

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ В НАУКЕ, ТЕХНИКЕ И ОБРАЗОВАНИИ "ИНФОТЕХ – 2013"

Материалы международной научно-практической конференции

г. Севастополь, 09 - 13 сентября 2013 г.

Міністерство освіти і науки України Севастопольський національний технічний університет (СевНТУ)

ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ ТА ІНФОРМАЦІЙНА БЕЗПЕКА В НАУЦІ, ТЕХНІЦІ ТА НАВЧАННІ "ІНФОТЕХ-2013"

Матеріали міжнародної науково-практичної конференції (Севастополь, 09 - 13 вересня 2013 р.)

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ В НАУКЕ, ТЕХНИКЕ И ОБРАЗОВАНИИ "ИНФОТЕХ - 2013"

Материалы международной научно-практической конференции (Севастополь, 09 - 13 сентября 2013 г.)

INFORMATION TECHNOLOGIES AND INFORMATION'S SAFETY IN SCIENCE, TECHNIQUE AND EDUCATION "INFOTECH-2013"

Materials of International scientific-practical conference (Sebastopol, 09 – 13 of September, 2013)

УДК 004 ББК 32.81

И74

Науковий редактор О.В. Скатков, д-р техн. наук, проф. СевНТУ

У конференції (рали участь організації-співорганізатори Санкт-Петербурзький державний університет аерокосмічного приладобудування, м. Санкт-Петербург, Російська Федерація; Інститут проблем інформатики РАН, м. Москва, Російська Федерація; Інститут проблем управління ім В.А. Трапезнікова РАН, м. Москва, Російська Федерація; Технічний університет, м. Люблін, Польща; Природничо-гуманітарний університет в Седліце, м. Седліце, Польща; Вища технічна школа, м. Рапперсвіль, Швейцарія; Білоруський державний університет, м. Мінськ, Республіка Білорусь.

Редакційна колегія:

А.П. Фалалеєв, канд. техн. наук, доцент, проректор СевНТУ,

О.Н.Мащенко, канд.тех.наук, доцент СевНТУ,

А.В.Тарасова, асистент СевНТУ,

Л.А. Кареліна, інженер І категорії СевНТУ.

Інформаційні технології та інформаційна безпека в науці, техніці та навчанні "ІНФОТЕХ-2013": матеріали міжнар. наукпракт. конф., Севастополь, 09-13 верес. 2013 р. / М-во освіти і науки України, Севастоп. нац. техн. ун-т; наук. ред. О.В. Скатков — Севастополь: СевНТУ, 2013. — 117с.

ISBN 978-617-612-037-7

У даному збірнику опубліковані матеріали, що охоплюють широке коло проблем, пов'язаних з інформаційними технологіями. Представлено результати теоретичних та експериментальних досліджень в області аналізу та синтезу управляючих та інформаційних систем, систем підтримки прийняття рішень.

Видання розраховане на науковців, аспірантів.

УДК 004 ББК 32.81 ный адаптивный Г A, что позволило рассчитать оптимальные параметры процесса: $V_1 = 3,37$ м/мин; $T_1 = 22$ °C; $V_2 = 3,54$ м/мин; $T_2 = 29$ °C.

Предложенный метод оптимизации параметров объектов со слабосвязанными подсистемами, состоящий в применении разработанного адаптивного генетического алгоритма для "мягких" эволюционных вычислений, позволил повысить глубину оптимизации и получить в компьютерных экспериментах положительный технический эффект.

Библиографический список использованной литературы

- 1. Ротштейн, А.П. Интеллектуальные технологии идентификации: нечеткие множества, генетические алгоритмы, нейронные сети/ А.П. Ротштейн, Винница: Универсум-Винница, 1999. 320 с.
- 2. Монова, Д.А. Комплексный генегический алгоритм / Д.А. Монова, А.А. Перпери, П.С. Швец // Пр. Одес. політехн. ун-ту.— Вип. 1(35) Одеса, 2011.. С. 176 180.
- 3. Становский, А.Л. Онтимизация слабосвязанных систем в автоматизированном проектировании и управлении / А.Л. Становский, П.С. Швец, И.Н. Щедров. // Сучасні технології в машинобудуванні: зб. наук. пр. Вип. 6. Харків, НТУ "ХПІ", 2011. С. 129 134.

