МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ ОДЕССКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

МАТЕРИАЛЫ

III семинара "Моделирование в прикладных научных исследованиях"

Редакционный совет сборника:

В.П.Малахов (председатель), Г.Н.Востров, В.Д.Гогунский, Г.В.Кострова (зам. председателя), А.Л.Становский, Ю.К.Тодорцев, Е.Г.Трофименко (отв. секретарь), Ю.С.Ямпольский.

Оформление и компьютерная верстка:

В.В.Дубовой, П.В.Каспревич.

Моделирование в прикладных научных исследованиях. Материалы семинара. / Под редакцией В.П.Малахова и др. Одесса: ОГПУ, 1996. - 73 с.

На практике же с ростом длины графитового включения толщина перемычки падает, то есть становится меньше минимально расчетной толщины. Следовательно, при повышении давления происходит разрушение перемычки (рис.4), что приводит к потере герметичности.

Образование трещин в структуре серого чугуна

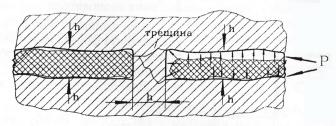


Рис.4

Минимально допустимая величина перемычки прямо пропорционально зависит от средней длины графитового включения. Следовательно, герметичность находится в противоположной зависимости со средней длиной графитового включения.

ЛИТЕРАТУРА

- 1. В.И.Самуль Основы теории упругости и пластичности. 2-е изд., перераб. М.: Высш. школа, 1982. 264 с. □
- 2. Сопротивление материалов / Под ред. акад. АН УССР Г.С.Писаренко 5-е изд., перераб. и доп. К.: Вища шк, 1986. 775 с.
- 3. Справочник по чугунному литью / Под ред. Н.Г.Гиршовича. Л.: Машиностроение, 1978. 758 с.

ЗАВИСИМОСТЬ ГЕРМЕТИЧНОСТИ СЕРОГО ЧУГУНА ОТ ДЛИНЫ ГРАФИТОВЫХ ВКЛЮЧЕНИЙ

Л.А.Иванова, И.В.Прокопович

Фильтрация жидкости происходит по транзитной пористости при наличии перепадов давления на противоположных сторонах стенки.

Герметичность G как внутреннее сопротивление пористого тела просачиванию жидкости обратно пропорциональна проницаемости K.

$$G = \frac{L}{K} = L \frac{32}{d_{2\phi}^2 \cdot \Pi},\tag{1}$$

где L - толщина пористой среды в направлении фильтрации жидкости $\mathbf{d}_{3\phi}$ - эффективный диаметр порового канала; Π - пористость.

Значения герметичности, рассчитанные по (1), в 10^5 раз ниже экспериментальных результатов [1], так как выражение (1) предполагает наличие в чугуне цилиндрических пор со средним диаметром $\mathbf{d}_{\mathbf{3}\mathbf{0}}$ ($\mathbf{d}_{\mathbf{3}\mathbf{0}} \leq 1$ мкм [2], $\mathbf{\Pi} = 0.08$). В действительности, поры в чугуне имеют щелевидную, трапециедальную форму. Сопротивление щелевидной поры просачиванию является большим, чем в цилиндрической [3].

Эффективному диаметру поры соответствует эффективная площадь сечения порового канала при цилиндрической и трапециедальной форме поры.

Из равенства площадей сечений имеем

$$d_{\vartheta\phi}^2 = \frac{8 \cdot \pi}{l \cdot a \cdot \Pi} \tag{2}$$

Так как в сером чугуне микропористость состоит из включений пластинчатого графита с основным размером \mathbf{l} (средняя длина включения), а фильтрация протекает по зазору между графитом и основной матрицей, ширина которого \mathbf{a} , то

$$G = L \frac{8 \cdot \pi}{l \cdot a \cdot \Pi} \tag{3}$$

Ширину канала фильтрации а вывели из капиллярного сопротивления в порах.

$$F_n \cdot h \cdot g \cdot \rho_{xc} = -R \cdot \sigma \cdot \cos \Theta, \qquad (4)$$

