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1. Introduction

In the process of creating new parts of a machine, a de-
signer must always aim at reaching maximum effectiveness
of the project. The requirement for the uniformly stressed
parts is one of the constituents of this effectiveness. This en-
sures maximum value of the ratio “resistance/mass” and, ac-
cordingly, minimum material intensity of product as a whole.

Unfortunately, to attain complete equality of stresses at
all points of the part is impossible even for a static problem.
It is explained by different influence of load on the separate
elements of the parts that have a complex shape, heterogene-
ity of their material and other special features of design and
technology. Therefore, any attempt at designing uniformly
stressed parts will only be a way of approaching the maxi-
mum of effectiveness.

It is known that, for example, in the cases of apparatuses,
which work under pressure, the weakest element, from the
point of view of non-uniformity of the distribution of stress-
es, is a flat bottom, due to which it is necessary to increase
its thickness by 3—5 times in comparison with the thickness
of the wall.

This problem is proposed to be solved by replacing a flat
bottom with the one, which has variable thickness from its
center to the periphery. The calculation of this thickness, which
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ensures the closest approach of the bottom under load to the
uniformly stressed state, is a relevant direction of studies.

2. Literature analysis and problem statement

The majority of machine-building parts and nodes
contain technological cavities and openings. They are not
necessary for the fulfillment of functional “duties” by the
parts and give these parts bizarre and often technological-
ly unfavorable shapes. Designers, for example, intuitively
substitute in the objects of design a round continuous
rolled metal with a pipe, a round pipe with an elliptical
one, and remove a part of the “body” of gears, structural
panels and a lot more [1].

It is manifested most vividly in the parts, intended
for transport objects hence, for example, there are com-
plex shapes of the parts of aircraft and rocket fuselage
[2] and automobile bodies [3]. Reliability of the critical
parts — turbine blades [4] and of many others — depends
on the correctly calculated shape. The purpose of this com-
plication is to obtain a uniformly stressed part or a unit,
which, as it is known [5, 6], makes it possible to obtain the
most favorable ratio of the mass of a part and its stressed-
strained state (SSS).




An additional example of such structures is vessels,
which work under pressure, their housings and bottoms [7].
The most common elements of the existing housing struc-
tures of vessels are plates and shells with constant thick-
ness In the majority of cases (both at the planar-stressed
state and with the bend), the fields of stresses occurring
in them are substantially heterogeneous [8]. Consequently,
minimization of mass of the housing constructions without
use of the elements of variable thickness in them is practi-
cally impossible.

In certain cases, a palliative solution to this problem is
found. For example, walls of large vertical cylindrical tanks
for storing petroleum products are produced with a gradual-
ly changing thickness [9, 10]. A similar solution must also be
based on calculation of the plates of variable thickness, the
contour of which is elastically attached to the cylindrical
wall of a tank.

According to conditions of loading such objects, the most
stressed section is the place of the joint (most frequently, of
welding) of the shell and the bottom [11]. Calculations of
strength show that it is in this place that thickness of the
bottom must be the largest, which leads to a rather techno-
logically unfavorable solution: to make bottoms of the ves-
sels in the form of round plates with the thickness variable
from the center to the edge [12—14].

It is natural to assume that the structure of such a
complex article must be obtained as a result of complex
calculations by equations of strength of materials that are
non-uniform differential equations of the second order
[15]. Solutions for such equations for particular objects are
written down in the form of sum of general and particular
solutions, that is, it consists of two linearly independent
functions [16].

However, such approaches do not ensure optimization of
the structures of vessels, since the parts and nodes of equal
stress, obtained in this case, do not warrant simultaneous
achievement of minimum mass of the would-be object [17].
At the same time, there is mathematical apparatus of hy-
per-geometric functions, with the help of which a similar
problem can be solved [18].

For simultaneous achievement of the uniformed stress
and minimum mass, it is necessary to develop a new method,
which would consider such concept of effective optimization
and a pattern of bending the plates of different thickness for
the implementation of this method.

