ОДЕССКИЙ НАЦИОНАЛЬНЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

материалы ххі семинара «моделирование в прикладных научных исследованиях»

19 – 20 января 2013 г.

Редакционный совет сборника:

д.т.н., проф. Антощук С.Г. (председатель), д.т.н., проф. Гогунский В.Д., д.т.н., проф. Нестеренко С.А., к.т.н., доц. Савельева О.С. (отв. секретарь), д.т.н., проф. Становский А.Л., д.т.н., проф. Тонконогий В.М.

Оформление и компьютерная вёрстка: Андросюк А.В.

УПРАВЛЕНИЕ ЛАТЕНТНЫМИ РИСКАМИ В ПРОЕКТНОЙ ДЕЯТЕЛЬНОСТИ	97
Щедров И.Н., Становский А.Л., Монова Д.А.	
УПРАВЛЕНИЕ НАНЕСЕНИЕМ НАНОПОКРЫТИЙ НА ОТЛИВКИ <i>Оборский Г.А., Прокопович И.В., Науменко Е.А</i>	99
УПРАВЛЕНИЕ СЛОЖНЫМИ ОБЪЕКТАМИ ЛИТЕЙНОГО ПРОИЗВОДСТВА С ПОМОЩЬЮ ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ ОТОБРАЖЕНИЙ Оборский Г.А., Становский А.Л., Прокопович И.В.	101
СТЕНДЫ ДЛЯ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК АРМИРОВАННЫХ РЕЗИНОВЫХ АМОРТИЗАТОРОВ Савельева О.С., Лебедева Е.Ю., Монова Д.А.	104
АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ КОНСТРУКЦИЙ АРМИРОВАННЫХ РЕЗИНОВЫХ АМОРТИЗАТОРОВ Лебедева Е.Ю., Красножон А.Н., Кошулян С.В.	108
КОМПЕНСАЦИЯ НЕОПРЕДЕЛЕННОСТЕЙ В УПРАВЛЕНИИ ПРОЕКТАМИ Становский А.Л., Березовская Е.И., Красножон А.Н.	110
ОБОБЩЕНИЕ МЕТОДА ВИРТУАЛЬНОГО ОБЪЕКТА НА РАСЧЕТЫ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ СЛОЖНЫХ СИСТЕМ Бовнегра Л.В., Бондаренко В.В., Кошулян С.В.	112
ОСОБЕННОСТИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ЛИТЬЯ КАК НЕСТАБИЛЬНОГО ОБЪЕКТА МОДЕЛИРОВАНИЯ <i>Прокопович И.В., Добровольская В.В., Бондаренко В.В</i>	114
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЛИСТОВОЙ РЕССОРЫ В ВИДЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНОЙ КОНСОЛЬНОЙ БАЛКИ <i>Бажанова А.Ю.</i>	116
ПРИНЦИПЫ ПОСТРОЕНИЯ ИНТЕРФЕЙСА САПР JUKOR2 <i>Корниенко Ю.В</i>	117
ПРЕИМУЩЕСТВА ИСПОЛЬЗОВАНИЯ ЯЗЫКА JAVA ДЛЯ РАЗРАБОТКИ ИНТЕРФЕЙСА САПР <i>Корниенко Ю.В.</i>	118

ОСОБЕННОСТИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ЛИТЬЯ КАК НЕСТАБИЛЬНОГО ОБЪЕКТА МОДЕЛИРОВАНИЯ

Прокопович И.В., Добровольская В.В., Бондаренко В.В.

Формирование отливок — сложный процесс, определяемый условиями заполнения, охлаждения и затвердевания жидкого металла, усадочными явлениями, физико-химическим взаимодействием металла с поверхностью формы, газовым режим и термическими напряжениями, возникающими в форме. В процессе заполнения формы расплавом, затвердевания и охлаждения отливки происходит повышение температуры и изменение состояния, состава и свойств формовочной смеси.

При этом компоненты сплава взаимодействуют с компонентами материала формы и атмосферой, вступают в химические реакции, сплав выделяет и поглощает газы, оказывает силовое воздействие на стенки формы (размывает, сжимает элементы формы), проникает в поры формы и т. д. В результате указанных, в т.ч. и переходных процессов в отливках образуются дефекты, ухудшающие качество их поверхностного слоя [1].

Такие дефекты по причинам их порождающих можно условно разделить на два класса: проникновение компонентов формы в отливку (засоры, газовые раковины и т.п.) и проникновение металла отливки в форму (пригар). Очень часто условия образования дефектов первого класса прямо противоречат условиям возникновения второго, тем не менее, влияющие факторы настолько сложны и противоречивы, что в некоторых случаях на одной отливке одновременно присутствуют дефектов разных классов [2].

Качество поверхностного слоя отливки в целом оценивают по степени шероховатости поверхности и наличию поверхностных дефектов, которые оказывают отрицательное влияние на прочностные свойства, сопротивление истиранию, коррозионную стойкость и товарный вид заготовок.

Как видим, даже эти столь незначительные по объему сведения о формировании отливки с той или иной поверхностной шероховатостью [3] свидетельствуют о противоположном влиянии отдельных взаимосвязанных технологических факторов, что делает результаты процесса литья малопредсказуемыми, а брак недопустимо большим.

Еще одно отрицательное следствие из перечисленных обстоятельств связано с практической невозможностью осознанно управлять процессом, так как выбор в качестве управления одного какого-либо фактора (например, размера зерна огнеупорного наполнителя) и попытки изменять его для достижения некоторой цели в одной из подсистем системы «отливка – форма» немедленно приведут к рассогласованию других подсистем и, возможно, получению результатов, противоположных цели управления.

Кроме того, когда литейная форма уже залита, управлять процессом, как правило, уже поздно, да и средства для этого практически отсутствуют.

Здесь вся надежда на эффективное проектирование технологического процесса литья, включающего проект литейной формы, оборудование и

оснастку для ее изготовления.

Сказанное выше позволяет утверждать, что литье в неметаллические формы обладает, с точки зрения как теоретических, так и практических подходов к процессам литья, некоторыми «странностями», в частности [32]:

- при внешне одинаковых условиях протекания процессов и практически отсутствующих возмущениях наблюдается резко различные результаты с точки зрения качества поверхностного слоя стальных отливок;
- вполне обоснованные «логически» мероприятия, направленные на явно ожидаемый положительный эффект с точки зрения качества поверхности стальных отливок дают противоположный результат.

Литература.

- 1. Гермейер Ю.Б. Игры с непротивоположными интересами. М.: Наука, 1976. 327 с.
- 2. Лысенко Т.В. Оптимизация технологических процессов получения отливок из железоуглеродистых сплавов путем синхронизирующего управления тепломассообменом в литейной форме. Дисс. доктора техн. наук. 05.16.04. К.: ФТИМС, 2007. 350 с.
 - 3. Гуляев Б.Б. Формирование качества поверхности отливок. М.: Наука, 1969. 156 с.