где F_{π} - площадь поперечного сечения поры; h - высота капиллярного падения жидкости; R - периметр сечения поры; σ - поверхностное натяжение жидкости; θ - краевой угол смачивания; h·g· $\rho_{\pi}=P$.

$$\frac{F_n}{R} = \frac{\sigma \cdot \cos \Theta}{P} \tag{5}$$

Приняв размер щелевого сечения поры за 1×a

$$a = \frac{2 \cdot \sigma \cdot l_{ep} \cdot \cos\Theta}{l_{ep} \cdot P - 2 \cdot \sigma \cdot \cos\Theta}$$
 (6)

При использовании керосина в качестве испытательной жидкости ($\cos\theta = 1$, $\sigma = 24\cdot10^{-3}$ H/м при нормальных условиях [4])

$$a = \frac{2 \cdot \sigma \cdot l_{\rm zp}}{l_{\rm zp} \cdot P - 2 \cdot \sigma} \tag{7}$$

Зная экспериментальную зависимость давления просачивания от длины графитового включения (рис. 1), представляется возможным найти а.

Значения герметичности, полученные по (3)(рис. 2, а), примерно в 10^2 раз меньше экспериментальных результатов.

Выражение (3) предполагает, что фильтрация жидкости протекает по кратчайшему пути, соединяющему две противоположные поверхности стенки пористого тела. В действительности, жидкость проходит путь в

несколько раз больший из-за извилистости, криволинейности пор. Поэтому в (3) ввели коэффициент извилистости, $\mathbf{K}_{\mathsf{H3B}}$

$$G = K_{us \, s} \cdot L \frac{8 \cdot \pi}{l_{sp} \cdot a \cdot \Pi} \tag{8}$$

 $K_{\text{изв}} = l_n/L$, где l_n - общий путь просачивания жидкости по криволинейной транзитной поре.

Рис. 1

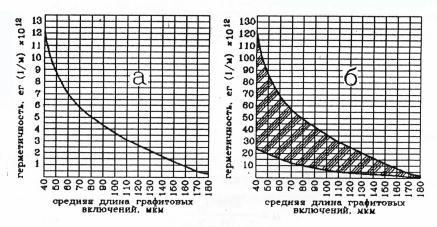


Рис. 2

При моделировании процесса образования транзитной поры выявлено, что $\mathbf{K}_{\text{изв}}$ изменяется в пределах от 2 до 10.

В результате расчета герметичности по (8) получена область значений, учитывающая извилистость транзитных пор (рис. 2, б).

Выражение (8) учитывает то, что просачивание жидкости происходит по уже изначально имеющимся транзитным каналам и не описывает гидравлические потери на образование новых транзитных пор за счет разру-

шения перемычек между графитовыми включениями из основной металлической матрицы.

На рис. 3 представлена экспериментальная зависимость герметичности серого чугуна от средней длины графитовых включений при первичных и вторичных испытаниях одних и тех же образцов.

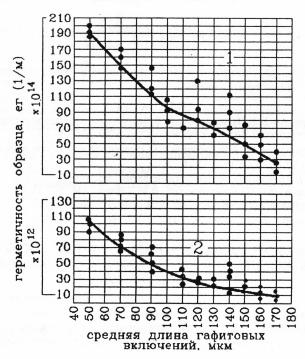


Рис. 3

При вторичных испытаниях сократилось время просачивания жидкости и незначительно уменьшилось давление просачивания. Это объясняется тем, что при первичных испытаниях произошло разрушение тонких перемычек, которое привело к увеличению транзитных пор, а также тем, что частичное вымывание графита расширило поры просачивания.

Последующие испытания тех же образцов не внесли изменений в значения герметичности. Результаты вторичных испытаний совпадают с расчетной областью значений герметичности (рис. 2, б).

Следовательно, коэффициент внутреннего сопротивления материала просачиванию жидкости, учитывающий разрушение перемычек и расширение пор фильтрации

$$K_{\rm p} = \frac{G_{\rm l}}{G_{\rm 2}},\tag{9}$$

где G_1 - герметичность материала при первичном испытании; G_2 - герметичность материала при вторичном испытании.

