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Abstract: There are many ways people express their reactions in the media. Text data is one of them,
for example, comments, reviews, blog posts, messages, etc. Analysis of emotions expressed there is
in high demand nowadays for various purposes. This research provides a method of performing
sentiment analysis of text information using machine learning. The authors trained a classifier based
on the BERT encoder, which recognizes emotions in text messages in English written in chat style.
To handle raw chat-style messages, authors developed an enhanced text standardization layer. The
list of emotions identified includes admiration, amusement, anger, annoyance, approval, caring,
confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear,
gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, and
surprise. The model solves the problem of multiclass multilabel text classification, which means
that more than one class can be predicted from one piece of text. The authors trained the model on
the GoEmotions dataset, which consists of 54,263 text comments from Reddit. The model reached
a macro-averaged F1-Score of 0.50704 in emotions prediction and 0.7349 in sentiments prediction on
the testing dataset. The presented model increased the quality of emotions prediction by 10.2% and
sentiments prediction by 6.5% in comparison to the baseline approach.

Keywords: BERT; emotions prediction; General Language Understanding Evaluation (GLUE);
GoEmotions; sentiment analysis

1. Introduction

Supervised learning is widely used for solving various text classification problems.
Any machine learning model consists of various mathematical operations, which means it
cannot work with text data. Consequently, data have to be encoded into numeric sequences
before any modeling starts. Various ML suites offer different toolkits and algorithms for
this. For example, the TensorFlow library used in this study provides a TextVectorization
layer that can be integrated into the model [1].

Classification problems are often solved by applying basic machine learning algo-
rithms such as decision trees, K-nearest vectors, support vector machines, etc. These are
easy to train, require relatively small resources, and perform well in cases with clear dif-
ferentiation in data. However, with the development of data science, neural networks are
actively gaining popularity. The reason for this is that deep learning neural networks have
shown that they are capable of recognizing complicated patterns within the data. Models
can track words with close semantics and predict text based on previously provided context.

However, how is it possible to check if the model can understand the text? One of
the approaches to evaluating a machine learning model of human language perception
is the General Language Understanding Evaluation (GLUE) benchmark: a collection of
NLU tasks including question answering, sentiment analysis, and textual entailment, and
an associated online platform for model evaluation, comparison, and analysis [2]. A few
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models were evaluated and performed well on the GLUE benchmark [3–5]. One of them is
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [6].
The model itself does not solve any machine-learning problem, but per the authors of
related work, “pre-trained BERT model can be fine-tuned with just one additional output
layer to create state-of-the-art models for a wide range of tasks, such as question answering
and language inference, without substantial task-specific architecture modifications”.

This study aims to apply the BERT encoder for training a classifier for the emotional
analysis of text information. Modeling was performed on the GoEmotions dataset [7].
The dataset consists of chat-style written comments in English extracted from the Reddit
platform [8]. The main contributions of this study are the following:

• Approach to modeling on the GoEmotions dataset;
• Pre-process layer for chat-style text standardization;
• BERT-based classifier model for emotions prediction.

All code presented in this study is published in the GitHub repository: https://github.
com/Shoomaher/sentiment-analysis (accessed on 25 February 2024). It contains modules
developed and a Jupyter notebook that shows the process of training and testing the model.
The authors used the Python (v.2.2.1) programming language and the following libraries:

• Pandas [9] for dataset investigation and manipulation;
• Numpy [10] for various array manipulations and calculations;
• Matplotlib [11] for data visualization;
• Unidecode [12] for fixing non-ASCII characters in data;
• TensorFlow [13,14] for building, training, and evaluating neural networks;
• Scikit-learn [15] to calculate the receiver operating characteristic (ROC) curve, calculate

the area under the curve, and create a multilabel confusion matrix.

The next sections of this paper are organized as follows. Section 2 provides a discussion
of related works. Section 3 describes the goal of the research paper and, based on it, defines
the objectives of the research. In Section 4, a dataset investigation and preparation of text
data for modeling is presented. Section 5 contains the modeling experiments description.
Modeling results are provided in Section 6, as well as a comparison with the baseline model
approach. Section 7 describes the limitations of this study. Finally, Section 8 consists of a
conclusion and directions for further research.

2. Related Works

This section reviews three articles on the topic of emotion recognition from the
text data.

The authors of the paper “GoEmotions: A Dataset of Fine-Grained Emotions” [7]
proposed not only the dataset itself but also modeling results. The main purpose was to
show the dataset’s suitability for emotion recognition tasks. This was performed using
the BERT fine-tuning approach and adding only a dense output layer. This was stated
to be a strong baseline that leaves much room for improvement. Additionally, the au-
thors trained a bidirectional LSTM model, which reached worse results than BERT on the
GoEmotions dataset.

This study aims to achieve high annotation quality. However, the quality of text pieces,
which is crucial for ensuring the model performs well with different inputs, is missing.
This especially applies to the GoEmotions dataset, which consists of chat-style lexis. One of
the most common and effective approaches for achieving better results in machine learning
tasks is having clean data (or making them clean). The authors of this study will aim to
achieve better results by focusing on data quality.

The research, “Exploring Transformers in Emotion Recognition: a comparison of
BERT, DistillBERT, RoBERTa, XLNet, and ELECTRA” [16], also has to be mentioned. The
authors presented a base comparison of the DistilBERT, ELECTRA, XLNet, and RoBERTa
transformer models on the GoEmotions dataset. Additionally, the BERT model’s results are
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provided as a baseline. This study highlights that transformer models show state-of-the-art
performance in different natural language understanding tasks.

