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ONE-DIMENSIONAL FLAME INSTABILITY
AND CONTROL OF BURNING IN FIRE-CHAMBER

Introduction. Multidimensional flame instability (two-dimensional instability as its special case) is
well investigated analytically [1, 2]. Such kind of instability leads to distortion of the flame front [1, 2]
and causes cellular structure of flame and turbulent combustion [3]. Multidimensional flame instability
can be also the reason of deflagration-to-detonation transition (DDT) [4].

But there are not many theoretical investigations of flame stability for one-dimensional case. This
fact is entirely understandable since realization of one-dimensional instability is impossible under de-
velopment of multidimensional perturbations in case of the instable flame front. Still the case of one-
dimensional flame instability is rather important from practical point of view for situations when mul-
tidimensional perturbations can’t develop because of boundary conditions (for example the wave
length A, that corresponds to the perturbation with the fastest growth rate of amplitude is more than
the tube diameter or the channel width).

One-dimensional flame instability can be the reason of vibratory combustion in fire-chambers [5].
This regime causes rapid variation of pressure and velocity in space and time. The increased pressure
perturbations wreck the walls of chamber and can destroy it completely. By the way powerful longitu-
dinal pulsations can ruin the process of burning. Since there is problem of the fire-chamber control to
prevent flame from intensive oscillations and vibrations.

Literature review. On the one hand vibratory combustion [5] is rather well studied by
L. Crocco, S.-1. Cheng, B. Raushenbach, M. Natanson. Proceedings of V.V. Gotsulenko [6, 7] contain
modern interesting ideas and thoughts of the flame oscillations and their control. But on the other hand
the problem of the vibratory combustion development is still unsolved. There are no fully clear theo-
retical explanations (neither mathematical nor mechanical and physical) for longitudinal pulsations of
pressure and velocity in the direction of the tube axis or channel axis. This work is only an attempt
(may be primitive enough) to explain the origin of such perturbations at least mathematically, from the
point of view of gas dynamics, without analyzing any physical and chemical reasons.

Aim of the Research is to investigate one-dimensional stability of flames in closed tubes, chan-
nels and chambers; to ground mathematically the control of burning in fire-chambers.

Main Body.

Mathematical model. The following mathematical model of combustion is considered (Fig. 1).

Along x-axis, at x <0, the ideal inviscid gas moves at a stationary subsonic velocity u;, (u, is much
less than the sonic speed q, ; velocity u; equals the burning rate or the fuel supply rate). Plane x=0
corresponds to the flame front. Planes x=— L, and x=L, correspond to front and back hard walls ac-
cordingly (these walls can be regarded as the fire-chamber walls or as the closed ends of tube or chan-
nel). Zone “1” (—L,<x<0) is occupied by combustible gas mixture, whereas zone “2” (0<x<L, ) is oc-
cupied by the combustion products. The combustion products are the ideal homogeneous inviscid gas
moving at a stationary subsonic velocity u, (u, is also much less than the sonic speed a, in products).
It is obvious that L=L, + L,, where L is the total chamber length. It is assumed that all physical and

chemical transformations occur in a moment on the flame front x=0. This assumption is correct if the
width of the flame zone is much less than the total chamber length L. It is not necessarily to mean by
the flame only laminar flame with plane front because of the small physical width of this kind of flame
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Fig. 1. Scheme of flame in closed fire-chamber,
tube or channel

(0,1...10 mm). It may be also laminar flame
with slightly distorted front but with effective
width (including its distortion) much less than
L. The turbulent flame also satisfies this
model if its fire zone with fuzzy front (which
is by a lot of physical reasons much wider
than the laminar flame zone) is much more
narrow than the chamber extent L.

This model is fit either for the combus-
tion in fire-chamber or for the flame propagat-
ing in tube or channel (with the frame of refer-
ence connected to the flame front). In the last
case the ends of tube or channel must also
move in the frame of reference connected to
the flame, but this movement is negligible re-

garding to comparison of the low velocity u, with velocities of acoustic perturbations mentioned below.
The parameters of combustible and products of combustion are related to each other by the con-

servation laws of mass, momentum and energy

- W _U,
Py =Prlly =—=—,
Vi W

2 2
hl+q+%:hz+u—2

b

where p; is density;

v, is specific volume (Vj = LJ,
P

D, is pressure;

D+ Pt = py+paous = pp+

uf us |
— =Pyt
Vi V)

q is the chemical energy discharge per unit mass of gas;

h;=h,(p;,p;)=h;(p,,v,) is specific enthalpy;
j=12.
For the thermally perfect gas

YD,

TPV

=

(v i Dp j
where v, is the ratio of specific heats.

