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1. Introduction

In the process of creating new parts of a machine, a de-
signer must always aim at reaching maximum effectiveness 
of the project. The requirement for the uniformly stressed 
parts is one of the constituents of this effectiveness. This en-
sures maximum value of the ratio “resistance/mass” and, ac-
cordingly, minimum material intensity of product as a whole.

Unfortunately, to attain complete equality of stresses at 
all points of the part is impossible even for a static problem. 
It is explained by different influence of load on the separate 
elements of the parts that have a complex shape, heterogene-
ity of their material and other special features of design and 
technology. Therefore, any attempt at designing uniformly 
stressed parts will only be a way of approaching the maxi-
mum of effectiveness.

It is known that, for example, in the cases of apparatuses, 
which work under pressure, the weakest element, from the 
point of view of non-uniformity of the distribution of stress-
es, is a flat bottom, due to which it is necessary to increase 
its thickness by 3–5 times in comparison with the thickness 
of the wall.

This problem is proposed to be solved by replacing a flat 
bottom with the one, which has variable thickness from its 
center to the periphery. The calculation of this thickness, which 

ensures the closest approach of the bottom under load to the 
uniformly stressed state, is a relevant direction of studies.

2. Literature analysis and problem statement

The majority of machine-building parts and nodes 
contain technological cavities and openings. They are not 
necessary for the fulfillment of functional “duties” by the 
parts and give these parts bizarre and often technological-
ly unfavorable shapes. Designers, for example, intuitively 
substitute in the objects of design a round continuous 
rolled metal with a pipe, a round pipe with an elliptical 
one, and remove a part of the “body” of gears, structural 
panels and a lot more [1].

It is manifested most vividly in the parts, intended 
for transport objects hence, for example, there are com-
plex shapes of the parts of aircraft and rocket fuselage 
[2] and automobile bodies [3]. Reliability of the critical 
parts – turbine blades [4] and of many others – depends 
on the correctly calculated shape. The purpose of this com-
plication is to obtain a uniformly stressed part or a unit, 
which, as it is known [5, 6], makes it possible to obtain the 
most favorable ratio of the mass of a part and its stressed-
strained state (SSS).

OPTIMIZATION 
OF UNIFORMLY 

STRESSED 
STRUCTURES OF 

CYLINDRICAL 
TANKS IN CAD

O .  S a v e l e v a
Doctor of Technical Science, Associate Professor*

Е-mail: okssave@gmail.com
Y u .  K h o m y a k *

PhD, Associate Professor
Е-mail: jomiak38@gmail.com 

I .  S t a n o v s k a
PhD 

Department of the higher mathematics and systems modeling**
Е-mail: iraidasweet07@rambler.ru

A .  T o r o p e n k o *
PhD

Е-mail: alla.androsyk@gmail.com
E .  N a u m e n k o *

Е-mail: jenyanaumenko@mail.ru
*Department	of	oilgas	and	chemical	mechanical	engineering**

**Odessa National Polytechnic University 
Shevchenko ave., 1, Odessa, Ukraine, 65044

Запропоновано метод проектуван-
ня рівнонапружених вузлів циліндричних 
резервуарів, що містять плоскі круглі 
пластини змінної товщини, форма діа-
метральних перерізів яких моделюється 
рівнянням Гаусса. Для рішення рівняння 
вигину цих пластин використовують-
ся вироджені гіпергеометричні функції 
Куммера та Уїттекера. Метод випробу-
ваний в реальному проектуванні з пози-
тивним техніко-економічним ефектом

Ключові слова: рівнонапружені дета-
лі, функції Куммера і Уїттекера, плас-
тини змінної товщини, САПР

Предложен метод проектирования 
равнонапряженных узлов цилиндриче-
ских резервуаров, содержащих плоские 
круглые пластины переменной толщины, 
форма диаметральных сечений кото-
рых моделируется уравнением Гаусса. 
Для решения уравнения изгиба этих пла-
стин используются вырожденные гипер-
геометрические функции Куммера и 
Уиттекера. Метод испытан в реальном 
проектировании с положительным тех-
нико-экономическим эффектом

Ключевые слова: равнонапряженные 
детали, функции Куммера и Уиттекера, 
пластины переменой толщины, САПР

UDC 004.942:624.073.12
DOI: 10.15587/1729-4061.2016.85451



Applied mechanics

11

An additional example of such structures is vessels, 
which work under pressure, their housings and bottoms [7]. 
The most common elements of the existing housing struc-
tures of vessels are plates and shells with constant thick-
ness In the majority of cases (both at the planar-stressed 
state and with the bend), the fields of stresses occurring 
in them are substantially heterogeneous [8]. Consequently, 
minimization of mass of the housing constructions without 
use of the elements of variable thickness in them is practi-
cally impossible.

