

МАТЕРИАЛЫ

VIII международной конференции
"ПУТИ ПОВЫШЕНИЯ КАЧЕСТВА И
ЭКОНОМИЧНОСТИ ЛИТЕЙНЫХ
ПРОЦЕССОВ"

9 – 11 сентября 2004 г.

МАТЕРИАЛЫ

VIII международной конференции

"ПУТИ ПОВЫШЕНИЯ КАЧЕСТВА И ЭКОНОМИЧНОСТИ ЛИТЕЙНЫХ ПРОЦЕССОВ"

9 – 11 сентября 2004 г.

Материалы международной конференции "Пути повышения качества и экономичности литейных процессов"; 9 – 11 сентября 2004 г., г. Одесса, Украина — Одесса, 2004. — 111 с. — Яз. рус., укр.

Саитов В.И., Савельева Е.В. ПЛАВИЛЬНО-ЗАЛИВОЧНЫЕ УСТАНОВКИ ДЛЯ ПОЛУЧЕНИЯ ЮВЕЛИРНЫХ ОТЛИВОК	84
Иванова Л.А., Саитов В.И. СОВРЕМЕННЫЕ МЕТОДЫ СОХРАНЕНИЯ БРОНЗОВЫХ СКУЛЬПТУР	88
Иванова Л.А., Замятин Н.И., Чернышева Е.Е. ТЕРМОНАПРЯЖЕННОЕ СОСТОЯНИЕ ОДНОСЛОЙНОЙ ОБОЛОЧКИ	94
Зеленков С.Л. РАЗРАБОТКА МЕТОДОВ АКТИВАЦИИ ХОЛОДНОТВЕРДЕЮЩИХ СМЕСЕЙ С НЕОРГАНИЧЕСКИМИ СВЯЗУЮЩИМИ ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ХУДОЖЕСТВЕННЫХ И ЮВЕЛИРНЫХ ОТЛИВОК	98
Прокопович О.І., Морозов Ю.О. Прокопович І.В., Гогунський В.Д. МАТЕМАТИЧНА МОДЕЛЬ ПРОЦЕСУ КРИСТАЛІЗАЦІЇ ПРИ БЕЗПЕРЕРВНОМУ ЛИТТІ	.102
<i>Прокопович Л.В.</i> МЕТАЛЛУРГИЧЕСКИЕ ШЛАКИ КАК ГЕОХИМИЧЕСКИЕ НОВООБРАЗОВАНИЯ	.104
Колеснікова К.В., Кострова Г.В. ЗАСТОСУВАННЯ НЕЙРОННОЇ МЕРЕЖІ ДЛЯ РІШЕННЯ РІВНЯНЬ МАТЕМАТИЧНОГО ОПИСУ РІВНОВАГИ СИСТЕМИ "ШЛАК — МЕТАЛ"	.106
Прокопович Л.В., Прокопович И.В. ДИФФУЗИОННО-СОРБЦИОННАЯ МОДЕЛЬ ДВИЖЕНИЯ ВЕЩЕСТВА В СИСТЕМЕ ЛИТЕЙНЫХ ОТВАЛОВ	.109

negregative in the example contraction at a contract or reverse accurate and performing the many in

формы соответся учений в деофильства, этомите доборова в доборова в помента и помента в примента и помента в помент

руд с ва слероны на осущества потся запредел борег того, при распределение в серей

Succession, via a sheuminional if three-gane its vanishiorpoistensus pieus and

Рівняння (1) разом з умовами (2), (4) і початковою умовою, що задає розподіл температури в рідкій фазі $u_{\text{нач}}(\mathbf{x}) = u(\mathbf{x}, t)|_{t=0}$, описують зміни температури в *i*-зонах, з урахуванням швидкості лиття і витратою охолоджуючої води в цих зонах. Також враховується сумарний ефект взаємодії зон.

У виробничих умовах для контролю температури поверхні катанки на виході стренг із вторинних охолоджувачів 16-струмкової машини безперервного лиття встановлені безконтактні інфрачервоні пірометри. Температуру поверхні катанки, яка знаходиться в охолоджувачах знімають за допомогою платина-платинородієвих (Pt-Pt/Ro) термопар, що вмонтовані в стінки охолоджувачів. Температуру розплаву постійно вимірюють такою ж термопарою. Температуру охолоджуючої рідини на вході вимірюють за допомогою біметалічних термометрів, витрати води контролюють за допомогою поплавкових витратомірів змінюючи електромагнітними засувками. Швидкість лиття по технологічних осях змінюється в залежності від параметрів процесу шляхом регулювання обертання серводвигателів.

Результати моделювання співвідносяться з експериментальними даними, отриманими при вимірах температури поверхні стренг в умовах цеху безперервного лиття ВАТ "Одескабель".

Література

- 1. Прокопович О.И., Прокопович И.В., Гогунский В.Д. Автоматизация производства высококачественной катанки для изготовления проводов сверхтонких сечений // Тр. Одес. политехн. ун-та. Одеса, 2002. Спецвипуск. С. 68 71.
- 2. Прокопович О.И., Прокопович И.В., Гогунский В.Д. Температура поверхности катанки как косвенный параметр качества // Тр. Одес. политехн. ун-та. Одеса, 2003. Вып. 2(20). С. 128 130.
- 3. Кац А.М. Теплофизические основы непрерывного литья слитков цветных металлов и сплавов / Кац А.М., Шадек Е.Г. М.: Металлургия, 1983. 208 с.
- 4. Мучник Г.Ф. Методы теории теплообмена. Ч. 1. Теплопроводность / Мучник Г.Ф., Рубашов И.Б. М.: Высш. школа, 1970. 288 с.
- 5. B. Lalli, L. Biegler, H. Henein. Finite difference heat transfer modelling for continuous casting / Metallurgical Transactions. 1990. B 21(4) P. 761 770.