Fundamental equations and their linearization.

dimensional gasdynamic equations

where ¢ is time.

ou 6u+18_p:

Yj_l ’

The flow field is governed by a set of one-

—4u— 0;

ot ox pox

op Op Ou
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More convenient form of standard equations (1) is

8_u+u8_u+v6_p:0;

ot ox  Ox

@+u@—va—u=0; (2)
ot ox  Ox

dp Op Ou

—+u—+yyp—=0.

o o Pax

Let us consider that the flame front obtains small (infinitesimal) displacement
&(t) = Ay Lexp(—imt) as a result of accidental processes inside the flame zone. So equation of the dis-
turbed flame front is

x=¢&(t) = Ay Lexp(—int), 3)
where i is unit imaginary number (72 =—1);

Ay, 1s indefinite constant;

o is complex number (main component of eigen-value).

Such a choice for the form of perturbations is connected with possibility to present (by time co-
ordinate ¢) every linearized perturbation as a Fourier series or a Fourier integral that is to get this per-
turbation as superposition of the elementary waves of the exponential type exp(—iwt) .

Stationary flows of combustible gas (in zone “1”’) and products of combustion (in zone ‘“2”) are
also disturbed, that is

u=u;+u(x,t), p=p,+pi(x,t),v=v, +vi(x,1), 4
where u'(x,t), p(x,t), v} (x,t) are small (infinitesimal) perturbations of velocity, pressure and spe-
cific volume accordingly.

Let us substitute expressions (4) into equations (2) and neglect all infinitesimals of second infini-
tesimal order (that is the essence of linearization). Set of linearized equations is

ou' ou'; op'’,
Y +u; “ +v, P, =0;
ot T ox ox
o) oV} ou'y
Vi Dy Ay, 5
ot Tox 7 oox ®)
op’ op; ou';
Pty —>+vy.p.—==0.
ot 7 ox V1P Ox
Particular solutions of equations (5) are
vll’/:ZAj,exp(kj, —lwlj,
R
_:M/ZAJI(_D exp kﬂ——l(x)l ; 5 (6)
U = L
v 2 X X :
- _M]_ZZA]., exp(kj, zj + A4 exp(kj3 zﬂ exp(—imt),
Y I=1
M . M .
where k= ——t =t
5,(1-M)) S,(1+M)) 3,
u, v,
5, =Pl =2l (5, =1);
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A} are indefinite constants.

There are three kinds of perturbations both in zone “1”” (combustible gas) and zone “2” (products
of combustion). Perturbations of the first kind (corresponding to 4;,,k;, ) and of the second kind (cor-

responding to 4;,,k;,) are plane acoustic waves. Perturbations of the third kind (corresponding to

Aj3,k ;5 ) are perturbations of specific volume only. These perturbations are caused by perturbations of
entropy. It is quite correct to suppose that there are no perturbations of the third kind in zone “1” be-
cause these perturbations are carried by the main (stationary) stream, and the flame front is supposed
the only source of perturbations for the problem of flame internal stability. This supposition leads to
condition 4;;=0.

Boundary conditions. Boundary conditions at the flame front are laws of conservation of mass,
momentum and energy for the disturbed flow. In the linear approximation these laws are given by

M_{_V_{_iﬁﬁ_iﬁ + i_l iﬁ:o (7)
u v Su 8, ex ’

lavel +2ﬂ_V_1__V1p2 —2u; +v2, =0, (8)
uf u v uf u. vy )
LANGV U 1 V_lr_i_”_l'_ 0yYs ViPy 9, V_z'_szﬁ "
v =1 u? (i =DM? v uy v, -1 uf (v, =DM3 v, u, v, ©)