In certain cases, a palliative solution to this problem is 
found. For example, walls of large vertical cylindrical tanks 
for storing petroleum products are produced with a gradual-
ly changing thickness [9, 10]. A similar solution must also be 
based on calculation of the plates of variable thickness, the 
contour of which is elastically attached to the cylindrical 
wall of a tank. 

According to conditions of loading such objects, the most 
stressed section is the place of the joint (most frequently, of 
welding) of the shell and the bottom [11]. Calculations of 
strength show that it is in this place that thickness of the 
bottom must be the largest, which leads to a rather techno-
logically unfavorable solution: to make bottoms of the ves-
sels in the form of round plates with the thickness variable 
from the center to the edge [12–14].

It is natural to assume that the structure of such a 
complex article must be obtained as a result of complex 
calculations by equations of strength of materials that are 
non-uniform differential equations of the second order 
[15]. Solutions for such equations for particular objects are 
written down in the form of sum of general and particular 
solutions, that is, it consists of two linearly independent 
functions [16].

However, such approaches do not ensure optimization of 
the structures of vessels, since the parts and nodes of equal 
stress, obtained in this case, do not warrant simultaneous 
achievement of minimum mass of the would-be object [17]. 
At the same time, there is mathematical apparatus of hy-
per-geometric functions, with the help of which a similar 
problem can be solved [18]. 

For simultaneous achievement of the uniformed stress 
and minimum mass, it is necessary to develop a new method, 
which would consider such concept of effective optimization 
and a pattern of bending the plates of different thickness for 
the implementation of this method.

3. The aim and the tasks of the study

The aim of this study is a decrease in metal intensity of 
constructions at the stage of automated design by means of 
creating uniformly stressed structural elements with the 
retention of their reliability indices due to rational redistri-
bution of the used materials inside an element.

To achieve this aim, the following tasks were to be solved:
– to develop a method for the optimization of shape of a 

round plate with variable thickness, which involves transi-
tion from the fixed thickness of plate in its center to its fixed 
volume;

– to develop a model of the bend of a round plate with 
variable thickness in the form of exponential Gauss function, 
which considers dependence of thickness in the center of a 
plate on its volume.

4. Development of mathematical provision for  
designing spatial uniformly stressed parts 

4. 1. Method for designing the shape of uniformly 
stressed nodes of conjugation of structural elements

Let us consider round plates of radius R, either having 
one flat and one concave surfaces (Fig. 1, a), or having both 
concave surfaces (Fig. 1, b). 

A change in thickness of the plate in radial direction r in 
a rather general case can be described by Gauss function [8]:

δ = δ − 2 2
0(r) exp( nr 6R ),  		  (1)

where δ0 is the thickness of the plate in the center at r=0.
Parameter n in equation (1) determines intensity of the 

change in thickness of a round plate in radial direction. In 
the circular direction, thickness remains constant, that is, 
shape of the plate is assumed to be axisymmetric.

 
а

 b

Fig. 1. Round plate of variable thickness, 	
clamped along contour r=R: a – flat-concave form of 

diametrical cross-section; b – biconcave form of 	
diametrical section in the initial state and in the state 

deformed by load p (shaded) 

A plane-concave shape of cross-section of the plate is 
obtained, if we plot δ(r) from the flat lower surface; a bicon-
cave form is obtained if we plot sizes 0,5δ(r) on both sides of 
the plane z=0. The shape of diametrical section, obtained in 
this way, is sufficiently general since plates with the concave 
surfaces (Fig. 2, curves 4, 5) can be described by function (1) 
with positive values of parameter n.