The authors evaluated not only model performance but also computation costs. They
stated that “we still have much room to improve models and create datasets for fine-
grained emotions” [16]. Pre-processing was not applied in this work, while the base models
were evaluated on a source dataset. Thus, similarly, the data quality question applies to
this study.

In the paper “DialogXL: All-in-One XLNet for Multi-Party Conversation Emotion
Recognition” [17], the authors present a pioneering approach to applying a pre-training
transformer model XLNet for emotion recognition in conversation.

This article focuses on tracking the context and detecting different participating parties.
One of its virtues is tracking intra- and inter-dependencies between participating parties.
This work has a similar topic but different goals since our research is limited to classifying
single pieces of text without considering context.

It needs to be addressed that the DialogXL model was evaluated on conversational
datasets IEMOCAP, MELD, DailyDialog, and EmoryNLP, which are limited to a variety of
emotions, including 5–6 emotion categories + neutral class.

In light of the above, this study aims to provide better emotion recognition results by
creating a BERT-based model with enhanced data pre-processing.

3. Research Objectives

As mentioned before, this study aims to create an emotions classifier trained on the
GoEmotions dataset with the use of a BERT encoder. Achieving good results in any machine
learning task requires proper analysis of the data, as well as good quality data.

Thus, the authors outline the following key objectives for this research. First of all, to
perform dataset label analysis and prepare it for training and testing neural networks. That
includes splitting the dataset into the training, validation, and testing parts.

Secondly, examining the dataset messages and preparing clean data for modeling is
necessary. This can be accomplished by preliminary cleansing of the dataset or by setting
up some standardization inside of the model. In this study, authors follow the transfer
learning approach and use the BERT pre-trained model. Consequently, a better quality
of language understanding can be reached by giving the model more similar data to the
pretrained one. This means that authors need to set up a data processing pipeline for
language standardization.

Finally, the testing results need to be analyzed to understand if the model does not
underfit or overfit and can classify and distinguish emotions from the text data. In addition
to this, authors need to verify if the model can predict all emotions it was trained on. That
objective is outlined due to the fact that the GoEmotions data is imbalanced.

4. Method

This section is divided into two parts. In the first part, the authors provide an overview
of the data, key insights, and what was prepared for further modeling, mainly focusing on
the dataset labels, e.g., the y part of the data. In the second part, they describe the approach
for dividing the dataset into train, test, and split subsets. As for the third part, the authors
review the investigation of texts, the X part of the data, and provide a text standardization
layer to integrate into the model. The result of this section is a comprehensive set of tools
for building and training ML models on the GoEmotions dataset.

4.1. Dataset Investigation

First of all, before any modeling, it is necessary to research what we are modeling. The
authors chose the GoEmotions dataset, which contains a large collection of diverse text data
covering a wide range of topics and emotions. This makes it ideal for training and testing
emotional analysis models, as it provides a rich and varied source of data for researchers to
work with [7]. This dataset contains text comments extracted from the Reddit platform [8].
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Reddit is a social media platform for discussion, where people share their interests and
run discussions on different topics, for example, mass culture, computer games, movies,
gadgets, relationships, etc.

The GoEmotions dataset contains comments from 2005 (the start of Reddit) to January
2019, which were selected from subreddits with at least 10,000 comments [7]. The dataset
includes only English comments with the use of chat-style language. It is important
to mention that the dataset is impersonalized and contains [NAME] and [RELIGION]
placeholders to reduce bias.

There are 54,263 comments included in the dataset, divided by the authors into three
parts for modeling: training (43,410 elements), validation (5426), and testing (5427). As of
now, all three parts are combined in a single dataset for review. The average length of text
sequences is 68 characters, and the average number of words is 13.

The authors operate with emotions provided by the GoEmotions dataset. According
to its paper, all comments were manually labeled with 27 emotion categories: admiration,
amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappoint-
ment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love,
nervousness, optimism, pride, realization, relief, remorse, sadness, surprise, and a neu-
tral class.

The authors of the GoEmotions paper aim to “Provide the greatest coverage in terms
of kinds of emotional expression”. As we can see from the list of emotions present in the
dataset, it mostly intersects with Robert Plutchik’s emotion wheel, although the emotion
categories “anticipation” and “trust” are not present. The correlation of emotions is out of
the scope of this study. However, analysis of metrics reached on the testing dataset showed
that the model sometimes confuses semantically close classes (Section 6.2).

The 27 emotion categories are divided into three sentiments: positive, negative, and
ambiguous. While emotion is a psychological response of a writer of a text comment,
sentiment shows a resultant feeling caused by this emotion. From the data standpoint,
sentiment is a top-level group of emotions.

To summarize, this dataset provides a comprehensive list of emotions, which makes it
appropriate for emotion classification.

Some of the texts are labeled with more than one category. The distribution of cate-
gories’ counts per text is presented in Figure 1.

Figure 1. Distribution of quantities of categories per text message in the GoEmotions dataset (source:
author’s development).

As we can see, text comments are usually labeled with only one emotion. However,
a significant value is added by texts labeled with two categories. Therefore, we need to
solve not just the multiclass classification problem but also the multilabel classification,
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meaning that the model should be able to predict more than one emotion category. The
other approach is to exclude texts with two or more labels or select only one category for
each of them. Consequently, the model will solve a multiclass classification problem by
predicting only one correct class.

