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Success of real-time bidding (RTB) and advertising campaigns depends on efficient and precise user 

identification, audience targeting and data exchange between SSP (supply side platform) and DSP (demand 

side platform). Analysis of activities on the DSP side has allowed to reveal at least two problems related to 
information uncertainty and profiles fragmentation of users. 
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Today's strategic vision of Advertising (Ad) business and related technologies tightly depends on 

real-time bidding (RTB) and programmatic Ad technology. Modern informational technology (IT) of Ad 

delivery in terms of RTB can be considered as a real-time auction between Demand-Side Platform (DSP) 
and Supply-Side Platform (SSP) [1]. Analysis of actual sources and publications on this domain [2] 

allowed representing IT as a technological sequence, consisting of 10 steps, which is run while an end-

user's web browser is loading publisher's web page [2]. Any interactions between DSP and SSP must 
conform to brand new API protocol Open RTB [3]. 

During decision making on the DSP side there are several problems related to user identification 

and information uncertainty. Uncertainty appears due to the concept, DSP and SSP being unfamiliar to 

each other, and lack to identify an end-user by ssp_cookie on the DSP side. DSP do not know anything 
about ssp_cookie.  Instead, each user profile is addressed by an own DSP's special unique identifier 

(dsp_cookie) and consists of associated segments (each segment specifies a particular user’s interest). The 

process of mining these dsp_cookies and segments mostly depends on retargeting activity when sites-
partners of DSP (for instance, retails like Amason, news like CNN etc.) allow DSP to track end-users by 

connecting hidden dsp_cookie and passing corresponding site's content category (segments). 

So the problem is once DSP has received an auction invitation it does not know anything about 

ssp_cookie and underlying end-user. Efficient mapping between ssp_cookie and dsp_cookie is one of the 
biggest DSP challenges besides profile fragmentation.  

But, one of the biggest problems, Ad players have faced with, is profile fragmentation [4]. 

Nowadays almost everyone has multiple Internet entry points like tablets, phones, home PC and 
workstations (Fig. 1).  

 

Fig. 1. Profile fragmentation problem 

Every such device has own unique traceable identifier (ID). In some cases like web serving that ID 

might be ordinary web cookie, for mobile devices it is device ID. From Demand-Side Platform (DSP) it 
turns out that database has multiple profiles assigned to different IDs however connected to the same user 

in fact. The problem here is that it prevents from building efficient AD campaigns. For instance, two user 

profiles are given with own ID (assuming that the user accessed WEB via home and work PCs). The first 
profile provides particular user interest (segment), that he is a male. The second profile provides 

information that the user is a higher educational person. Splitting information about gender and education 

between two different profiles prevents from involving this user in complex campaigns like delivering Ad 
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to all males with higher education, just because from DSP perspective there profiles are two different 

persons. For highly-competitive Ad market that is a serious limitation. 

The process of identifying profiles, connected to the same user, is called as a profile bridging. From 

mathematical perspective profile database is a huge graph  EV,  where vertexes V  are user profiles 

and edges E  are bridging rules. Once bridging rules are well-defined then the task might be reduced 

easily to well-known problem of connected components identification. 
The challenge is to keep profile database up to date and consistent in terms of high concurrency. 

Another challenge is an efficient database schema to store profiles and connections between them an a 

way to keep major DSP operations fast and cheap.  

Graph databases: There are many specific databases to address graph problems and store data in a 
graph manner, like neo4j, Titan, s2graph. Just a few graph databases (e.g. Titan) are able to process graphs 

with billions of edges and vertexes with small response time (low latency). 

For many cases Titan over HBASE is a nice choice. It is distributed graph database focused on high 
scalability and distributed processing. In addition, it provides modern graph API based on Blueprints 

interface and user-friendly query language Gremlin. 

The down side of Titan is the follows: 

– Titan compels own HBASE schema and the obfuscated data representation.  
– It requires exclusive access to HBASE rows and columns. 

– Source code of Titan provides obfuscated and complicated support of multiple HBASE versions 

based on shims which prevents from seamless integration with distributed computation frameworks like 
Scalding. 

For companies that already have large HBASE profile databases with well-developed infrastructure 

based on Scalding/Spark integration, these issues might be critical. 
Requirements and constraints: From DSP's perspective HBASE data schema and underlying data 

model should conform to the following requirements: 

–an efficient access to user profile (corresponding segment list) by any of  connected identifiers; 

–an efficient check whether two profiles are connected, comparable by time to HBASE row lookup; 
–an efficient retrieval of  all linked profiles for a specific profile; 

–simple and extensible data schema, 

–Respecting super-node issue. 
In addition to requirements, the schema should address the following constraints: 

–minimize amount of read operations to HBASE; 

–no need to implement complete operations over graph database; 
–simple integration with third-party frameworks like Scalding or Spark. 

Conclusions: Thus, this task of users profile fragmentation might be reduced to mathematical 

graphs and connected components identification algorithms. All database profiles shall be treated as 

vertices, while these bridging identifiers are edges. The found connected graph's components will consist 
of profiles linked to a single user. This gives a chance to bridge them and merge all segments into a single 

list. A serious question is how to build this graph and run algorithms. In case if data size is  ~1B profiles, 

then building a graph  from scratch every time might be a challenge. The corresponding graph databases 
like Titan [9] do not support an incremental connected component algorithm on such data scale. 
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