УДК 004.045:004.932

И.В. Прокопович, доц., канд. техн. наук; Ю.В. Шихирева, магистр; М.А. Духанина, магистр; А.В. Шмараев

Одесский национальный политехнический университет, г. Одесса, Украина

ИНФОРМАЦИОННЫЙ МЕТОД ИЗМЕРЕНИЯ ТЕПЛОВЫХ ПАРАМЕТРОВ ПО ИНФРАКРАСНЫМ ПОТОКАМ ОТ ПОВЕРХНОСТИ ДЕТАЛИ

Рассмотрим в качестве объекта измерения технологический процесс изготовления строительных деталей и монолитных железобетонных конструкций. После формирования изделия основным параметром, влияющим на качество будущего объекта, является интенсивный внутренний теплообмен от электрических источников тепла, о течении которого можно судить только косвенно — по температуре внешней поверхности строительной детали.

Такой подход обладает, по крайней мере, четырьмя существенными недостатками:

- во-первых, для визуализации распределения температуры по поверхности детали необходимо пользоваться спецыальными приборами тепловизорами, т.к. электромагнитное излучение от остывающего бетона формы всегда маходится вне пределов видимого спектра;
- во-вторых, сотография, полученная с помощью тепловизора, из-за неизбежного преобразования "3D-деталь 2D-изображение" содержит существенные искажения, и по ней трудно судить о состоянии объекта измерения на момент фотографирования;
- в-третьих, одиночная фотография малоинформативна, т.к. для правильной оценки термической ситуации развитие процесса гораздо важнее любого его текущего состояния;
- в-четвертых параметры источника нагрева крайне нестабильны от одного изделия к другому: геометрия простансвки нагревательных элементов, как правило, не выдерживается, параметры электрического тока не контролируются, что приводит к неравномерному нагреву, а значит, к наличию «перегретых» и «недогретых» участков.

Первая из пер€численных проблем решается с помощью использования тепловизоров современных моделей. Широкий рабочий температурный диапазон этих приборов (−40 − 2000 °C) и их высокая чувствительность (0,03 °C) позволяют проводить температурный мониторинг широкого класса строительных объектов: как при производстве железобетонных деталей на специализированных предприятиях, так в монолитном строительстве. Важной функцией современного тепловизора является возможность получения фотографий на основе композитных видимых и инфракрасных излучений в различных сочетаниях, что облегчает анализ термограмм в случае сложных поверхностей объектов контроля.

Решение второй и третьей проблем находится в области интеллектуальных методов обработки видеоинформации [1]. Прежде всего, речь идет об использовании, вместо отдельных фотографий, видеопотока. Кроме того, необходимо расширять информационную базу метода за счет использования полноцветных видеопотоков, по крайней мере, в том виде, в котором их представляет тепловизор.

В основе решения четвертой проблемы тот факт, что при бетонировании в зимних условиях широко применяют изотерм ческий прогрев смеси электрическим током, обладающим достаточной гибкостью, как по величине, так и по месту выделения тепла.

Как известно, сложный цвет элемента любого изображения (пикселя) z состоит из трех составляющих: красного, зеленого и синего цветов. Аналитически это обозначается как z = z(r, g, b), где r, g, b — интенсивности соот зетственно красной, зеленой и синей составляющих элемента изображения с коэффициентами, полученными по правилу баланса белого, отражающего физиологические особенности нашего зрения.

$$z = 0.299r + 0.587g + 0.114b. (1)$$

Разделим равномерно каждую составляющую на 256 градаций яркости: от 0 до 255. В результате, например, ярко-синий цвет в векторе (r, g, b) может быть определен как (0, 0, 255), ярко-красный как (255, 0, 0), ярко-фиолетовый – (255, 0, 255), черный – (0, 0, 0), белый – (255, 255, 255) и т.д.

Выделим в виде опотоке два смежных (соседних) цветных кадра 1 и 2 и применим к ним параболи-

ческое преобразование [1]. Как известно, для черно-белых изображений оно начинается с бинаризации двух избранных кадров. После разложения цветных кадров на три составляющие каждый результатом бинаризации являются уже шесть новых изображений, созданных из пикселей шести яркостей — максимальной и минимальной для каждого из трех цветов.

Наличие для каждого элементарного цвета двух кадров, отличающихся временем съемки, позволяет рассматривать видеопоток как трехмерное изображение, в котором, кроме традиционных для двухмерных изображений координат, появляется третья координата — время.