For the sake of clarity, we need to explain the difference between multiclass and
multilabel classification problems. If a classification model determines if an element
belongs to one of many groups, then the model solves the multiclass classification problem.
The prediction will be a single class that fits best to this element. However, if an element
can belong to several classes, then the model solves the multilabel classification problem.
In this case, the result prediction will be a list of classes with zero, one, two, or more classes
that fit an item.

It is common to express different emotions in a single message, for example, surprise
and confusion: «Wow! I didn’t expect this to happen. What should we do next?». This
means that the second approach, which requires excluding texts with two or more emotion
categories, would reduce model accuracy and usability. Consequently, the authors decided
to follow the first approach, making a model that provides independent predictions of each
emotion category and, thus, can predict more than one emotion for a text piece.

A common phenomenon for emotions analysis is emotions mixing. Mixed emotions
are described as an expression of two or more emotions, usually the opposite ones. As
mentioned before, a significant part of texts in the dataset is labeled with two or more
emotions. Texts can be labeled with close emotions. Consequently, to verify if emotion
mixing is presented in the dataset, we can select items labeled with emotions related to
different sentiments. This results in 4200 texts selected. For example: “That was my first
live Lions game (British and flights to DTW are expensive) I’ve never gone through so
emotions in such a short amount of time” (excitement, realization, surprise), “How did
they respond? You can’t leave out the best part” (curiosity, disapproval).

It is also worth checking if the GoEmotions dataset contains texts labeled with opposite
emotions according to their sentiments. That includes 981 elements. For instance: “I can
watch test cricket, this would be no problems. Honestly though I’m annoyed I missed it,
hopefully there’s a re run” (annoyance, desire), “If he isn’t respecting your clear boundaries
then you should block him and move on with your life. He’s not worth your time” (caring,
disapproval).

Having such data supports the authors’ decision to train the model to give independent
predictions of each emotion category. However, the topic of emotions mixing is not further
investigated in this study.

Taking into account that predictions are independent, we will remove the neutral class
from the dataset, meaning that the text lacks any emotional characteristics and belongs to
the neutral class if no emotions were triggered.

In Figure 2, we can see the class distribution in the dataset. As we can see, the dataset is
imbalanced. For example, the “admiration” class consists of 5122 elements, the “approval”
class has 3687, while the “grief” category contains only 96. As mentioned, the neutral class
is to be removed and thus can be ignored in the current analysis.

Considering that we are solving a multiclass, multilabel classification problem, the
authors need to encode labels accordingly. Consequently, the authors applied the strategy
of “Problem transformation, whereby a multilabel problem is transformed into one or more
single-label (i.e., binary or multiclass) problems” [18] and encoded labels using a multi-hot
approach. Hence, 27 target variables were created, and each of them represents a binary
value, whether the text is labeled with its emotion category or not.
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Figure 2. Distribution of classes in the GoEmotions dataset (source: author’s development).

4.2. Train, Validation, Test Split

The process of training a neural network requires having three parts of data. The first
and the biggest one is the train. It is the data the model sees and updates parameters by
computing a loss function using backpropagation of error. This process is repeated several
times, and each run is called an epoch. After each epoch, the model is evaluated by making
predictions on the validation dataset and running metrics. This is necessary for tracking the
model train process. Finally, when the training is completed, the model makes predictions
on the test dataset, and its predictions are evaluated using metrics.

The dataset is already split into these three parts. However, the authors wanted
to change the fraction of these parts during the experiments. Therefore, they decided
to combine all three parts and implement a split. Since the dataset is imbalanced, the
authors faced the issue that small classes could be unequally divided. Thus, they decided to
implement the division of each category separately into train, validation, and test subsets.

In addition to this, the authors wanted to create a confusion matrix plot on the test
dataset for all classes using the all-vs-all strategy. This can be achieved only by comparing
one predicted label with only one true label. Consequently, the authors implemented a
parameter for selecting only single-labeled texts in the test part.

During modeling experiments, it was noticed that models could not predict low classes,
such as grief, relief, nervousness, etc. As a result, the authors added support for applying
oversampling to the train data over the threshold supplied. For example, if the threshold
value is 500, elements in classes of less than 500 are randomly repeated multiple times to
reach 500 items. Finally, they added printing the random seed used for train, validation,
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test split, and support for re-using it. As a result, datasets can be re-created. The train part
is also randomly reshuffled after creation.

All code implementing this functionality can be found in the utils.make_dataframes
function.

4.3. Text Standardization

Training a high-quality model requires operating with clean data. The better the data
are pre-processed and standardized, the more accurate model predictions will be, especially
considering that this study follows the transfer learning approach using the pre-trained
BERT model. Authors of BERT used BooksCorpus and English Wikipedia datasets [6] for
pre-training; thus, it is important to make text messages have a standard language form.

Text pre-processing is widely addressed in natural language processing and text
classification studies. Each problem and data context requires an individual approach. A
relevant example of data pre-processing in the healthcare domain is presented in the study
“An Analysis on Large Language Models in Healthcare: A Case Study of BioBERT” [19].
Authors describe general data cleansing, as well as standardizing medical terms and
applying custom tokenization “to accommodate the unique vocabulary and structure of
biomedical and clinical texts. . . specialized tokenizers may be needed to handle medical
terminology, abbreviations, and symbols” [19].

