

производство

Литейное производство г. Одессы (Украина) **Casting Production in Odessa** and Odessa Region (Ukraine)

Художественные отливки выполненные на литейной кафедре ОГПУ (г. Одесса) 270044, Одесса, пр. Шевченко, 1 Art castings made at the Foundry Chair of the State Polytechnical University (Odessa) 270044, Odessa, pr. Shevchenko, 1

FOUNDRY. TECHNOLOGY & EQUIPMENT

7 96

ЕЖЕМЕСЯЧНЫЙ МЕЖДУНАРОДНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ И ПРОИЗВОДСТВЕННЫЙ ЖУРНАЛ

Литейное производство г. Одесо СОДЕРЖАНИЕ Украина (тематический номер)	сы и Одесской обл.,
Иванова Л.А., Василенко С.А. Задачи гильдии литейщиков южного р Амбаев В.С. Визитная карточка "Центролита"	
иванова Л.А., малых в.п. проолема выживания инженера-литеиц	ψικα 4
Литейные сплавы. Отливки	Life parameters and
Колтунов П.М. Новые технологии обработки сплавов на АО "Краян". Сенкевич Ю.И., Кантор Б.С., Шицман Е.Б., Василенко С.А., Кучмий	і Н.И.,
Касьянов И.М. Автомобильные коленвалы из высокопрочного чугуна Иванова Л.А., Прокопович И.В., Каспревич П.В. Повышение	
герметичности литых радиаторов	C C
Специальные способы литья	
Иванова Л.А., Искра Е.И., Кирюхин П.А. Технология получения художественных отливок в динасо-гипсовых формах	12
кушнир А.М., Доценко П.В., Малых С.В. Изготовление точнолитой	
Иванова Л.А., Прокопович И.В., Прокопович Л.В. Отделка художес	
Воронова О.И., Липтуга И.В. Факторы разрушения форм литья под да	
при термоциклировании	
Машины. Оборудование	
Сухарев В.И., Яновский А.М. О техническом перевооружении литейн	000
производства Украины	
Коротков В.А., Мазурик В.И. Производство оборудования для специа	альных способов литья17
Организауия производства.	Экономика
Мураховская С.Б., Кобринская Б.Н. Оптимизация стандартов - залог	продвижения литейной
продукции стран СНГ к мировому рынку	
Экология. Охрана труда	
Иванова Л.А., Прокопович Л.В. Биомониторинг отвалов литейного п	роизводства 97
иванова л.м., проконович л.в. виомониторинг отвалов литеиного	21
САД/САМ литейных проуч	ессов
Становский А.Л., Кострова Г.В., Покрытан Л.А. Программное управл	ение
формообразованием как средство оптимизации охлаждения отливки.	
Информация. Хроника	Copposes Dist
Малых В.П., Василенко С.А. Итоги VI конференции литейщиков в О	дессе 9.4
Рускол В.И. Обзор зарубежной информации	
Ковалев Ф.И. О посещении предприятий США российскими литейщи	
Жуков А.А. "Литые Металлы" - восьмой год издания	
Зиновьев А.А. Запад. Феномен западнизма (продолжение)	

УДК 621.746:620.192.47

Л.А. Иванова,

И.В. Прокопович, П.В. Каспревич

ПОВЫШЕНИЕ ГЕРМЕТИЧНОСТИ ЛИТЫХ РАДИАТОРОВ

Традиционно литые радиаторы, работающие в агрессивных средах и при повышенном давлении, получают из ЧШГ, коррозионностойкой стали, цветных сплавов. Сталь обладает наихудшими литейными свойствами, поэтому использование ее нежелательно; ЧШГ требует для своего производства специальной технологии; цветные сплавы дороги.

На литейной кафедре ОГПУ исследовали герметичность серых чугунов. Между герметичностью G, \mathbf{M}^{-1} , и основными факторами, ее определяющими, можно установить связь (при однородном движении жидкости через стенку):

$$G = \frac{p \cdot W \cdot t}{Q \eta} \quad , \tag{1}$$

где р - критическое давление, МПа;

W - рабочая площадь образца, м²;

t - время просачивания, с;

 η - коэффициент динамической вязкости, Па с;

Q - количество просочившейся жидкости, м³.