1 5, 1 de
+| ———— ——=0,
WM? o M3 ) dt

u. .
where M ;= —-1s Mach number.

a;

The additional boundary condition at the flame front is well-known condition of Landau

w| _1de_ 0 (10)
Ul W dt
Boundary conditions on the hard walls are
= =0, (1)
ul x=—1
Ll - (12)
ul x=L,

Eigen-value problem. Substitution of particular solutions (6) into boundary conditions (7)...(12)
leads to the set of six linear algebraic homogeneous equations for six indefinite constants
Ay Ayy5 A1y s Ayy s Ay Ay . This set of equations has untrivial solution if and only if its determinant

equals zero. And so this is the eigen-value problem for z, that leads to characteristic (secular) equation

z{Aexp[(a, +a,)z]+ Bexp(a,z) + Cexp(a,z)+ D} =0, (13)
where o, = 2M, ﬂ, o, z&ﬁ,
1-M?2 L 5, (1-M2) L

A,B,C,D are cumbersome constant coefficients depending on v,,v,,M,,M,,9,.
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It is obvious that equation (13) has neutral root z =0 (this root is physically senseless). Therefore
the problem is to solve

Aexp[(a, +a,)z]+ Bexp(a,z) + Cexp(a,z)+ D =0. (14)

For solving of the stability problem it is enough to know only signs of roots for the equation (14).
If equation (14) has a root with positive real part (that is Rez > 0 ) then instability takes place. If all the
roots of equation (14) have a negative real part (that is Rez < 0) then the process is stable to perturba-
tions of the exponential type (3). But this fact is not a guarantee of the absolute stability for the flow
and the flame front.

Function in the left part of the equation (14) is primitive quasipolynomial with the main part (for z ).
It is known that such quasipolynomial may be stable or unstable in general. In this concrete case both
situations are also possible (it depends on values of parameters y,,y,,M,,M,,8,, L/L and L,/L

(but L,/L+L,/L=1)).
Results. It is known that the combustible gas density is much more than the density of products,
that is

5, == (15)
P UV
Such inequalities also take place:
71 <Ly, <1, (16)
M, <M,<l. (17)

It is also necessary to notice that y, <y, as usual, and Mach numbers are much less than 1 for the

normal combustion of the overwhelming majority of gas mixtures.
Let us consider two extreme cases with regard to inequalities (15)...(17).
First extreme case is

L -1, L -0,
L L
and as a result
2M
o, = o, 0.
1-M?
In this case
exp(o,z) =— €D
Pl A+B’
1
Rez=—1In C+D .
a, A+B
It follows Re z < 0 and stability takes place.
Second extreme case is
L -0, L -1,
L L
and as a result
2M
o, >0, 0, > S
0,(1-M,?)

In this case
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exp(a z)——B+D
Pieka A+C’
Rez:Lln B+D .
a, A+C

It follows Re z > 0 and instability takes place.

Therefore the flame front is stable (with respect to one-dimensional exponential perturbations)
near the back wall of chamber or near the end of tube (channel) from which the flame is propagating.
On the contrary it is unstable near the front wall of chamber or near the end of tube (channel) towards
which the flame is propagating.

In both cases theoretical conclusions are in good agreement with experimental data (for example
the flame propagating in a narrow tube begins to “sing” as it approaches its end as a result of one-
dimensional instability [6, 7]). This fact proves correctness of the suggested theory.

Conclusions:

— One-dimensional instability of the flame front in the fire-chamber mathematically explains the
nature of vibratory combustion. This regime of combustion is caused by the development of the longi-
tudinal perturbations (pulsations) of pressure and velocity which are the consequence of one-
dimensional instability. This regime causes also loud noises in engines.

— One-dimensional instability develops in time for flames propagating in narrow tubes or chan-
nels (tube must be narrow enough to prevent the development of multidimensional instability).