A similar problem is faced in the current research and presented later: the wide use
of chat-style language with slang abbreviations, different word spelling, etc. This lexis
appears as different tokens for the machine learning model. Hence, the model should be
either initially trained on this data or adapted to processing such data. The first approach
is not applicable since this study employs the transfer learning method, while the second
one can be achieved by implementing custom tokenizers or additional pre-processing of
the data.

Another relevant study is “CARER: Contextualized Affect Representations for Emotion
Recognition” [20], in which authors perform emotion recognition on the dataset extracted
from Twitter. Despite differences in audiences and texting styles, both Twitter and Reddit
are discussion platforms on the Internet and present similar language.

Authors describe an identical problem of slang and coded words having the same
meaning, such as “tnx” and “thanks” or “waaaaking me” instead of “waking me”. That re-
search provides its solution using “graph-based pattern representations” to extract emotion-
relevant information.

This sub-section continues with the authors’ research of the language used in the
GoEmotions dataset and the implementation of the cleansing process step by step. This text
pre-processing can be simmilarly applied to other datasets sourced from Internet discussion
platforms, such as Reddit, Twitter, etc. However, additional processing and analysis might
also be required, especially if texts are inclined towards some specific domain, as in the
BioBERT study example mentioned before.

To begin with, the authors apply the unidecode module [12] to the text to remove
non-ASCII characters. The main advantage of this tool is that it will not only remove any
wrong characters, such as unreadable spaces and emojis but also replace them with correct
interpretation if possible. For example, the “Latin small letter a with diaeresis” character
(ä) becomes the “Latin small letter a”, while the “single comma quotation mark” character
becomes a usual “single quotation mark”. This resolves any encoding issues, as well as
removes different spellings of the same word.

The dataset is depersonalized and contains placeholders instead of name or reli-
gion references. For example, “I’m not talking about [RELIGION] anymore though. . .”,
“[NAME]. . . I’m sorry. This is just wrong. I, can’t.” These placeholders were removed from
the text so that they do not affect the model and the model will be less biased.

The dataset contains text commentaries written in English using an informal chat-style
language. To give it a standard look, the authors replace English contractions [21] with
their full spelling where it is unambiguous. For instance, “can’t” is simply replaced with
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“can not”. At the same time, “I’ll” is left as is because it can either be “I will” or “I shall”,
and we can not exactly determine the correct form. Moreover, the form can affect the way
the intention is expressed.

It is common for the chat style to stretch vowels and some consonant letters. For
example, the following messages: “how’d you know? they’re soooo good”, “Loooool I
didn’t know that it’s ridiculous”. Regardless of the text data encoding algorithm, the words
“soooooo” and “so” will have different encodings. To resolve this issue, in all cases where
the letters ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘y’, ‘s’, ‘h’, ‘f’, ‘r’, or ‘m’ are repeated more than three times,
it is replaced with only one occurrence. The examples shown before become “how’d you
know? they’re so good” and “Lol I didn’t know that it’s ridiculous”.

The next step taken was to replace abbreviations and chat words with their full phrases
and meaning [22]. For instance, “ASAP” is replaced with “as soon as possible”, while “L8R”
becomes “later”, and so on. In addition to this, it is common in chat style to use “r” instead
of “are”, “u” instead of “you”, and “@” instead of “at”. All of these are replaced with their
full spelling.

What is more, all words with numbers and any punctuation characters except for a
comma, dot, hyphen, apostrophe quotation, and exclamation marks are removed from the
text. In addition to this punctuation fixing, multiple punctuation characters are replaced
with only one of them. For example, “I love this!!! You got it!” becomes “I love this! You
got it!”. Moreover, punctuations are changed to a proper form, without spaces before and
with only one space after.

Finally, leading and trailing spaces are trimmed, multiple spaces are replaced with
only one, and text is converted to lowercase.

All of the processing above was packed into the standardized TextStandardizeLayer
class that implements a TensorFlow [23] layer and can be integrated directly into the model
before the encoder. This layer can also be used in other models working with chat language.

Although it comes as a ready-to-use solution, it is still necessary to investigate the
data and set up text standardization according to the task. Additional functionality can be
either added to the proposed layer or implemented as a separate layer before or after it.

5. Modeling

In the previous sections, the dataset was reviewed and split into the training, valida-
tion, and test parts. The text messages were standardized, and the target variables were
encoded. Thus, we can proceed to build and train the model. This section is divided into
two parts. In the first one, the authors propose a model structure, while in the second one,
they review the training process.

5.1. BERT-Based Classifier Model

BERT, which stands for Bidirectional Encoder Representations from Transformers, is
a language model [6]. This is a masked model trained for language understanding and
solving GLUE tasks [2]. Generally, the idea of masking was applied in the following way.
A text corpus was initialized with random masks replacing word tokens. After that, the
model was trained to predict the missing token based on its context. In addition, BERT
was trained on the next sentence prediction task. One of the main advantages of BERT is
its bidirectional design, meaning that the model is trained to analyze both left and right
context, unlike only left-to-right analysis [6].

BERT is defined as a framework that consists of two parts: pre-training and fine-tuning.
The process described before is the pre-training process for language understanding. The
fine-tuning stage is presented as adding additional layers to the model and training on the
specific task.