Ранее доказан э, что на границах подвижных участков изображения с постоянной на каждом участке, но разной межz у участками, яркостью, параболическое преобразование создает белую (z=255) линию толщиной в 1 ликсель на общем черном (z=0) фоне полученного кадра [1]. Наличие результата ПП предоставляет возможность выполнить его численную оценку, которую в дальнейшем можно использовать для расчетов в АСУ ТП.

Рассмотрим конкретный пример. Электропрогрев бетонных и железобетонных конструкций основан на превращении электрической энергии в тепловую при прохождении электрического тока через свежеуложенный бетон, который с помощью электродов включается в качестве сопротивления в электрическую цепь.

При нагреве электрическое сопротивление бетона возрастает, а для поддержания постоянной температуры необходимо сохранять постоянной силу тока. Для этого в процессе прогрева трансформаторами периодически повышают напряжение (ступенчатый прогрев).

Результатом измерений температуры полей являются выраженные числами данные о:

- абсолютных значений температуры в различных точках поверхности железобетонной детали;
- равномерности прогрева железобетонной детали;

Библиографический список использованной литературы

- изменениях в абсолютных значениях температуры железобетонной детали;
- изменениях в равномерности прогрева железобетонной детали.

Пусть систем: управления каждый раз должна принимать решения, являются ли эти флуктуации температурных полей нормой или же они свидетельствуют о нежелательных изменениях в процессе твердения бетона, требующие дополнительного вмешательства системы.

Для ответа на этот вогрос использовали числовые значения косвенных характеристик РПП, например, его мощности и дисперсии.

Технология из мерения термического состояния железобетонной детали имеет две фазы деятельности: обучение и работа. При этом подвижное цветное изображение от тепловизора рассматривается как отдельный зрительный образ объекта наблюдения, который может находиться в двух состояниях: несущественные и существенные изменения тепловых полей, требующие вмешательства АСУ ТП.

Для определения существенности в каждом конкретном случае используется квадратичная метрика. Численная информация о несущественных изменениях хранится в базе данных системы автоматизированной оценки состояния процесса твердения железобетона.

Перечисленны: компоненты метрического критерия являются минимальным "набором" информации, которую можно получить в результате цифровой обработки РПП цветного видеопотока от тепловизора. Этот набор может быть значительно расширен, например, за счет автономного анализа отдельных фрагментов РПП, придания этим фрагментам различных весовых характеристик значимости и т.п.

1. Становский П.А. Параболическое преобразование полноцветного видеопотока от тепловизора / П.А. Становский, Л.В. Бовнегра, Ю.В. Шихирева // Труды Одесского политехнического университета, 2012. — Вып. 2(39). — Одесса: Изд-во ОНПУ, 2012.— С. 67 – 71.

УДК 681.3

А.В. Сергиенко, ассистент

ГВУЗ «Приазовский государственный технический университет», г. Мариуполь, Украина e-mail: invitery@i.ua

О РЕШЕНИИ ЗАДАЧ ЛОКАЛИЗАЦИИ И ИДЕНТИФИКАЦИИ ПРИ ОПТИЧЕСКОМ РАСПОЗНАВАНИИ НОМЕРА НА ЧУГУНОВОЗНОМ КОВШЕ

Для транспортировки чугуна от доменных печей к миксерному отделению кислородноконверторного цеха (ККЦ) и используются ковши. Поскольку ковши подвергаются воздействию высоких температур — установить передатчик на ковш не представляется возможным, поэтому ковши промаркированы только цифрами, нанесенными вручную известью, а соответствующие лафеты маркируются с помощью транопондеров, в которые прошивается номера ковшей. Так как в процессе транспортировки номер иногда приходится срочно подводить вследствие внешних воздействий, применение трафаретов затруднительно. Диспетчерам и технологам для принятия решения о ремонте, обработке в отделении десульфурации чугуна, отделении скачивания шлака, миксерном отделении ККЦ, оптимизации продвижения ковшей необходимо знать положение ковшей.

Существующая система мониторинга TIRIS не предусматривает ситуацию изменения соответствия платформа/ковш в миксерном отделении ККЦ, когда ковш может быть переставлен не на «свой» лафет.