3. The aim and the tasks of the study

The aim of this study is a decrease in metal intensity of
constructions at the stage of automated design by means of
creating uniformly stressed structural elements with the
retention of their reliability indices due to rational redistri-
bution of the used materials inside an element.

To achieve this aim, the following tasks were to be solved:

— to develop a method for the optimization of shape of a
round plate with variable thickness, which involves transi-
tion from the fixed thickness of plate in its center to its fixed
volume;

— to develop a model of the bend of a round plate with
variable thickness in the form of exponential Gauss function,
which considers dependence of thickness in the center of a
plate on its volume.

4. Development of mathematical provision for
designing spatial uniformly stressed parts

4.1. Method for designing the shape of uniformly
stressed nodes of conjugation of structural elements

Let us consider round plates of radius R, either having
one flat and one concave surfaces (Fig. 1, @), or having both
concave surfaces (Fig. 1, b).

A change in thickness of the plate in radial direction r in
a rather general case can be described by Gauss function [8]:

3(r) =8, exp(—nr?/6R?), )

where 8, is the thickness of the plate in the center at r=0.

Parameter n in equation (1) determines intensity of the
change in thickness of a round plate in radial direction. In
the circular direction, thickness remains constant, that is,
shape of the plate is assumed to be axisymmetric.

Fig. 1. Round plate of variable thickness,
clamped along contour r=R: a — flat-concave form of
diametrical cross-section; b — biconcave form of
diametrical section in the initial state and in the state
deformed by load p (shaded)

A plane-concave shape of cross-section of the plate is
obtained, if we plot 8(r) from the flat lower surface; a bicon-
cave form is obtained if we plot sizes 0,58(r) on both sides of
the plane z=0. The shape of diametrical section, obtained in
this way, is sufficiently general since plates with the concave
surfaces (Fig. 2, curves 4, 5) can be described by function (1)
with positive values of parameter n.

Shapes of surfaces with parameter n<0 may be recom-
mended for round plates, bent by transverse load p at the
rigid clamping of their contour, when the maximum bending
moment influences the contour (Fig. 1, b). With the hinged
fixing of the contour, maximum bending moment occurs in
the center of the plate and the shape with maximum thick-
ness in the center, when n>0, becomes preferable.



With the optimization of the shape of diametrical cross-sec-
tion of a round plate, we strived for the minimization of its mass,
determined by the volume of the used material.
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Fig. 2. Graphs of thickness dependence of round plate on
its relative radius x=r /R at ;=10 mm for certain values of

parameter n: n=—3 (1); n=—2 (2); n=0 (3); n=+2 (4); n=+3 (5)

For a rigidly clamped plate, this aim is achieved by the
displacement of material from the underloaded central zone to
the periphery with retention of constant volume of plate V,.
Formula, which determines a change in thickness of this
plate in the radial direction, is obtained from (1) in the form
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The second cofactor in (2) has uncertainty at n=0. We
should accept for this value
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A change in thickness in the radial direction, determined
by function (2) for certain values of parameter n<0, is repre-
sented in Fig. 3.

Let us note that as a result of exponentiality of depen-
dence (2), at n<0, thickness on the contour of plate grows
much more intensively than it diminishes in the center: rela-
tion 8(1)/8(0)=exp(—n/6). For example, at n=—10, thickness
on the contour of a plate is 5,3 times larger than in the center.

Differential equation of axisymmetric bend of this plate
at the uniformly distributed load (pressure) p relative to the
angle of rotation of normal to the median surface ¢ has the
second order [5]:

d? 1 d 1 _ :
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Dimensionless parameter p contained in the right side
of equation (4) depends on the accepted mathematical model
of diametrical cross-section of the plate:

— with equation of the shape of the plate in the form (1)
we have:

PR’
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— with equation of the shape of the plate in the form (2)
we have:

(©6)

o , pl61R* 1—exp(=n /6) ]

EVO n

where p is the intensity of uniformly distributed load; E, p
are the modulus of elasticity and the Poisson coefficient of
the plate’s material.
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Fig. 3. Graphs of thickness dependence of
round plate on its relative radius x=r/R at V/(zR?)=10 mm
for certain values of parameter n: n=0 (1); n=—2 (2);
n=—4 (3); n=—6 (4); n=—8 (5)

Integral of non-uniform equation (2) consists of two
components, particular and general solutions.
A particular solution takes the following form:

%= (3_u)neXP( : ] M

where p is determined by formula (5) or (6) depending on
the method of assigning the shape of diametrical cross-sec-
tion of the plate.