The authors followed the fine-tuning approach. The authors of BERT supply a family
of pre-trained models of different sizes and on cased/uncased data. The model size is
defined as a number of layers (L), hidden units (H), and attention heads (A). Considering
that during the text standardization, all text was converted to lowercase, the authors used
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an uncased model, which means that the model was pre-trained to ignore the case of words.
Models are available to use via the TensorFlow HUB portal [24]; each model contains its
own pre-process layer.

Although the BERT is recommended to be fine-tuned with only one additional layer,
it is mentioned that additional layers can be applied according to specific tasks.

The authors propose the following structure of the classifier:

• Standardizer: text standardization layer described in Section 4.3;
• Pre-process: text pre-process layer added according to the selected BERT model;
• BERT encoder: BERT model selected;
• Dropout: random dropout of units;
• Dense layer: internal dense layer with ReLU activation function;
• Dropout: random dropout of units;
• Dense layer: output classifier layer with output units for each class. Considering that

each output solves the binary classification problem, the Sigmoid activation function
is applied.

The BERT model contains several outputs available for solving different tasks. In this
study, the authors use pooled output [6]. The output shape is (batch size × BERT hidden
units). As a result, each text sequence submitted is passed to output and encoded.

This architecture is defined in bert_model.BertSentimentModel class. The BERT model
name is submitted as a parameter; the appropriate model will be used from the Tensor-
Flow HUB.

In this study, the authors used a model from the small BERT family with 2 layers,
128 hidden units, and 2 attention heads, uncased. The reason for this is that the authors
have limited computation resources since the training process was established on a laptop
having the following configuration: Intel Core i5-7200U, 8 Gbs of RAM, and SSD drive
(Intel, Santa Clara, CA, USA).

As for the other parameters, both dropout rates were set to 0.4 (randomly drop 40% of
units), internal dense units were set to 256, and the output dense units were set to 27.

5.2. Train Process

In this sub-section, the authors review the training process, the parameters applied,
and the metrics used.

First, the dataset was split into the train, validation, and test parts with a fraction of
85%. In addition, the authors applied oversampling of low classes with a threshold value set
to 500 and set up a test dataset to include only single-labeled elements. Classes distribution
for each part can be found in Appendix A. The dataset was batched by 64 elements in a
batch. Considering that the target variables are encoded as binary values, the loss function
was set to binary cross entropy [23].

The authors decided to use the AdamW optimizer because in the context of emotional
analysis of text data, the use of the AdamW optimizer can be particularly useful as it helps
to prevent overfitting, which is a common problem in natural language processing tasks. By
using this optimizer, the model is better able to generalize to new, unseen data, improving
its overall performance and making it more useful for real-world applications [25]. This
is the optimizer BERT was initially trained on, and it performs regularization by weight
decay. The authors applied a similar training schedule as BERT pre-training: linear decay
of a notional initial learning rate, prefixed with a linear warmup phase over the first 10%
of training steps [6]. The training was performed up to 10 epochs. As a result, each epoch
consisted of 463 steps, adding to 4630 steps in total with 463 warmup steps. The initial
learning rate was set to 3 × 10−4. Decreasing the learning rate should perform better [26];
however, it would also require additional computation time or additional resources. Fur-
thermore, the learning rate value has a higher impact on the model performance than the
batch size [26].

During the model training and testing, the authors tracked the precision and recall for
each predicted class individually and for all classes.
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The indicator precision describes how close the measurement values are to each other.
Precision is the number of true positives (TP) over the number of true positives (TP) plus
the number of false positives (FP).

Precision =
TP

(TP + FP)

TP—True Positive, FP—False Positive
Recall defines how accurately our model is able to identify the relevant data. Recall is

the number of true positives (TP) over the number of true positives (TP) plus the number
of false negatives (FN)

Recall =
TP

(TP + FN)

FN—False Negative
Additionally, the authors tracked the F1-Score of all classes with weighted, micro,

and macro averaging. A threshold value for all metrics was set to 0.5. The F1-Score is the
Harmonic mean of the Precision and Recall.

F1 =
2 × (Precision × Recall)
(Precision + Recall)

Finally, the authors initialized the training early stopping to stop the training process
in case validation loss does not decrease during the last two epochs. Thus, the model was
trained as long as it increased its performance. During experiments, training was stopped
after 7 epochs.

Figure 3 shows how precision, recall, and F1-Score metrics, as well as the value of the
loss function, changed over epochs on the train data during the model fit.

Figure 3. Change in values of the loss function, Precision, Recall, and F1-Score with micro,
macro, and weighted averaging for all classes on the training dataset over train epochs (source:
author’s development).

Similarly, changes in the values of the same metrics and the loss function on the
validation dataset are presented in Figure 4.

As we can see, the value of the loss function decreased while all of the F1-Score metrics
increased with each epoch. Thereafter, the model gained performance and did not tend
to overfit.

Finally, the authors ran the same metrics on the test dataset, which consists of the data
that the model has not seen before, and analyzed the results. Having conducted a series of
experiments, the authors present the best results in Section 6 of this study.
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Figure 4. Change in values of the loss function, Precision, Recall, and F1-Score with micro,
macro, and weighted averaging for all classes on the validation dataset over train epochs (source:
author’s development).

6. Results

This section is divided into two parts. In the first sub-section, the authors present the
metrics the model has reached on the testing dataset, while in the second one, the authors
provide the analysis of the result and ideas for further research. Additionally, in the third
sub-section authors provide a comparison with the baseline approach. Finally, sub-section
four contains the practical implications of the study.