Shapes of surfaces with parameter n<0 may be recom-
mended for round plates, bent by transverse load p at the 
rigid clamping of their contour, when the maximum bending 
moment influences the contour (Fig. 1, b). With the hinged 
fixing of the contour, maximum bending moment occurs in 
the center of the plate and the shape with maximum thick-
ness in the center, when n>0, becomes preferable.
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With the optimization of the shape of diametrical cross-sec-
tion of a round plate, we strived for the minimization of its mass, 
determined by the volume of the used material.

Fig. 2. Graphs of thickness dependence of round plate on 
its relative radius x=r/R at δ0=10 mm for certain values of 

parameter n: n=–3 (1); n=–2 (2); n=0 (3); n=+2 (4); n=+3 (5)

For a rigidly clamped plate, this aim is achieved by the 
displacement of material from the underloaded central zone to 
the periphery with retention of constant volume of plate 0V .  
Formula, which determines a change in thickness of this 
plate in the radial direction, is obtained from (1) in the form

( )
2

0
V 2

V n nx
(x) exp .

R 66 1 exp n 6

 
δ = ⋅ − π    − − 

 	 (2)

The second cofactor in (2) has uncertainty at n=0. We 
should accept for this value

( )→

→

= =
 − − 

n 0

n 0

n
limK(n) lim 1.

6 1 exp n 6
	  (3)

A change in thickness in the radial direction, determined 
by function (2) for certain values of parameter n≤0, is repre-
sented in Fig. 3.

Let us note that as a result of exponentiality of depen-
dence (2), at n<0, thickness on the contour of plate grows 
much more intensively than it diminishes in the center: rela-
tion δ(1)/δ(0)=exp(–n/6). For example, at n=–10, thickness 
on the contour of a plate is 5,3 times larger than in the center.

Differential equation of axisymmetric bend of this plate 
at the uniformly distributed load (pressure) р relative to the 
angle of rotation of normal to the median surface φ has the 
second order [5]: 

 φ φ   + − − + µ φ = −          

2 2

2 2

d 1 d 1 nx
nx n px exp .

dx x dx x 2
	 (4)

Dimensionless parameter p  contained in the right side 
of equation (4) depends on the accepted mathematical model 
of diametrical cross-section of the plate: 

– with equation of the shape of the plate in the form (1) 
we have: 

3
2

3
0

pR
p p 6(1 ) ;

Eδ= = − µ
δ

		   (5)

– with equation of the shape of the plate in the form (2) 
we have: 

 π − −
= = − µ ⋅ 

 

33
2

V
0

p 6 R 1 exp( n / 6)
p p 6(1 ) ,

E V n 	  
(6)

where p is the intensity of uniformly distributed load; E, μ 
are the modulus of elasticity and the Poisson coefficient of 
the plate’s material. 

Fig. 3. Graphs of thickness dependence of 	
round plate on its relative radius x=r/R at V0/(πR2)=10 mm 

for certain values of parameter n: n=0 (1); n=–2 (2); 	
n=–4 (3); n=–6 (4); n=–8 (5)

Integral of non-uniform equation (2) consists of two 
components, particular and general solutions. 

A particular solution takes the following form:

 
φ = −  − µ  

2

0

px nx
exp ,

(3 )n 2
		   (7)

where p  is determined by formula (5) or (6) depending on 
the method of assigning the shape of diametrical cross-sec-
tion of the plate. 

General solution of homogeneous equation (4) (when the 
right part equals zero) is assigned in [5] by the power series, 
which presents certain computational difficulties for practical 
calculations. In the present work, solution of this homoge-
neous equation is represented with the help of the degenerate 
hypergeometric Whittaker functions Mk,γ(z), Wk, γ(z) [17]:

γ γ

    φ = +        

2
2 2

1 1 k, 2 k,

exp(0,25nx ) 1 1
(x) C M nx C W nx ,

x 2 2
  (8)

where k=(1–μ)/2, γ=1/2; С1 and С2 are arbitrary constants. 
Eigenfunctions of solution (8) are equal:

−
γ
 =   

1 2 2
1 k,

1
F (x) x exp(0,25nx )M nx ,

2
	

 	 (9)

−
γ
 =   

1 2 2
2 k,

1
F (x) x exp(0,25nx )W nx .

2
	

(10)

Examples of plots of functions (9) and (10) at values n=3 
and the Poisson coefficient μ=0,3 are represented in Fig. 4.

Function F2(x) unlimitedly increases at x→0, therefore, 
for a round plate, (5) assumed C2=0. For an annular plate, 
constants C1 and C2 can be determined from the boundary 
conditions.

