УДК 004.3

АВТОМАТИЗИРОВАННАЯ СИСТЕМА МОНИТОРИНГА И УПРАВЛЕНИЯ ЗАРЯДОМ БАТАРЕЙ ДЛЯ ГЕЛИОСИСТЕМ

Малерик Р.П., Соловьёва К.В., Цыганков О.В. д.т.н., профессор каф. ИС Антощук С.Г., к.т.н., директор ISS Лобачев М.В. Одесский Национальный Политехнический Университет, УКРАИНА

АННОТАЦИЯ. Проект по разработке системы мониторинга заряда аккумуляторных батарей при работе в системах «green» технологий, в частности солнечной энергетики. Контроллер позволяет собирать и отображать в удобном виде для потребителя все необходимые параметры работы системы для исследования внедряемых инновационных технологий.

Введение. В поисках новых источников энергии люди все чаще обращаются к солнечным батареям благодаря их экологической чистоте и низкой ресурсоемкости. Их использование становится все более актуальным сегодня, когда запасы топлива постепенно заканчиваются, тогда как солнечные панели позволяют получить необходимую энергию из постоянного и абсолютно бесплатного источника - света солнца.

Стандартная модель гелиосистемы для выработки электроэнергии состоит из таких компонент: потребитель, контроллер заряда, солнечные панели, и аккумуляторные батареи (АКБ), которые сохраняют производимую днем электроэнергию. Эффективность использования солнечной энергии во многом определяется требованиями к АКБ. Они имеют ряд ограничений, связанных с напряжением заряда, количеством возможных циклов перезаряда и т.д. Учет этих требований и ограничений осуществляется с помощью контроллера заряда. В настоящее время существует множество таких контроллеров, но, как правило, их разработчики не предусматривают одновременный заряд и мониторинг состояния АКБ и панелей, что позволило бы анализировать состояние батареи и эффективность использования солнечных панелей с помощью удобного для пользователя интерфейса.

Цель работы. Целью проекта является создание контроллера заряда аккумуляторных батарей, который позволяет собирать данные о параметрах гелиосистемы для отслеживания ее состояния при обеспечении электроэнергией зданий с внедренной технологией «умный дом». Также данная система может использоваться в так называемых полигонах для исследования инновационных технологий, где необходимо получение данных о всех компонентах системы и их «поведении», чтобы сравнивать и анализировать тестируемые технические решения и параметры алгоритма заряда.

Основная часть работы. Разработанная модель системы экологически чистого электрообеспечения с использованием солнечных батарей предполагает наличие 5 компонент (рис. 1): потребителя экологически чистой электроэнергии, солнечных панелей, аккумуляторных батарей, контроллера заряда и веб-сервера.

Основой для создания контроллера заряда аккумуляторных батарей был выбран микроконтроллер BeagleBone, который содержит всю необходимую периферию «на борту». Были проанализированы различные виды традиционных контроллеров заряда, в результате чего для реализации был выбран PWM-контроллер, который предполагает поддержание оптимального напряжения на аккумуляторе [1], таким образом продлевая срок работы аккумуляторных батарей.

Для измерения напряжения и силы тока на аккумуляторных батареях и солнечных панелях используются специальные модули INA219, которые подключены к BeagleBone и работают по протоколу I2C. Управление зарядом осуществляется с помощью ШИМ.

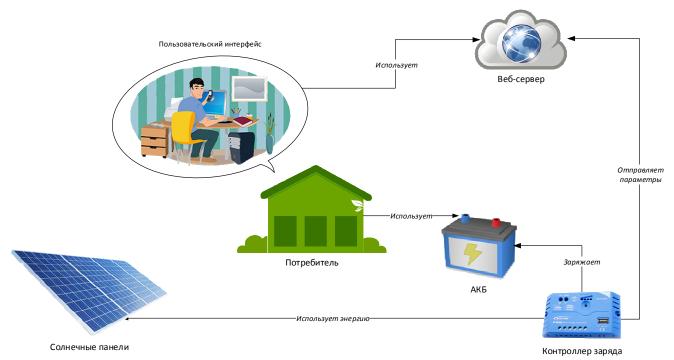


Рис. 1 – Структурная схема системы

Разработанная система осуществляет сбор статистических данных о своих параметрах для отправки в базу данных, их дальнейшей обработки и отображения на соответствующей вебстранице. Главная страница системы (dashboard) состоит из блоков текущих параметров АКБ и солнечных панелей; блоков с графиками напряжения и силы тока для АКБ и панелей; блока с погодой и примерным прогнозом выработки электроэнергии. Кроме того, параметры системы отображаются в реальном времени на LCD дисплее контроллера.

Контроллер также содержит веб-панель управления, где осуществляется настройка параметров алгоритма заряда, солнечных панелей, просмотр логов событий и выдача прав на использование API разработанной системы в других проектах и продуктах.

Дополнительно ведется мониторинг каналов с солнечными батареями на предмет заметного отличия в выдаваемых показаниях для отправки уведомлений о неэффективном использовании панелей.

Выводы. Разработанный контроллер заряда имеет ряд преимуществ Он позволяет получить существующими аналогами. данные 0 заряде вспомогательную информацию в удобном виде, чтобы дать возможность потребителю провести исследование внедряемых инновационных технологий при осуществлении энергетического менеджмента. Использование данного контроллера позволяет управлять алгоритмом заряда, отслеживать состояние аккумуляторов и получать уведомления в случае необходимости замены, наиболее эффективным образом расположить солнечные панели на крыше здания.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Выбор контроллера заряда для солнечных батарей [Электронный ресурс]. Режим доступа: URL: http://www.solnechnye.ru/controllery-zaryada/vybor-controllera-zaryada.htm. Название с экрана.
- 2. Солнечное электроснабжение [Электронный ресурс]. Режим доступа: URL: http://robocraft.ru/blog/3161.html. Название с экрана.
- 3. PWM контроллер заряда на Attiny13 [Электронный ресурс]. Режим доступа: URL: http://arduino.ru/forum/proekty/pwm-kontreller-zaryada-na-attiny13?page=2. Название с экрана.