Горбатых О.И. Математическая модель расчёта КПД солнечных коллекторов третьего каскада (СевНТУ,	0.6
г. Севастополь, Укра іна)	36
Завгородній К.Р.Оптимізація пасажироперевезень в місті, цільова функція для оцінки якості транспорт-	20
ного обслуговування населення (ЧДТУ, м. Черкаси, Украіна)	38
Зеленцов Д.Г., Новикова Л.В. Использование нейронных сетей при моделировании поведения корроди-	20
рующих конструкций (ДГХТУ, г.Днепропетровск, Украина)	37
Иванченко О.В., Харченко В.С. САЅЕ-оценка безопасности критических инфраструктур на основе	
применения аппарата моделирования полумарковских процессов (НАУ им. Н.Е. Жуковского «ХАИ»,	
г. Харьков, СевНТУ, г. Севастополь, Украина)	
боды (СевНТУ, г.Севс спотоль, Украина)	
Каргин А.Н. Вычисление плотности времени пребывания заявок в системе массового обслуживания с	42
использованием ими ационной модели (ФГБУН Институт проблем управления им. В.А. Трапезникова	ŧ
РАН, г. Москва, Россия)	44
наработки на отказ при имитационном моделировании (СевНТУ, г. Севастополь, Украи-	
на)	
Копп В.Я., Балакин А.И., Заморёнов М.В. Информационная оценка необходимого числа измерений	
(СевНТУ, СИБД УАБ, І НБУ, г.Севастополь, Украина)	46
Крамарь В.А. Расчет гидростатики и остойчивости с помощью МАТLAB (СевНТУ, г. Севастополь, Ук-	4.0
раина)	48
Маловик К.Н. Исследование методов стандартизации показателей ресурсоспособности на основе их сис-	
темных характеристи с (СНУЯЭП, г.Севастополь, Украина)	
Монова Д.А., Швец П.С., Лебедева Е.Ю. Адаптивный генетический алгоритм для "мягких" эволюцион-	
ных вичислений (<i>OHiTV</i> , г. Одесса, Украина)	
тепловых параметров по инфракрасным потокам от поверхности детали (<i>ОНПУ</i> , г. Одесса, Украина)	
сергиенко А.В. О решении задач локализации и идентификации при оптическом распознавании номера	
на чугуновозном ковт не (ГВУЗ «ПГТУ», г. Мариуполь, Украина)	
Ситніков В.С., Ят енко Т.П., Ситніков Т.В. Управління перебудовою вузла фільтрації при	
комп'ютерному упраглінні автомобільним двигуном (ОНПУ, м. Одеса, Україна)	
Становская И.И., Гурьев И.Н., Березовская Е.И. Управление программой создания однотипных объек-	
тов (ОНПУ, г. Одесса Украина)	57
Становский А.Л., Барсуков А.И., Кошулян С.Д., Пурич Д.А. САПР восстановления структуры слож-	
ных объектов (ОНІІУ г. Одесса, Украина)	59
Станчук М. А., Бейг ер П.С., Бейнер Н.В. Разработка электронной карты пруда-охладителя АЭС с при-	
менением SVG-техно огии (СНУЯЭиП, г. Севастополь, Украина)	60
Стухляк П.Д., Добрствор І.Г., Голотенко О.С. Технологія підвищення поверхневої активності дисперс-	
них наповнювачів (ТНТУ, м. Тернопіль, Україна)	
Тарасова А.В., Скатков А.В. Оптимизационные модели функционирования транспортно-	
производственных ко иплексов стивидорной компании (СевНТУ, г. Севастополь, Украина)	63
Харченко В.С. Безопасность ИУС и «зеленые» информационные технологии в контексте парадигмы Фон-	
Неймана (НАУ «ХАИ», НТЦ исследования и анализа безопасности инфраструктур, г. Харьков, Украина)	64
Чужикова-Проскурі ина О.Д., Сапожников Н.Е.Моделирование работы вероятностного вычислитель-	
ного устройства (СНУЯЭиП, г. Севастополь, Украина)	66
Секция 3. Компьютерные системы, сети и компоненты	
Абраменков А.Н. Программная реализация расчета стационарных сетевых систем (ФГБУН Институт	
проблем управления и.м. В.А. Трапезникова РАН, г. Москва, Россия)	
Апраксин Ю.К., Турега И.О. Имитационное моделирование гетерогенных микроконтроллерных сетей	
(СевНТУ, г. Севастополь, Украина)	
Балакирева И.А. Оптимизация балансировки ресурсов стохастической вычислительной сети (СевНТУ, г.	
Севастополь, Украин 1)	
Волкова Т.В., Берез энко И.С. Система моделирования распределенных сетевых баз данных с цикличе-	
ским опросом пользов ателей (СевНТУ, г. Севастополь, Украина)	71
Гридюшко Д.М., Жиренкова Т.А., Явкун Ю.Л. Трехмерный USB-манипулятор (СевНТУ, г. Севасто-	
поль, Украина)	72
Гуденко А.А., Петузова Н.В., Фархадов М.П., Гуревич И.М. Сетевой эффект сглаживания потоков	
(ФГБУН ИПУ им. В. Л. Трапезникова РАН, ИПИ РАН, ООО «ГЕТНЕТ Консалтинг», г. Москва, Россия)	
Душкин Д.Н. Решение задачи рационального выбора композиции ВЕБ-сервисов в системах с сервис-	
ориентированной архитектурой (ФГБУН ИПУ им. В. А. Трапезникова РАН, г. Москва, Россия)	
Кожаев Е.А., Елистратов Ю.А. Выбор стратегии фильтрации интернет-трафика при использовании ими-	
тационного моделиро зания (СевНТУ, г. Севастополь, Украина)	
леоедева W.A., думпревская г.н. Оценка качества паролей сетевого менеджера паролей (Севінгу, г. Севастополь. Украина)	77
CYVIVII VIIVII VIIVII VIIVIII II II II II	1 1

