1 s, respectively.

Thus, the proposed method enables us to increase the performance of determining
sets of coefficient value intervals during the training of the classifier, which is verified by
the results of experimental investigations.

In addition, the authors proposed the use of the Shannon entropy estimates to increase
the performance of the procedure for reducing the feature space for identification. More-
over, the evaluation of intermediate classification results is simplified by visualizing the
dependence of informativeness and avoiding the estimates of systems efficiency in the
multidimensional space [11–13].

Summarizing, the main advantage of the proposed method over that proposed in [28]
is the defining of the set of intervals where the value of coefficients is located, which are
separating the classes of surfaces with the higher performance. At the same time, we note
that the performance in the applied task depends on the size of the training sample and the
location, which, along with the compactness of data clusters in the feature space, determine
the form of the objective function.

In addition, the number of intervals (and the performance, respectively) is related to
the choice of error δ1 and interval γ. However, this kind of research is usually carried out
when selecting classification methods and/or adapting them to the new application areas.

The authors plan to expand the application area of the proposed method for the analy-
sis and processing of non-stationary periodic biomedical signals, such as electrocardiogram
signals [34], because the methods selected for classification in this application area have
high requirements for both noise immunity and efficiency, as well as operational efficiency.

5. Conclusions

The authors proposed an improved method of classification by training and determin-
ing the set of the nested coefficient value ranges for separating surfaces using the Haar
WT with the reduced number of coefficient ranges and superior performance. To estimate
the informativeness, the performance, average classification risk, and Shannon entropy
were evaluated.

It was experimentally proven that when dividing the training sample into two classes,
the time for determining one range was reduced to 0.1 s, which is more than two times
faster than in existing methods.

In addition, the results of the study confirmed that the time spent determining the
entire set of nested ranges of coefficients depends on the ratio of the variance in the data
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sample for the training mode and the variance in the working mode of classification. Thus,
for the widest range, it can be several times less than for subsequent ranges.

It is shown that the values of the efficiency indicator for the classification procedure for
the test sample differ by units of percent when it is investigated using the informativeness
estimation. Therefore, if the requirements to the performance of the system for visual
information processing are high, the classification can be run by choosing the value of the
coefficient from the range ∆1c1 = [1.0, 2.36] based on pragmatic considerations.

Thus, the proposed method, firstly, can be applied to select the parameters of the
classifier at the debugging stage, taking into account the required level of reliability and
informativeness. Secondly, it can be recommended for use in a wide range of applied
systems for visual information processing.

Moreover, wavelet transform methods are one of the promising approaches to analyz-
ing signals containing areas of non-stationarity and intervals of either slowly changing or
jumping changes or high-frequency pulsations. Therefore, the proposed method can find
wide application in the processing of medical signals and images, in the non-destructive
control and monitoring of vibrodiagnostics of machines and equipment, and in stegano-
graphic systems of data transmission and protection. It can also be applied in many areas
of physics, including molecular dynamics, astrophysics, seismic geophysics, optics, and
quantum mechanics.

As a direction for further applied research, we expect future researchers to employ
the proposed wavelet method of effective surface separation for the optimal selection of
training samples when using machine-learning methods to increase the accuracy and speed
of processing and classifying large streams of data (images) during the real-time analysis of
physical processes.
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