— Combustion in engines needs control to avoid vibratory combustion or (if the vibratory com-
bustion regime is inevitable) to diminish pulsations as much as possible. The aim of this control is to
support burning of combustible gas mixture in the flame front situated at the maximum possible dis-
tance from the front wall of the fire-chamber (from which the fuel supply is realized). Possibilities and
methods of such control differs greatly for various engines and fire-chambers. Such possibilities and
methods exceed the limits of the present investigation.
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AHOTALNIS / AHHOTALIUA / ABSTRACT

B.E. Boakos. OnHOBHMIpHA HeCTilKiCTh MOIyM’sl Ta KepyBaHHsSI rOpiHHAM B Tommi. J[OCTiIPKEHO CTIHKICTH IO-
JyM’sl B 3aMKHEHIH KaMepi 3rOpsiHH, a TAKOXK IO0JIyM s, 1[0 PO3IOBCIO/IKYEThCS B 3aMKHEHHX KaHajax abo Tpy0ax, BiHOC-
HO OJHOBHMMIPHHX 30ypeHb €KCIIOHEeHILiIfHOro THiry. JloBeIeHO, 110 MOXKIMBUMH € SIK CTIHKICTb, TaK 1 HECTIHKICTh Hpolecy
ropinss. [Ipy pbOMy rapaHTOBaHO OJHOBHMIPHY HECTIMKICTh 01l mepeIHbOl CTIHKM KaMepu 3rOPSIHHSL, 3BiKH 3IiHCHIOETH-
Cst ojiaya najuBa. TakuM YMHOM, KepYBaHHS TOPIHHAM B TOILI 3BOAUTHCS O MIATPUMYBAHHS MOIYM’sl HA HaHOLIbII MOX-
JMBIiH BiJCTaHI Bi mepeAHbOro (POHTY TOIKHU 3 METOO HEJOIMYIICHHS BUHUKHEHHS P&XXUMY BiOpaliiiHoro ropints abo 3me-
HIICHHS IHTCHCUBHOCTI IyJIbCAIlil, SIKIIO IX HEMOKJINBO YHUKHYTH.

Kniouoei cnosa: momym’si, TOpiHHS, BiOpauiiiHe rOpiHHSA, HECTIHKICTb, JaMiHAPHICTh, TypOYyJICHTHICTh, KaMepa 3TOPSHHS.

B.D. Boakos. OqHoMepHas HEYCTOHYUBOCTL IUIAMEHH W YIpaBJieHHe rOpeHHeM B Tonke. MccnenoBaHna ycroddu-
BOCTb IUIAMEHH B 3aKPHITON KaMepe CrOpaHus, a TaKKe IUIAMEHH, PacIIpOCTPAHSIOIIETOCS B 3aKPHITHIX KaHAlaX WX TPyOax,
10 OTHOUIEHUIO K O/IHOMEPHBIM BO3MYIICHUSAM SKCIOHEHIUAIBHOI O TUna. Joka3aHo, 4TO BO3MOXHBI KaK yCTOHYUBOCTD, TaK
U HEyCTOMUYMBOCTB Ipoliecca ropenus. [Ipu 3ToMm ogHOMepHas HEyCTOMYMBOCTb FAPAHTHPOBAHA y IIepe/lHEeH CTEHKU KaMephl
CropaHus, OTKyJa IPOU3BOJUTCS 10Jjaya TOIIMBa. TakuM 006pa3oM, yrpaBleHUEe TOPEHHEM B TOIKE CBOJHUTCS K MOAAEpHkKa-
HHIO TJIAMEHH Ha MaKCHMAaJIbHO BO3MOXHOM PacCTOSHHH OT NEpeIHEro (poHTa TONKHU C LIENbI0 HEAOMYIIEHHs BO3HUKHOBE-
HUSI PeKUMa BHOPAIMOHHOTO TOPEHHUS MIIM YMEHBIICHHS HHTCHCUBHOCTH ITyJIbCALINH, €CITH OHU HEH30EXKHBI.

Kniouesvie crosa: mnams, ropeHne, BUOPAIIMOHHOE TOPEHHE, HEYCTOWYMBOCTh, JAMHHAPHOCTh, TypOYJIE€HTHOCTh, Ka-
Mepa CropaHusl.

V.E. Volkov. One-dimensional flame instability and control of burning in fire-chamber. The flame stability with
regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating
in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion
process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where
the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maxi-
mum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of
pulsations if these pulsations are inevitable.

Keywords: flame, combustion, vibratory combustion, instability, laminarity, turbulence, fire-chamber.
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