Алфавитный список авторов

Абрамов Т.А111	К	
Абраменков А.Н	Кабанов А.А.	
Антоненков Д.О	Кавац О.О.	5
Антощук С.Г	Каргин А.Н	44
Апраксин Ю.К69	Карташов Л.Е.	45
Арсирий Е.А	Кобылянская М.С.	
Артамонов И.В3	Коваленко Н.В.	
	Кожаев Е.А	
Б	Козлова Е.В.	
Бабенко М.І94	Коласин В.А	
Балакин А.И46	Коленов И.В	
Балакирева И.А70	Колесникова Е.В.	
Барсуков А.И59	Копп В.Я	
Бейнер Н.В60	Копылов А.И.	88
Бейнер П.С60	Котов В.М	
Белько И.В33	Кошулян С.Д.	
Березенко И.С71	Крамарь В.А.	
Березовская Е.И57	Криштанович Е.А	33
Брюховецкий А.А4	Кротов К.В.	15
В	Л	
Васильева А.А	Лебедева Е.Ю.	51
Васьковский С.В	Лебедева М.А.	
Волкова Т.В71	Лелеков С.Г.	
Воропин Д.Ю24	Ловягин В.С.	
<u>r</u>	M	
Галуза А.А34	Маловик К.Н.	
Гнатушенко В.В5	Маляр М.М.	
Гогунский В.Д100	Мащенко Е.Н.	
Годовиченко Н.А32	Милюков В.В	
Голотенко О.С62	Моисеев Д.В.	
Горбань Г.В35	Монова Д.А.	
Горбатых О.И36	Муль О.В.	
Горяинов В.Б6	Мясоедова М.А.	86
Гридюшко Д.М72		
Гуденко А.А73	Н	
Гуревич И.М7, 73	Надеинский Л.А.	
Гурьев И.Н57	Нестеренко С.А.	
	Новикова Л.В.	
Д	Носов П.С.	100
Добротвор І.Г62		
Донецков А.М97	П	
Думаревская Е.Н77	Петухова Н.В.	
Духанина М.А53	Платонова А.С.	
Душкин Д.Н75	Поляк М.Д.	
	Попаденко П.Ю.	23
E	Прокопчук Ю.А.	103
Елистратов Ю.А76	Прокопович И.В	53
Ж	Пурич Д.А	59
Жиренкова Т.А81	Путилова Н.В.	
3	P	
Завгородній К.Р	Рыжкова О.В.	80
Заморёнов М.В	Рыжкова М.Н.	
Зеленцов Д.Г	A DIMINUDE ITALE.	103
	C	
И	Савченко А.А.	34
 Иванов А.В84	Сапожников Н.Е.	
Иванченко О.В	Сергиенко А.В.	
	L	

Наукове видання

Інформаційні технології та інформаційна безпека в науці, техніці та навчанні "ІНФОТЕХ-2013

Матеріали міжнародної науково-практичної конференції (Севастополь, 09-13 вересня 2013 р.)

Відповідальний за видання А.П. Фалалеєв, проректор з наукової роботи, доц., канд. техн. наук

Технічний редактор Нормо контролер

Л.А. Кареліна І.О. Черевкова

Комп'ютерне складання

т.о. теревк

та верстання

А.В.Тарасова

Формат 89×124/16 Ум. друк. арк. 15 Тираж 94 пр. Зам. № *163-к*