Whittaker functions in certain cases complicate analy-
sis of the obtained solutions; therefore, in the paper, it was 
proposed to replace them with the Kummer functions [16]:

 

0              0,2            0,4              0,6            0,8 х = r/R  1 

16 
δ(r), 
mm 

13 
12 
11 
10 

9 
8 
7 

 

1 

3 
4 

5 

2 

 

 

0              0,2            0,4              0,6             0,8  х = r/R  1 

18 
δ(r),  
mm 

14 
 

12 
 

10 
 

8 
 

6 
 

1 2 3 
 

4 5 

 



Applied mechanics

13

− +γ
γ

 = + γ − + γ  
z 2 1 2

k,

1
M (z) e z M k;1 2 ; z ,

2
(11)

− +γ
γ

 = + γ − + γ  
z 2 1 2

k,

1
W (z) e z U k;1 2 ; z .

2
 (12)

Fig. 4. Examples of plots of eigenfunctions (9) and (10)

After substitution of functions (11) and (12) in (8), we 
obtain:

γ −   φ = + γ − + γ +   
 + + γ − + γ    

1 2 2
1 1

2
2

1 1
(x) x C M k;1 2 ; nx

2 2

1 1
C U k;1 2 ; nx .

2 2
(13)

At the given above values of parameters γ, k and partic-
ular solution (7), angle of rotation of normal to the median 
surface of the plate is determined in the form: 

φ = φ + φ =

 + µ + µ   = ⋅ + −        
 

−  − µ  

0 1

2 2
1 2

2

(x) (x) (x)

nx 1 1 1 1
C M ; 2; nx C U ;2; nx

2 2 2 2 2

px nx
exp .

(3 )n 2
(14)

Solution in the form (11) may be used for annular 
plates, that is, in cases when relative radius of their con-
tours ≤ ≤1x x 1. For solid plates, for example, for a bottom 
or a cover of cylindrical container, it is necessary to as-
sume C2=0, since the solution with the Kummer function 
of the second order

 + µ
⋅   

2nx 1 nx
U ;2;

2 2 2

increases indefinitely at x→0. Consequently, we will search 
for the solution of the problem of the bend of a continuous 
round plate with variable thickness in the form:

 + µ φ = ⋅ −     − µ  

2
2

1

nx 1 1 px nx
(x) C M ; 2; nx exp .

2 2 2 (3 )n 2
	 (15)

It is obvious that solution (15) satisfies the required 
condition 

=
φ =

x 0
0.

If dependence of the angle of rotation of normal to the 
median surface of the plate φ(x) is determined, we will find 
the equation of this surface by the integration:

= − φ + =

+  = + −
− µ − µ − µ

∫ 0

2
1 1 2

0 2

w(r) R (x)dx C

C R F (x) F (x) pRx exp(0,5nx )
C ,

(1 )(3 ) (3 )n
 (16)

where

 + µ = − µ − µ − − µ     

2
2

1

1 nx
F (x) 3 (4 ) nx (3 ) M ;2; ,

2 2  (17)

 + µ
= + µ − µ     

2

2

3 nx
F (x) 3 (2 ) M ;2; .

2 2
 (18)

Let us proceed to the models, which contain loaded plates. 
In this case, radial and peripheral bending moments are deter-
mined by formulas:

φ µ = + φ  
1

r

D (x) d (x)
M (x) ,

a dx x
(19)

φ φ = + µ  
1

t

D (x) (x) d (x)
M ,

a x dx
(20)

where the flexural rigidity of plate with variable thickness, 
which corresponds to (1), takes the form:

 δ
= − − µ  

3 2
0

1 2

E nx
D (x) exp .

12(1 ) 2
 (21)

As a result, we obtain formula for the radial bending 
moment (14).

Derivative of function (12) takes the following form:

    φ + µ + µ
= + µ − µ −         

 +
−  − µ  

2 2

1

2 2

d n 3 nx 1 nx
C (1 )M ,2, M ,2,

dx 2 2 2 2 2

p(1 nx ) nx
exp .