По экспериментальным данным нашли среднее значение K_p для всех длин графитовых включений. K_p =180-200.

Следовательно, герметичность можно определить из зависимости

$$G = K_P \cdot K_{uss} \cdot L \frac{8 \cdot \pi}{l_{zp} \cdot a \cdot \Pi}$$
 (10)

Значения, полученные по (10) совпадают с практическими результатами определения герметичности.

ЛИТЕРАТУРА

- 1. Л.А.Иванова, И.В.Прокопович, П.В.Каспревич Повышение герметичности литых радиаторов // Литейное производство, 1996, №7. С.7-9.
- 2. А.Г.Колисниченко, А.В.Дубинин О герметичности серых чугунов // Литейное производство, № 12, 1979. С. 6 7.
- 3. Химические методы испытания изделий на герметичность / Л.И.Бударин, К.С.Касаев, В.Н.Наумов; отв. ред. В.М.Чертов; АН. УССР, Ин-т физ.химии им. Л.В.Писаржевского. - Киев: Наук. думка. 1991. - 208с.
- 4. Справочник химика. Изд. 2-е. Т.1, -Л.:"Химия", 1971. 1072с.

СИСТЕМНЫЙ ПОДХОД ПРИ РАЗРАБОТКЕ МАЛООТХОДНЫХ РЕСУРСОСБЕРЕГАЮЩИХ ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫХ ТЕХНОЛОГИЙ

В.Д.Гогунский, Н.А.Левченко

Проблемы охраны окружающей природной среды и рационального использования природных и энергетических ресурсов требуют создания для всех видов производств малоотходных экологически безопасных технологий.

На основании выполненных исследований разработана методология комплексной оценки экологического совершенства производства, с использованием обобщенных критериев оптимизации, учитывающих эффективность использования материальных, энергетических ресурсов в основном производстве и средозащитных мероприятиях, применяемых для обезвреживания образующихся отходов.

Показано, что максимальные значения обобщенного критерия оптимизации получаются при достижении максимально возможного уровня экологического совершенства основного технологического процесса в сочетании с минимально необходимым объемом средозащитных мероприятий. Поскольку для реализации компенсационных технологий требуются дополнительные затраты ресурсов и в результате образуются новые вторичные отходы, подлежащие утилизации или захоронению.

Указанный экологический подход комплексной оценки апробирован на примере организации работ гальванического производства, производительность которого изменяется в широком диапазоне.

КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКАЯ СЕКЦИЯКОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКАЯ СЕКЦИЯ	. 23
СХЕМОТЕХНИЧЕСКОЕ МОДЕЛИРОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ С НЕЛИНЕЙНЫМИ ЭЛЕМЕНТАМИ	
С.А.Балан, В.Г.Максимов, А.Л.Становский	23
ОПРЕДЕЛЕНИЕ ХАРАКТЕРА НДС РАМЫ НЕСУЩЕЙ СИСТЕМЫ	. 40
ПОЛУПРИЦЕПА В УСЛОВИЯХ СТАТИЧЕСКОГО НАГРУЖЕНИЯ	
C A Sanah R C Makerman	23
С.А.Балан, В.Г.МаксимовГРАФОАНАЛИТИЧЕСКАЯ КЛАССИФИКАЦИЯ РАСПРЕДЕЛЕНИЙ ПИРСОНА	. 23
В.Я.Гамолич, И.А.Елагин	24
АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ ТЕПЛОСОДЕРЖАНИЕМ	, 24 (
СЛОЖНОГО ОБЪЕКТА	
Г.В.Кострова, Л.А.Покрытан, В.В.Симонов, А.Л.Становский	25
ПРИЧИНЫ ПОТЕРИ ГЕРМЕТИЧНОСТИ ОТЛИВОК ИЗ СЕРОГО ЧУГУНА	. 23
Л.А.Иванова, И.В.Прокопович, П.В.Каспревич	25
ЗАВИСИМОСТЬ ГЕРМЕТИЧНОСТИ СЕРОГО ЧУГУНА ОТ ДЛИНЫ	. 23
ГРАФИТОВЫХ ВКЛЮЧЕНИЙ	
	30
Л.А.Иванова, И.В.Прокопович	. 28
СИСТЕМНЫЙ ПОДХОД ПРИ РАЗРАБОТКЕ МАЛООТХОДНЫХ	
РЕСУРСОСБЕРЕГАЮЩИХ ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫХ ТЕХНОЛОГИЙ	22
В.Д.Гогунский, Н.А.Левченко	32
РАСЧЕТНАЯ ОЦЕНКА ОТРЫВА ПОКРЫТИЙ ПРИ ЛОКАЛЬНОМ НАГРУЖЕНИ	IN
Н.В.Олейник, Ю.М.Хомяк, А.Г.Кибаков, А.В.Цимбалюк	33
СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СХЕМЫ ДЛЯ РАСЧЕТА ПРОКЛАДОК	
АППАРАТОВ ВЫСОКОГО ДАВЛЕНИЯ	
И.А.Ширманова	34
К МОДЕЛИРОВАНИЮ ЗАТОПЛЕНИЯ СУДНА ПРИ ЕГО ПОВРЕЖДЕНИИ	
Ю.П.Кучер, В.К.РябченкоИССЛЕДОВАНИЕ МИНИМАЛЬНОЙ ОСТОЙЧИВОСТИ ПРИ	.35
НЕСИММЕТРИЧНОМ ЗАТОПЛЕНИИ	
НЕСИММЕТРИЧНОМ ЗАТОПЛЕНИИ Ю.П. Кучер, В.К. Рябченко	35
MUNICINE DRABUE NUMAMURU TEMITEPAT VPKI RUBSHI ELIT (HOSTIPU	
СЖИГАНИИ НИЗКОСОРТНОГО ТВЕРДОГО ТОПЛИВА	
СЖИГАНИИ НИЗКОСОРТНОГО ТВЕРДОГО ТОПЛИВА Е.Е. Чайковская	36
моделирование динамической нагруженности механических	
СИСТЕМ ПРИ ПРОДОЛЬНЫХ СОУДАРЕНИЯХ	
В.В.Мороз, И.А.Слепая	38
МОДЕЛИРОВАНИЕ ПРОЦЕССА ОЧИСТКИ ГАЗОВЫХ ВЫБРОСОВ	
ПРОИЗВОДСТВА СЛОИСТЫХ ПЛАСТИКОВ С УЧЕТОМ ДИНАМИКИ -	
ОТРАВЛЕНИЯ КАТАЛИЗАТОРА	
В.И.Луговской, В.М.Белоус	39
МОДЕЛИРОВАНИЕ СИСТЕМ ПЕРЕРАБОТКИ СТОЧНЫХ ВОД В ПОЛЕЗНЫЕ	
ПРОДУКТЫ	
ПРОДУКТЫ О.Д.Лях, В.Г.Рябых, В.А.Горнев	40
МОДЕЛИРОВАНИЕ УПРУГОПЛАСТИЧЕСКИХ ПЛОСКИХ ЗАДАЧ ПРИ	
CHOWHOM HAPDVWEHHIA	
В.А.Гришин, Н.А.Орлов	41
ПРИМЕНЕНИЕ УПРУГОВЯЗКОПЛАСТИЧЕСКОЙ МОЛЕЛИ К РАСЧЕТУ	
ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ	
ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ В.А.Гришин, И.Г.Бугаева	42
РАСЧЕТ ОПТИМАЛЬНОГО ПОЛЯ ДОПУСКОВ КОНСТРУКТИВНЫХ	-
ПАРАМЕТРОВ АКСИАЛЬНО-ПОРШНЕВОЙ ГИДРОМАШИНЫ	
В.П. Мурашко, В.М. Андрисько, Л.Ф. Бочковая	42
АЭРОДИНАМИКА СИСТЕМ С ЗАМКНУТЫМ КОНТУРАМИ	7.
А.А.Буров, А.Л.Становский, В.А.Ясинецкий	13
A.E	73