6.1. Metrics

Table 1 presents the micro-, macro-, and weight-averaged F1-Score for all classes. Ad-
ditionally, the authors calculated the micro- and macro-averaged F1-Score after converting
true and predicted emotions labels to sentiment labels according to the map supplied with
the dataset (Table 2). Table 3 shows precision and recall for each emotion category class, as
well as for all classes. All of the metrics were reached on the testing dataset, and all of them
were set up to have an activation threshold of 0.5.

Table 1. Precision, Recall, and F1-Score weight-, micro- and macro-averaged metrics for all classes
reached on the testing dataset (source: author’s development).

Precision Recall F1-Score
(Weighted)

F1-Score
(Micro)

F1-Score
(Macro)

0.61322 0.55658 0.56341 0.58353 0.50704

Table 2. Precision, Recall, and F1-Score weight-, micro- and macro-averaged metrics for all classes
reached on the testing dataset (after converting) (source: author’s development).

F1-Score (Micro) F1-Score (Macro)

0.7760 0.7349

In Figure 5 we can see plots for micro and macro-averaged ROC curve. The area under
the micro-averaged curve is 0.9361, while the macro-averaged one is 0.9136. In addition to
this, Appendix B contains ROC curves with the area under the curve calculated for each of
the emotion classes.
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Table 3. Precision and Recall metrics for each emotion category reached on the testing dataset (source:
author’s development).

Emotion Precision Recall

admiration 0.68873 0.73473

amusement 0.76567 0.88365

anger 0.47297 0.52239

annoyance 0.31169 0.32432

approval 0.49838 0.39386

caring 0.51351 0.42222

confusion 0.43307 0.31609

curiosity 0.55866 0.71174

desire 0.75676 0.35443

disappointment 0.31034 0.0625

disapproval 0.52717 0.33333

disgust 0.81395 0.35354

embarrassment 0.72 0.46154

excitement 0.7619 0.16495

fear 0.71186 0.48276

gratitude 0.91268 0.90251

grief 0.33333 0.625

joy 0.63448 0.55758

love 0.71765 0.9037

nervousness 0.33333 0.35294

optimism 0.57065 0.61404

pride 0.53333 0.72727

realization 0.63889 0.18254

relief 0.16667 0.17647

remorse 0.64935 0.75758

sadness 0.56 0.5283

surprise 0.60976 0.53191

One more approach to evaluate the classifier’s performance is calculating a confusion
matrix. Appendix C contains confusion matrixes for each emotion category class.

Finally, the authors have added the confusion matrix for all classes using the all-vs-all
strategy in Appendix D. It is necessary to outline the process of its calculation. This matrix
can be created only for single-labeled multiclass classifiers, as it requires a comparison of
only one predicted class with only one true class for each element. To create this matrix,
the authors have set up the testing dataset to include only single-labeled texts, while the
predicted class was always selected with the maximum prediction value.

6.2. Discussion

First of all, the model shows non-zero precision and recall for all emotion categories, as
we can see in Table 2 data. As mentioned before, the dataset is imbalanced, and some of the
classes used have 0 precision and recall, meaning that the amount of data was not enough
to fit the model. This issue was resolved by applying oversampling for low emotional
categories on the training dataset (Section 4.2).
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Figure 5. Micro- and macro-averaged ROC Curve (source: author’s development).

The main metrics to compare models during the experiments were micro- and macro-
averaged F1-Scores, giving priority to the macro-averaged score, as it works well on
imbalanced data and treats all classes equally.

The all-vs-all confusion matrix, which is shown in Appendix D, represents a clear
diagonal of correct predictions. This supports the previous conclusion that the model can
distinguish and predict all emotion categories.

It is worth mentioning that the model sometimes confuses semantically close classes.
As we can see, anger and annoyance, curiosity and confusion have significant confusion.
This can be seen in the all-vs-all confusion matrix. The reason for this is that similar
language can be used for expressing these emotions. For instance, aggressive words can
be frequently used in the expression of both anger and annoyance, while question forms
should be common for curiosity and confusion emotions.

As for the ability of the model to distinguish positive, negative, and ambiguous
sentiments, higher F1-Scores (micro- and macro-averaged) show that it was achieved. This
also supports the idea that even though sometimes it can be hard for the model to differ
one emotion from another if they have close semantics, the model can determine whether
positive, negative, or ambiguous emotions are expressed.

The achieved results give much room for further research by applying the emotion
classification model. Apart from the exact data science, the model can also be used for
various interdisciplinary studies. These can be in any area that involves human behavior.
For instance, conducting marketing analysis and sociology research might require an
examination of the emotions and sentiments of the target audience. The model can predict
emotions expressed in text questionnaires and provide a source for the data mining process.

The quality of prediction significantly depends on the amount of data for this emotion
category. This is a common rule for the machine learning industry and is supported by
this study. As we can see from the all-vs-all confusion matrix presented in Appendix D,
the classifier predicted more accurately classes with a higher amount of data: admiration,
amusement, gratitude, and love. At the same time, it made less accurate predictions for
embarrassment, relief, excitement, and remorse, which have comparably fewer labels.

It is also important to mention that a lower number of elements in class not only
provides the model with less data to train on but also results in less data to test the model.
In Appendix B, we can see ROC curves for each emotion category class. Curves for classes
with a low qty of test data, such as grief, relief, pride, and nervousness, demonstrate explicit
sleepiness. The test dataset class distribution can be seen in the third plot of Appendix A.