Для оценки качества материала, имея в виду его герметические свойства, целесообразно ввести понятие удельной герметичности $G_{\rm o}$. Это герметичность, отнесенная к единице толщины стенки отливки, изготовленной из данной марки чугуна или данного материала. Зависимость G от толщины стенки δ можно представить в виде зависимости:

$$G = G f(\delta) , (2)$$

Эта зависимость приближается к квадратичной и представляется в виде следующего уравнения:

$$G_0 = G/\delta^2$$
, (3)

Подставляя в (3) значения G, получим:

$$G_{o} = \frac{\rho \cdot W \cdot t}{Q \cdot \eta \cdot \delta^{2}} \tag{4}$$

Формула (1) позволяет найти герметичность СЧ. Основные величины, входящие в нее, можно определить при испытании специальных образцов на герметометре (рис. 1). Если металл имеет поры, жидкость, фильтруясь по ним, просачивается сквозь

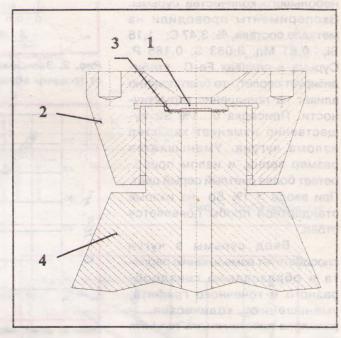
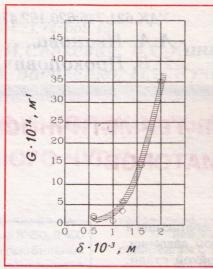


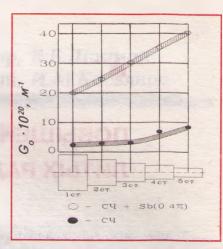
Рис. 1. Головка герметометра: 1- образец, 2 - гайка, 3 - прокладка, 4 - корпус

образец, и на контрольной поверхности появляется течь. При испытании на герметичность в качестве рабочей жидкости применяют керосин с относительной вязкостью 0,0077 Па с.

Герметичность чугуна зависит от его свойств: пористости, сопротивления разрушению от расклинивающего действия жидкости, деформации, а также от толщины стенки отливки δ . Зависимость G от δ представлена на рис. 2. Исследовали СЧ следующего химического состава, %: 3,47 C; 1,18 Si; 0,61 Mn; 0,083 S; 0,185 P.


Просачивание жидкости по путям усадочного или фазового (например, графитового в СЧ) происхождения соответствует условиям испытания, при которых влияние деформации материала на герметичность невелико. Это возможно, когда отношение $p_{\rm kp}/p_{\rm max}$ - малая величина ($p_{\rm kp}$ - давление, при котором течь отсутствует; $p_{\rm max}$ - давление, при котором начинается течь).

Герметичность, прочность и износостойкость обеспечиваются перлитной структурой металлической матрицы со сравнительно мелкими графитовыми включениями. В отливках аномально чередуются структурные зоны и ферритно-графитовая эвтектика, занимающая значительную часть площади сечения отливки. Эффективен метод улучшения структуры и свойств чугунных отливок присадкой в чугун (на дно ковша) небольшого количества сурьмы. Эксперименты проводили на металле состава, %: 3,47 С; 1,18 Si; 0,61 Mn; 0,083 S; 0,185 P. Сурьма в сплавах Fe-С стабилизирует перлит, что благоприятно влияет на повышение герметичности. Присадка 0...1% Sb существенно изменяет характер излома чугуна. Уменьшается размер зерна, и излом приобретает более светлый серый цвет. При вводе > 1% Sb на изломе стандартной пробы появляется отбел.


Ввод сурьмы в чугун способствует измельчению перлита и образованию гнездообразного и точечного графита, уменьшению количества и размеров пластинчатого графита (ПГ), а так же количества феррита.

В чугунах с 0,2...0,4% Sb свободный феррит уже полностью отсутствует и, наряду с образовавшимся гнездообразным и точечным графитом, присутствует и мелкий ПГ. При 0,6...1,0% Sb доля ПГ еще уменьшается, а гнездообразного увеличивается. Перлитная структура, мелкий ПГ приводят к уменьшению транзитных микропор между включениями графита, что исключает расклинивающее действие жидкости, т.е. повышают его герметичность.

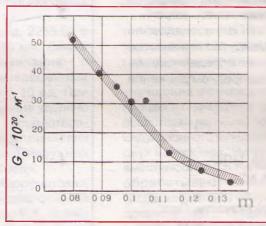

Присадка сурьмы повышает плотность чугуна из-за уменьшения его общей пористости (рис. 3). Изменение пористости и плотности чугуна от содержания в нем сурьмы представлено на рис. 4.