(3 )n 2
(22)

Considering (12) and (22), we will find

   = + − µ −       
 − + −  − µ   

2
1

r 1 2 1

2 2

D (x) n x
M C M M

an 2

p(1 x nx ) nx
exp ,

(3 )n 2
(23)

where

 + µ
=   

2

1

1 nx
M M , 2, ,

2 2

 + µ
= + µ   

2

2

3 nx
M (1 )M , 2, .

2 2

From (13) and (18) we obtained expressions for the angle 
of rotation of normal and the bending moment on the con-
tour of the plate
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+ µ   φ = −      − µ1

n 1 1 p n
(1) C M , 2, n exp ,

2 2 2 (3 )n 2
 

	 (24)

r

2
2

1 2 1

M (1)

D px n
C M (1) (0,5n )M (1) exp .

a (3 ) 2

=

   = + − µ −     − µ 

 	

(25)

For designing a uniformly stressed plate, after determining 
bending moments (19) and (20), radial stresses are calculated:

σ =
δ

r
r

V

6M (x)
(x) .

(x)
 	 (26)

Then we find value of parameter n, at which:

σ = σr r(0) (1).

	

 	 (27)

Integration constant С1 is determined from the condi-
tions of plate fixing along contour х=1. As a result, a scheme 
of the proposed method for the optimization of shape of a 
round plate with variable thickness, implying transition 
from the fixed thickness of the plate in its center to its fixed 
volume, takes the form, represented in Fig. 5.

4. 2. Model of bend of a round plate with variable 
thickness

As can be seen from Fig. 5, work of the method begins 
with designing a model of the bend of a round plate with 
variable thickness. The proposed model in the form of ex-
ponential Gauss function makes it possible to determine the 
optimum (uniformly stressed, having minimum mass) shape 
of a continuous round plate with arbitrary fixing along ex-
ternal contour. The model makes it possible to reflect this 
fixing ranging from absolutely free (hinged support) to 
absolutely rigid (clamped). Let us examine absolutely rigid 
fastening. For this case, we will find integration constant С1 
from (24) on condition of fixing the plate on contour х=1:

( )
( )= ⋅

− µ + µ1 2

exp 0,5n2p
C .

(3 )n M 0,5(1 ), 2; 0,5n
	

(28)

We substitute value of С1, obtained by (28), in (24), and 
we receive solution to rigid fastening:

( )
( )

φ = ×
− µ

 + µ   × ⋅ −  + µ    

2 2

2

px
(x)

(3 )n

M 0,5(1 ),2;0,5nxexp(0,5n) nx
1 exp .

exp(0,5nx ) M 0,5(1 ),2;0,5n 2

 	
(29)

To prove adequacy of the model of rigid fastening in the 
form of exponential Gauss function, let us conduct a compu-
tational experiment.

For this purpose, let us plot a graph of function depen-
dence (29) on argument х and parameter n (Fig. 6).

In Fig. 6, it is evident that the function of angle of rotation 
φ(X) at any value of parameter n at x=0 and at x=1 is equal to 
zero. This corresponds to boundary conditions of rigid fixing 
at the axisymmetric deformation of plate, which confirms ade-
quacy of the accepted model and provides for the opportunity 
of its correct use in the method for the optimization of shape 
of a round plate with variable thickness (Fig. 5).

Fig. 5. Structure of method for the optimization of  
shape of a round plate

Fig. 6. Graph of function (29) versus argument х and 
parameter n

5. Discussion of the proposed method for  
designing uniformly stressed nodes of  

cylindrical tanks

Result of the study is the confirmation of effectiveness 
of using a method for the optimization of shape of a round 
plate with variable thickness, which implies transition from 
the fixed thickness of plate in its center to its fixed volume. 
The result is also complemented by the model of bend of a 
round plate with variable thickness in the form of exponen-
tial Gauss function. The model considers dependences of 
thickness in the center of a plate on its volume, used within 
the framework of the proposed method.

 Model of plate of constant volume (2)  

Determination of angles φ(х) with the help of 
differential equation of the second order  

Search for general and particular solutions of 
DE 

с произвольными постоянными С1 и С2 

Construction of formula for bending moment 
considering С1 and С2 

 

Formulation of boundary conditions  
and determination of С1 and С2 

 
 

Computation of stresses  σr(х) 

Determination of parameter of shape n,  
ensuring condition of uniformed stresses:  

σr(0) = σr(1) 
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A positive effect of the study is supported by practi-
cal implementation of its results in real CAD, which is 
employed in the production of vessels that work under 
pressure. For this purpose, testing of the described meth-
od of designing uniformly stressed nodes of conjugated 
cylindrical and flat housing elements, based on modeling 
the shape of the latter by hypergeometric functions, was 
carried out at PAO “Berdichev Machine Building Plant 
“Progress” (Ukraine).