The original BERT study [6] reports that increasing the model size results in increas-
ing its accuracy in solving GLUE tasks, which means that a more complex model with a
higher amount of layers, hidden units, and attention heads shows better language under-
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standing. Thus, training a classifier described in this study with a more complex BERT
model, for instance, BERT-large, can lead to better emotion prediction. In addition to
this, according to an article [26], a lower learning rate also results in better performance.
However, it is important to mention that proof of both of these concepts requires more
computational resources.

Finally, having more data for training and testing the model also should increase the
accuracy of the classifier. It can be achieved by either adding more data to the current
dataset or using another dataset.

6.3. Comparison with a Baseline Approach

Authors of the GoEmotions dataset paper validated if the dataset is suitable for
modeling purposes in the “6. Transfer Learning Experiments section” [7]. They presented
results of baseline fine-tuning of the pre-trained BERT-base model (12 layers and 768 hidden
units). The baseline model showed a macro-averaged score of 0.46 in emotions prediction
and 0.69 in sentiments prediction.

The authors of this study describe a more complex model with better text pre-processing
and dataset preparation. The authors reached a macro-averaged F1-Score of 0.50704 in
emotions prediction and 0.7349 in sentiments prediction. Thus, the authors increased the
quality of emotions prediction by 10.2% and sentiments prediction by 6.5%.

It is important to mention that, in this study, the dataset has a different train–test split.
Consequently, this is not just the classification model that performs better but the method
in general that achieves higher metrics on unseen data. The main improvement of the
existing method is having an additional text standardization layer and different model
configurations, which leads to achieving higher metrics on the testing dataset.

For direct comparison, the model was trained and validated on the original GoE-
motions dataset without changes to splits. The neutral class is used “as is”, although, in
the writers’ opinion, it should be excluded. Table 4 shows metrics reached in emotions
prediction, while Table 5 presents sentiments prediction results.

Table 4. F1-Score micro- and macro-averaged metrics for all classes reached on the testing dataset on
original GoEmotions data in emotions prediction (source: author’s development).

F1-Score (Micro) F1-Score (Macro)

0.4684 0.3442

Table 5. F1-Score micro- and macro-averaged metrics for all classes reached on the testing dataset on
original GoEmotions data in sentiments prediction (source: author’s development).

F1-Score (Micro) F1-Score (Macro)

0.6711 0.6367

The model shows zero precision and recall metrics for classes “embarrassment”,
“grief”, “nervousness”, “pride”, and “relief”.

These scores are lower than those presented in the original GoEmotions study. This
can be explained by using only a tiny-BERT model (2 layers, 128 hidden units) due to
computing resource limitations. Employing a more complex BERT model, for instance,
BERT-base, should positively impact the classification quality. As mentioned before, the
GoEmotions research refers to the BERT-base model as a baseline.

Another factor to consider is different splits. Re-splitting the dataset with fraction
by class, as well as oversampling low classes, helps the model detect and distinguish all
emotion categories.

Finally, excluding the neutral class leads to increasing the model’s performance. The
GoEmotions research describes it as: “If raters were not certain about any emotion being
expressed, they were asked to select Neutral. We included a checkbox for raters to indicate
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if an example was particularly difficult to label, in which case they could select no emotions.
We removed all examples for which no emotion was selected” [7]. We question this
approach as the emotions are either expressed in a piece of text or not. In case no emotions
are expressed, the model should not trigger any emotion categories by threshold. Apart
from that, the neutral class, being the largest one, causes model overfitting toward itself.
Thus, the neutral class is excluded from the current study.

For supplementary comparison, the approach proposed in this study was limited
to training the vanilla tiny-BERT model (2 layers, 128 hidden units) without text pre-
processing and additional layers on the presented splits. Although hyper-parameter tuning
might be required, these were used as presented before (Section 5.2 Train Process). The
neutral class was also excluded. Table 6 shows metrics reached in emotions prediction,
while Table 7 presents sentiment prediction results.

Table 6. F1-Score micro- and macro-averaged metrics for all classes reached on the testing dataset for
limited model in emotions prediction (source: author’s development).

F1-Score (Micro) F1-Score (Macro)

0.5648 0.4909

Table 7. F1-Score micro- and macro-averaged metrics for all classes reached on the testing dataset for
limited model in sentiments prediction (source: author’s development).

F1-Score (Micro) F1-Score (Macro)

0.7423 0.7060

As we can see, these results are slightly lower than presented in Section 6.1 Metrics.
This demonstrates that text pre-processing and additional model layers improve the model’s
performance by 3.27% in emotions predictions and 4.1% in sentiments prediction, according
to F1-Score macro-averaged metrics. The main contribution is achieved by imbalance
treatment and exclusion of neutral class.

To additionally verify this, the proposed model (Section 5.1) was trained on original
GoEmotions splits, excluding the neutral class. Table 8 shows metrics reached in emotions
prediction, while Table 9 presents sentiments prediction results.

Table 8. F1-Score micro- and macro-averaged metrics for all classes reached on the testing
dataset on original GoEmotions data in emotions prediction excluding neutral class (source:
author’s development).

F1-Score (Micro) F1-Score (Macro)

0.5677 0.4609

Table 9. F1-Score micro- and macro-averaged metrics for all classes reached on the testing
dataset on original GoEmotions data in sentiments prediction excluding neutral class (source:
author’s development).