Рис. 2. Зависимость герметичности от толщины образца

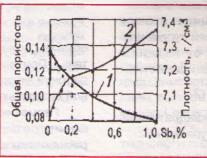
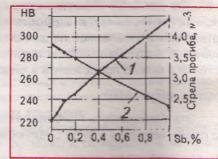
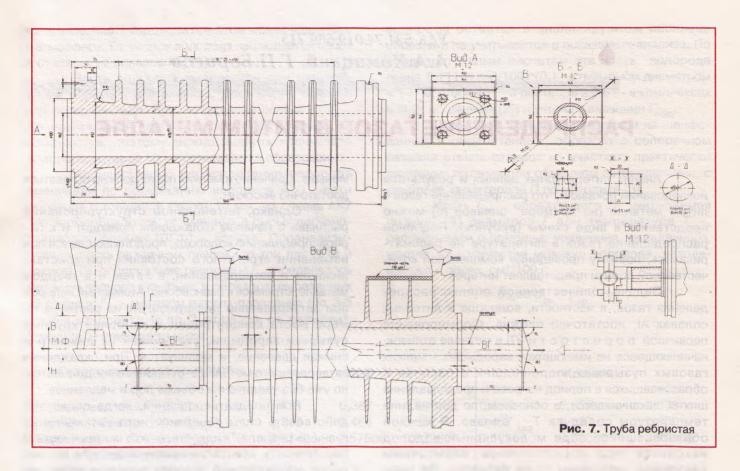

Рис. 5. Удельная герметичность СЧ и чугуна, легированного сурьмой, от толщины стенки пробы

Рис. 3. Зависимость герметичности чугуна от его общей пористости


Анализ механических свойств и испытаний на герметичность позволил определить оптимальное количество Sb, позволяющее повысить герметичность металла, незначительно ухудшив его механические свойства (рис. 6 и 8).

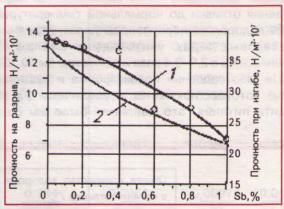
Результаты исследований апробированы при литье опытной партии ребристых теплообменников


Рис. 4. Изменение пористости (1) и плотности (2) от содержания Sb

Существенное влияние на герметичность чугуна оказывает толщина стенки отливки. Исследовали образцы, вырезанные из цилиндрической ступенчатой пробы с диаметрами ступеней, мм: 1 - 120, 2 - 85, 3 - 60, 4 - 45, 5 - 30 (рис. 5).

Рис. 6. Изменение твердости (1) и стрелы прогиба (2) от содержания Sb

для экономайзера с присадкой 0,16% Sb. Отличительной особенностью радиатора является конструкция поверхности теплообмена (рис. 7). Традиционные круглые ребра заменены на квадратные, что позволяет при неизменных габаритах увеличить



площадь теплообмена почти в 1,5 раза. Разъем выбран по диагонали фланца, что обеспечивает направленный выход газов через вентиляционные каналы для каждого ребра отливки.

Для заливки тонкостенных ребер при литье во влажную песчано-глинистую форму в верхней полуформе между ребрами устанавливают пенополистироловые вставки, соединяющие ребра. Вставки остаются в форме и при заливке газифицируются, образуя подпиточный канал между двумя массивными фланцами. Это предотвращает замерзание металла в тонких частях отливки. Образующийся канал также улучшает вентиляцию полости формы, так как соединен с двумя выпорами.

Внутренняя полость отливки формируется протяженным стержнем на органических связующих (I/d=11,7). В качестве арматуры применяют трубу с отверстиями, обеспечивающими отвод газов в знаковые части. В связи с высоким рельефом и большой поверхностной площадью модели ее протяжка затруднена: наблюдали обрывы смеси в межреберном пространстве и массовые засоры полости формы. Для снижения износа модели и улучшения качества формовки применили протяжной шаблон и специальное подъемное резьбовое приспособление для извлечения модели из формы.

Отлитые радиаторы успешно выдержали производственные испытания при давлении 1 МПа. Без присадки сурьмы отливки "текли" при 0.4...0.5 МПа.