УДК 621.742:628.516

МЕТАЛЛУРГИЧЕСКИЕ ШЛАКИ КАК ГЕОХИМИЧЕСКИЕ НОВООБРАЗОВАНИЯ

Прокопович Л.В.

Одес, нац. политехн. ун-т

В геохимическом воздействии человека на биосферу литейное производство является одним из наиболее существенных факторов. Здесь, как и в металлургии, образуются новые продукты, которые, по словам В.И. Вернадского "не отличаются от минералов". Это обусловлено тем, что большинство новых продуктов (материалов) создается на основе или при участии природных элементов и соединений. Причем это отно-

сится не только к свободным металлам и сплавам, но и к побочным продуктам их производства — шлакам.

Например, в качестве флюсов обычно используются минералы и породы группы СаСО3 — известь, известняки, мел, мраморная крошка, а также плавиковый шпат CaF₂. В результате, при затвердевании расплавов доменных шлаков в них возможна кристаллизация мелилитов, имеющих общую формулу

 $(Ca, Na, K)_2(Mg, Fe^{2+}, Fe^{3+}, Al)(Si, Al)_2O_7.$

Наиболее распространенными кальцийсодержащими минералами этой группы являются окерманит Ca₂MgSi₂O₇ и геленит Ca₂Al₂SiO₇. Иногда образуются известковые полевые шпаты, например, анортит CaAl₂Si₂O₈.

Аналогичные, но более разнообразные цепочки превращений прослеживаются и для кремнийсодержащих минералов. По некоторым данным, в металлургических шлаках около 70 % общего числа наименований минералов составляют силикаты и алюмосиликаты [1]. Правда, в данном случае врядли корректно использование термина "минералы", поскольку по определению минералы — это природные тела.

Вместе с тем, нельзя не заметить, что шлаки схожи с минералами не только составом, структурой, но и внешним видом. Например, кислые сталелитейные шлаки часто имеют окраску, характерную для оливина, малахита и азурита с их переходными формами (рис. 1), амазонита, хризоколлы и даже бирюзы (рис. 2). Это позволяет использовать их в декоративноприкладном искусстве в качестве поделочного [2] и имитационного [3] материала.

Рис. 1. Образцы металлургического шлака (1) и редкой в природе полосчатой разновидности малахита (2)

Рис. 2. Образец шлака с окраской, характерной для бирюзы

Если подыскивать природные аналоги для основного доменного шлака, то это, скорее, нечто среднее между известняками и пористыми вулканическими пемзами. Однако при этом шлаки обладают более высокой прочностью, что делает их довольно привлекательным материалом для декорирования различных предметов интерьера, ландшафтного дизайна и т.д.

Таким образом, прослеживается идентичность свойств и внешнего вида природных минералов и техногенных минеральных образований. Это, в свою очередь позволяет говорить об идентичности процессов их образования. Следовательно, при разработке новых подходов к решению проблемы рационального использования сырья можно исходить не из противопоставления природных и техногенных процессов, а из их аналогичности, что в корне меняет представления о литейных технологиях и их роли в геохимических процессах.

Литература

1. Хан Б.Х. Затвердевание и кристаллизация каменного литья / Хан Б.Х., Быков И.И., Кораблин В.П., Ладохин С.В. — К.: Наук. думка, 1970. — 163 с.

2. Прокопович Л.В. Использование металлургических шлаков в изобразительном искусстве / Прокопович Л.В., Билетникова Е.А., Наянова А.В., Сапожникова Э.Н. // Материалы науч.-технич. конфер. "Пути повышения качества и экологичности литейных процессов". — Одесса, 1998. — С. 49 — 52.

3. Прокопович Л.В. Применение металлургического шлака в ювелирных изделиях / Прокопович Л.В., Прокопович И.В., Маркишев Д.О. // Материалы науч.-технич. конфер. "Пути повышения качества и экологичности литейных процессов". — Одесса, 1998. — C. 52 - 53.

МАТЕРИАЛЫ

SERVICE PRODUCE OF THE PRODUCE OF TH

VIII международной конференции "ПУТИ ПОВЫШЕНИЯ КАЧЕСТВА И ЭКОНОМИЧНОСТИ ЛИТЕЙНЫХ ПРОЦЕССОВ"

9 – 11 сентября 2004 г.г. Одесса, Украина

Редакторы

Иванова Л.А.

Кострова Г.В.

Компьютерная верстка

Прокопович И.В.

Коць Н.А.

Украина, 65044, Одесса-44, просп. Шевченко, 1, ОНПУ, каф. "Машины и технология литейного производства" тел. 28-81-10, 37-79-72

Сдано в набор 28.09.2004. Подписано в печать 11.11. 200 4. Формат 60×88/8. Тираж 300 экз. Усл.-печ. л. 13,9

ОТПЕЧАТАНО В ИЗДАТЕЛЬСКОМ ЦЕНТРЕ "ТЭС" С ГОТОВЫХ ОРИГИНАЛ-МАКЕТОВ