General solution of homogeneous equation (4) (when the
right part equals zero) is assigned in [5] by the power series,
which presents certain computational difficulties for practical
calculations. In the present work, solution of this homoge-
neous equation is represented with the help of the degenerate
hypergeometric Whittaker functions M, (z), W, (z) [17]:

¢1 (X) = eXP(OYESHXZ)[(%Mk,Y (;HXZ ] + CZWk,y (;HX2 ):|7 (8)

where k=(1-p)/2, y=1/2; C, and C, are arbitrary constants.
Eigenfunctions of solution (8) are equal:

F,(x)=x"exp(0,25nx*)M, , (;nxz), ©)

F,(x)=x"exp(0,25nx W, (;nxzj. (10)

Examples of plots of functions (9) and (10) at values n=3
and the Poisson coefficient u=0,3 are represented in Fig. 4.

Function F,(x) unlimitedly increases at x—0, therefore,
for a round plate, (5) assumed C,=0. For an annular plate,
constants C, and C, can be determined from the boundary
conditions.

Whittaker functions in certain cases complicate analy-
sis of the obtained solutions; therefore, in the paper, it was
proposed to replace them with the Kummer functions [16]:
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Fig. 4. Examples of plots of eigenfunctions (9) and (10)

After substitution of functions (11) and (12) in (8), we
obtain:

o,(x)=x"" |:C1M(;+y—k; 1+2y;;nxzj+

+C2U(;+y—k;1+27;;nx2):|. (13)

At the given above values of parameters v, k and partic-
ular solution (7), angle of rotation of normal to the median
surface of the plate is determined in the form:
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Solution in the form (11) may be used for annular
plates, that is, in cases when relative radius of their con-
tours x, <x<1. For solid plates, for example, for a bottom
or a cover of cylindrical container, it is necessary to as-
sume C,=0, since the solution with the Kummer function
of the second order

U 1+u,2’
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increases indefinitely at x—0. Consequently, we will search
for the solution of the problem of the bend of a continuous
round plate with variable thickness in the form:

) (gfi)nexp(n;]. 15)

It is obvious that solution (15) satisfies the required
condition (fo =0.

If dependence of the angle of rotation of normal to the
median surface of the plate ¢(x) is determined, we will find
the equation of this surface by the integration:
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where
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F,(x)=[3+u2- u)]M(3+“2) (18)
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Let us proceed to the models, which contain loaded plates.
In this case, radial and peripheral bending moments are deter-
mined by formulas:

M- D(x)(dd;(x) o )) )
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M= D1<x>(¢(x> - d¢<x>), 0
a X dx

where the flexural rigidity of plate with variable thickness,
which corresponds to (1), takes the form:
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As a result, we obtain formula for the radial bending
moment (14).
Derivative of function (12) takes the following form:
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From (13) and (18) we obtained expressions for the angle
of rotation of normal and the bending moment on the con-
tour of the plate
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For designing a uniformly stressed plate, after determining
bending moments (19) and (20), radial stresses are calculated:

6M. (x)
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Then we find value of parameter n, at which:

6,(0)=0.(1). 27)

Integration constant C, is determined from the condi-
tions of plate fixing along contour x=1. As a result, a scheme
of the proposed method for the optimization of shape of a
round plate with variable thickness, implying transition
from the fixed thickness of the plate in its center to its fixed
volume, takes the form, represented in Fig. 5.