Рис. 8. Изменение $\sigma_{\rm g}(1)$ и $\sigma_{\rm u}(2)$ от содержания Sb

Список литературы

- 1. **Получение** герметичных чугунных отливок гидроаппаратуры с литыми каналами. Обзор. М., 1973. 51 с.
- 2. **Исследование** герметичности чугунных отливок для компрессоров холодильных машин. Отчет ОПИ. Одесса, 1973.
- 3. **Исследование** процесса получения здоровых корпусных станочных отливок и отливок гидравлических систем. Отчет ОПИ. Одесса, 1985. 150 с.
- 4. Доценко П.В., Иванова Л.А., Доценко А.П. Влияние сурьмы на плотность серых чугунов // Пути повышения качества и экономичности литейных процессов. Одесса: Совпин. 1994.
- 5. **Ершович А.Н.** Особенности кристаллизации тонкостенных отливок с пластинчатым графитом // Литейное производство. 1985. №10

Castings Production in Odessa and the Odessa Region. Ukraine (subject issue)

Ivanova L.A. et al. The Tasks of the Foundrymen's Guild in the Southern	
Region of the Ukraine	2
■ Ambayev V.S. The Visit Card of Tsentrolit	3
■ Ivanova L.A. et al. The Problem of Foundry Engineer's "Survival"	4
■ Koltunov P.M. New Alloy Treatment Techologies at AO Krayan	5
■ Senkevich Y.I. et al. Automobile Crankshafts of High-Strength Cast Iron	6
■ Ivanova L.A. et al. Improvement of Air-Tightness of Cast Radiators	7
■ Khomitsky A.A. et al. Distribution of Gases in Cast Metal	10
■ Ivanova L.A. et al. Technology of Art Casting Production in	
Silica-Brick-Gypsum Molds	<i>1</i> 3
■ · Kushnir A.M. et al. Production of Precision-Cast Die Casting Dies	1 3
■ Voronova O.I. et al. Factors of Die Casting Dies Failure	
during Thermal Cycling	15
■ Sukharev V.I. et al. On the Technical Re-equipment of the Ukraine's	
Foundry Industry	16
■ Korotkov V.A. et al. Production of Equipment for Special Casting Methods.	17
■ Murakhovskaya S.B. et al. Optimization of Standarts - a Pledge	
of Advancement of the CIS Countries' Foundry Products towards the World Mari	ket 19
■ Ivanova L.A. et al. Biomonitoring of the Foundry Industry's Disposal Areas.	21
Stanovsky A.L. et al. Program Control of Shape Formation as a Means Output Description:	
of Casting Cooling Optimization	22
■ Malykh V.P. et al. The Results of the 6th FoundryConference in Odessa	24
Ruskol V.I. Review of International Information	26
■ Kovalyov F.I. On the Russian ITTsM's Foundrymen's Visiting the USA's Pla	ants 29
■ Zhukov A.A. "Cast Metals" - the 8th Year of Publication	33
■ Zinovyev A.A. The West. Westernism Phenomenon (continuation)	34

АДРЕС РЕДАКЦИИ:

115533, Москва, пр.Андропова, д. 22/30, эт.6, комн. 2 Тел.: 114-52-46

Тел./Факс: 114-5845

■ Перепечатка, все виды копирования и воспроизведения материалов, публикуемых в журнале "Литейное производство", осуществляется только с разрешения редакции.

Сдано в набор 05.06.96г. Подписано в печать 05.07.96г. Формат 60х80 1/8. Печать офсетная. Бумага №1, мелованая Усл.печ.л. Усл. кр..-отт. Уч.-изд. л. 5.78. Тираж 1000 экз.

■ АССОЦИАЦИЯ ЛИТЕЙЩИКОВ РОССИИ

- АССОЦИАЦИЯ ЛИТЕЙЩИКОВ У К Р А И Н Ы
- АССОЦИАЦИЯ ЛИТЕЙЩИКОВ С.-ПЕТЕРБУРГА
- БЕЛОРУССКАЯ АССОЦИАЦИЯ ЛИТЕЙЩИКОВ
- ЗАВОД "СТАНКОЛИТ"
- КОЛЛЕКТИВ РЕДАКЦИИ
- ЛИТЕЙНЫЙ ЗАВОД АО "КамАЗ"
- АМО "ЗИЛ"
- AO "BA3"
- **Ж**урнал готовили:
- Н.Я. Кумалагова Е.В. Трушина
- Оформление и компьютерная верстка
- О.Э.Дробицкая