F1-Score (Micro) F1-Score (Macro)

0.8144 0.7604

As we can see, the macro-averaged F1-Score is lower by 9% than when using the
proposed splits. Although the model performs better in sentiment prediction, the all-vs-all
confusion matrix (Appendix E) shows that the model tends to predict “sadness” or “fear”
in a true “grief” class. All of these classes belong to a negative sentiment. It is important
to mention that the all-vs-all confusion matrix may not be completely representative in
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this case because it considers the predicted class as the one with the highest prediction
score, while the testing part of the original GoEmotions split includes items with two or
more labels.

Moreover, the model showed zero precision and recall metrics for the classes “grief”,
“nervousness”, and “relief”, which means it cannot distinguish them.

This supports the idea that imbalanced datasets, such as GoEmotions, require special
misproportion treatment on split for achieving good model performance. Despite different
split algorithms, the model’s performance is always evaluated on a test dataset, which
presents “unseen” data with a meaningful fraction.

In light of the above, dataset preparation with custom training/validation/testing split,
exclusion of neutral class, enhanced text standardization, and a more complex classifier
structure leads to better emotions and sentiment classification quality.

6.4. Practical Implications

The authors present an emotions classifier that shows a higher quality of emotions
and sentiment prediction from the text information. The ready-to-use model can process
raw text messages in English written in a chat-style language without any additional pre-
processing. This model can be used for sentiment analysis in a batch job, as well as a part
of an information system.

Additionally, all modules developed by the authors can be used for further model-
ing and future improvement by running experiments using different BERT models and
parameter fine-tuning to increase classification quality. All code presented in this study is
published in the GitHub repository: https://github.com/Shoomaher/sentiment-analysis
(accessed on 25 February 2024).

7. Limitations

There is a list of limitations of the current study that needs to be addressed. First of
all, the main limitation is the data used for training the model. The GoEmotions dataset
consists of texts written in English, which means that the model is not able to predict texts
written in any other language. This also applies to the style of writing. Although the
authors added a text standardization layer, completely different types of writing will lead
to questionable results. For example, applying the model to a big blog post instead of a
small comment. It is also worth mentioning that the model operates only with text data.
This study does not involve speech or facial emotions analysis.

Secondly, the authors of the GoEmotions paper outline that the Reddit platform, which
is a source of text comments, is biased towards young male users. This may cause the
model to perform worse on texts written by completely different audiences.

Thirdly, as mentioned before (Section 4.1), the dataset is imbalanced, which means
that the model is less accurate in predicting classes with a low amount of data.

One more limitation is the list of emotions and sentiments that the model can predict.
Obviously, it is strictly defined by the dataset used for training the model. Predicting
different sets of emotion categories requires training the model on a different dataset and
additional analysis.

Finally, the authors were limited in computational resources and data for training and
evaluating the model. The trend nowadays is toward large language models. These models
serve multi-purposely and are likely to provide better emotion classification results. The
main reason for this is the vast amount of computation resources and training data used
for fitting such models.

8. Conclusions

This paper researches a method for emotional analysis of text data using deep learning.
Modern deep learning models can detect complicated patterns within the data. This
is proved by the GLUE [2] benchmark, which evaluates the model’s ability for human
language understanding.

https://github.com/Shoomaher/sentiment-analysis
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In this study, the authors trained and analyzed the emotions classifier using the
pre-trained BERT model [7] fine-tuning approach. The modeling was performed on the
GoEmotions dataset [6]. In addition to this, the authors described a text-standardization
layer for performing data cleansing inside of the model so that it can handle raw text data.
The proposed text-standardization layer can be used in other models working with text
data in English written in chat style.

According to the results achieved aiming to the F1-Score metric with macro-averaging,
the model shows good performance. The presented model increased the quality of
emotions prediction by 10.2% and sentiments prediction by 6.5% in comparison to the
baseline approach.

In addition to this, it was proven that the model could predict all of the emotion
category classes in the dataset, even though some of the classes consist of a significantly
lower quantity of elements.

Finally, the authors outline some concepts for further research to increase the model’s
performance. Those are the following:

– Training model using a more complex BERT model, for example, BERT-large;
– Conduct experiments with a lower learning rate;
– Increase the amount of data for training and testing.

The aim of future work will be to improve the emotions classification of the text data
using a deep learning approach. This can also include either research of BERT modifications,
such as ALBERT [27], RoBERTa [28], and DistilBERT [29], or other deep learning models
capable of language understanding, for example, XLNet [5].

The trend nowadays is toward large language models, which are multi-functional and
can be used for various language understanding tasks. Fine-tuning a large language model
for emotions and sentiment classification is also a promising direction for further research.
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Appendix A Classes Distribution for Training, Validation, and Test Datasets

Figure A1. Classes distribution in the training dataset.

Figure A2. Classes distribution in the validation dataset.
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Figure A3. Classes distribution in the testing dataset.
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Appendix B

Figure A4. Cont.
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Figure A4. ROC curves for each emotion category class.
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Appendix C

Figure A5. Cont.
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Figure A5. Confusion matrixes for each emotion category class.
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Appendix D

Figure A6. Confusion matrix for all classes (all-vs-all strategy).
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Appendix E

Figure A7. Confusion matrix for all classes (all-vs-all strategy) on original GoEmotions
train/validation/test split.
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