4.2.Model of bend of a round plate with variable
thickness

As can be seen from Fig. 5, work of the method begins
with designing a model of the bend of a round plate with
variable thickness. The proposed model in the form of ex-
ponential Gauss function makes it possible to determine the
optimum (uniformly stressed, having minimum mass) shape
of a continuous round plate with arbitrary fixing along ex-
ternal contour. The model makes it possible to reflect this
fixing ranging from absolutely free (hinged support) to
absolutely rigid (clamped). Let us examine absolutely rigid
fastening. For this case, we will find integration constant C,
from (24) on condition of fixing the plate on contour x=1:

% exp(0,5n)
" (3-wn® M(0,5(1+u),20,5n)’

(28)

We substitute value of C,, obtained by (28), in (24), and
we receive solution to rigid fastening:
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To prove adequacy of the model of rigid fastening in the
form of exponential Gauss function, let us conduct a compu-
tational experiment.

For this purpose, let us plot a graph of function depen-
dence (29) on argument x and parameter n (Fig. 6).

In Fig. 6, it is evident that the function of angle of rotation
o(X) at any value of parameter n at x=0 and at x=1 is equal to
zero. This corresponds to boundary conditions of rigid fixing
at the axisymmetric deformation of plate, which confirms ade-
quacy of the accepted model and provides for the opportunity
of its correct use in the method for the optimization of shape
of a round plate with variable thickness (Fig. 5).

Model of plate of constant volume (2)

|

Determination of angles @(x) with the help of
differential equation of the second order

!

Search for general and particular solutions of
DE

|

Construction of formula for bending moment
considering C; and C,

!

Formulation of boundary conditions
and determination of C; and C,

!

Computation of stresses G,(x)

!

Determination of parameter of shape n,
ensuring condition of uniformed stresses:
6/(0) =a(1)

Fig. 5. Structure of method for the optimization of
shape of a round plate
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Fig. 6. Graph of function (29) versus argument x and
parameter n

5. Discussion of the proposed method for
designing uniformly stressed nodes of
cylindrical tanks

Result of the study is the confirmation of effectiveness
of using a method for the optimization of shape of a round
plate with variable thickness, which implies transition from
the fixed thickness of plate in its center to its fixed volume.
The result is also complemented by the model of bend of a
round plate with variable thickness in the form of exponen-
tial Gauss function. The model considers dependences of
thickness in the center of a plate on its volume, used within
the framework of the proposed method.



A positive effect of the study is supported by practi-
cal implementation of its results in real CAD, which is
employed in the production of vessels that work under
pressure. For this purpose, testing of the described meth-
od of designing uniformly stressed nodes of conjugated
cylindrical and flat housing elements, based on modeling
the shape of the latter by hypergeometric functions, was
carried out at PAO “Berdichev Machine Building Plant
“Progress” (Ukraine).

As the object of design, we selected a vessel, intended
for receiving, storage and delivery of concentrated sulfu-
ric and nitric acids at the warehouses of water-treatment
plants, the set-up of which includes ion-exchange filters.
As a result of practical tests of the new method of design,
we obtained a structure of the bottom of a tank, the
cross-section of which corresponds to the scheme, given
in Fig. 1, that is, thickness of this bottom increases to its
edges. The shape of this section is described by expres-
sion (2) at the values of thickness of the original (flat)
bottom 8,=0,008 m, radius of the bottom R=0,4 m and
parameter n=-2. By integrating (2) under these condi-
tions, we will obtain volume of the new bottom, equal
to 9,32-107% m® which in comparison with the volume
of the original cylindrical bottom, which was equal to
nR%5,/4=10,05-10"%, saves 7,15 % of the volume (as well
as mass), with the retention of strength characteristics of
the bottom as a whole.

6. Conclusions

1. We developed a method for the optimization of shape
of a round plate with variable thickness implying transition
from the fixed thickness of a plate in its center to its fixed
volume, which made it possible to ensure the uniformed
stress of the plate. The method is different from the known
ones by the fact that it analytically solves two problems: it
finds a family of “uniformly stressed shapes” of a part (there
is infinite multiple of them at the assigned initial data) and
selects a part of the lowest mass.

This ensures maximum effectiveness of the process of
optimization of shape and makes it possible to achieve maxi-
mum technical and economic effect.

2. A hyper-geometric universal model of bend of a round
plate with variable thickness in the form of exponential
Gauss function was proposed. The model considers depen-
dence of thickness in the center of a plate on its volume,
which allowed us to use it within the framework of the
proposed method for the optimization of shape. The model
makes it possible to reflect fixing of the bottom in the shell
of a vessel that works under pressure in the range from ab-
solutely free (hinged) to absolutely rigid (clamped). For this
purpose, in the first case, it is assumed that hardness of the
shell is equal to zero, and in the second case, it is equal to in-
finity. For real objects, the model makes it possible to assign
the value of hardness in this range arbitrarily.
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Hocnioxnceno eidpauii xopooa epoxomy i3 nio-
CKUM ROCMYNAibHUM PYXom Kopooda, 30yoxnceni
Kynvosum asemoodanancupom. 3D modemosannsm
QUHAMIKU 2POXOMY OMPUMAHO 3AKOH YCMANEHUX
eibpauiii kopoba y Mucno8omy 6uoi. 3a 0onomozoto
npozpamnozo naxema 0 CMAMUCIUYIOZ0 AHA-
a3y Statistica eibpauii idenmudixoearo sax 06o-
yacmomnui. Pos6ixcnicmv misnc pesyarvmamamu 3D
M0O0e06anHsA i 3HAUOEHUM 3AKOHOM 0801ACTMOM-
HUX Koueans He nepesuwye 1-20 eidcomra

Kntouosi cnoea: 6i6po3dyonux, deouacmommi
siopauii, 3D modemosanns, debananc, peonancna
siopomawmuna, asmobéanancup, 2poxom
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Hccnedosanvt eubpauuu rxopoba epoxoma c
NIOCKUM NOCMYnamenvHolM 06UNCEHUEM KOPO-
0a, 6030yxncoaemvle WAPOGLIM ABMOOANAHCUPOM.
3D Mmodenuposanuem OUHAMUKYU 2pOXOMA NOIYHEH
3aK0N YCmanosuewUXca eubpauuii xKopooa 6 uc-
n1060Mm éude. C nomowpio npozpammiozo naxema
01 cmamucmuneckozo anaausa Statistica eubpa-
uuu udenmuduuuposanvl Kax 0eyxuacmomubwle.
Pacxoscoenue mexncoy pesyromamamu 3D modenu-
POo6aHUs U HAUOEHHLIM 3AKOHOM 08YXUACHOMHBIX
KoJaebanuil e npesviumaem 1-20 npouenma

Knioueevte cnosa: eudpoeo3dyoumens, 0eyx-
yacmomnvie suopauuu, 3D modeauposanue, deba-
JIaHC, PE3OHAHCHAA BUOPOMAUNA, asmodanancup,
epoxom
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1. Introduction

2. Literature review and problem statement

Among vibration machines, the most potentially produc-
tive are mechanisms that combine in themselves advantages
of resonant and dual-frequency vibration machines [1—4]. The
resonant operating mode provides vibrations of big sizes of the
box and weight at the minimum expenditure of energy and the
minimum loads on the drive parts [1, 2]. An operating mode
of dual frequency or more ensures increased productivity and
performance of additional technology processes [3, 4].

It is suggested to excite dual-frequency vibrations of the
screen box with various kinematics of motion by a passive
auto-balancer [5]. In different fields of production, screens
with a flat translational motion of the box are widely applied
[2]. In this regard, it is essential to check the possibility of
exciting dual-frequency vibrations by a passive auto-balanc-
er at such kinematics of the box motion.

Among vibration machines, the most power-effective
are resonant [1]. The resonant mode of vibrations provides a
possibility of using a small drive to set in motion large boxes
of screens at a minimum expenditure of energy [2].

A further increase of energy efficiency and productivity
of resonant vibration machines is provided with using in
them two [3] and more [4] frequency vibroexciters.

In study [5], it is suggested to excite resonant dual-fre-
quency vibrations of the screen box by a method of using a
passive auto-balancer. According to the method, the auto-
balancer is mounted on a rigid shaft, and the shaft is in-
stalled in a rigid support on the screen box. When the shaft
is rotated at superresonance velocities, there appear slow and
fast harmonic oscillations of the box. Meanwhile, the slow
vibrations are vibrations of the box at its own resonant fre-