As the object of design, we selected a vessel, intended 
for receiving, storage and delivery of concentrated sulfu-
ric and nitric acids at the warehouses of water-treatment 
plants, the set-up of which includes ion-exchange filters. 
As a result of practical tests of the new method of design, 
we obtained a structure of the bottom of a tank, the 
cross-section of which corresponds to the scheme, given 
in Fig. 1, that is, thickness of this bottom increases to its 
edges. The shape of this section is described by expres-
sion (2) at the values of thickness of the original (flat) 
bottom δ0=0,008 m, radius of the bottom R=0,4 m and 
parameter n=–2. By integrating (2) under these condi-
tions, we will obtain volume of the new bottom, equal 
to 9,32·10–3 m3, which in comparison with the volume 
of the original cylindrical bottom, which was equal to 
πR2δ0/4=10,05·10–3, saves 7,15 % of the volume (as well 
as mass), with the retention of strength characteristics of 
the bottom as a whole.

6. Conclusions

1. We developed a method for the optimization of shape 
of a round plate with variable thickness implying transition 
from the fixed thickness of a plate in its center to its fixed 
volume, which made it possible to ensure the uniformed 
stress of the plate. The method is different from the known 
ones by the fact that it analytically solves two problems: it 
finds a family of “uniformly stressed shapes” of a part (there 
is infinite multiple of them at the assigned initial data) and 
selects a part of the lowest mass.

This ensures maximum effectiveness of the process of 
optimization of shape and makes it possible to achieve maxi-
mum technical and economic effect.

2. A hyper-geometric universal model of bend of a round 
plate with variable thickness in the form of exponential 
Gauss function was proposed. The model considers depen-
dence of thickness in the center of a plate on its volume, 
which allowed us to use it within the framework of the 
proposed method for the optimization of shape. The model 
makes it possible to reflect fixing of the bottom in the shell 
of a vessel that works under pressure in the range from ab-
solutely free (hinged) to absolutely rigid (clamped). For this 
purpose, in the first case, it is assumed that hardness of the 
shell is equal to zero, and in the second case, it is equal to in-
finity. For real objects, the model makes it possible to assign 
the value of hardness in this range arbitrarily.
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Досліджено вібрації короба грохоту із пло-
ским поступальним рухом короба, збуджені 
кульовим автобалансиром. 3D моделюванням 
динаміки грохоту отримано закон усталених 
вібрацій короба у числовому виді. За допомогою 
програмного пакета для статистичного ана-
лізу Statistica вібрації ідентифіковано як дво-
частотні. Розбіжність між результатами 3D 
моделювання і знайденим законом двочастот-
них коливань не перевищує 1-го відсотка

Ключові слова: віброзбудник, двочастотні 
вібрації, 3D моделювання, дебаланс, резонансна 
вібромашина, автобалансир, грохот

Исследованы вибрации короба грохота с 
плоским поступательным движением коро-
ба, возбуждаемые шаровым автобалансиром. 
3D моделированием динамики грохота получен 
закон установившихся вибраций короба в чис-
ловом виде. С помощью программного пакета 
для статистического анализа Statistica вибра-
ции идентифицированы как двухчастотные. 
Расхождение между результатами 3D модели-
рования и найденным законом двухчастотных 
колебаний не превышает 1-го процента

Ключевые слова: вибровозбудитель, двух-
частотные вибрации, 3D моделирование, деба-
ланс, резонансная вибромашина, автобалансир, 
грохот
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1. Introduction

Among vibration machines, the most potentially produc-
tive are mechanisms that combine in themselves advantages 
of resonant and dual-frequency vibration machines [1–4]. The 
resonant operating mode provides vibrations of big sizes of the 
box and weight at the minimum expenditure of energy and the 
minimum loads on the drive parts [1, 2]. An operating mode 
of dual frequency or more ensures increased productivity and 
performance of additional technology processes [3, 4].

It is suggested to excite dual-frequency vibrations of the 
screen box with various kinematics of motion by a passive 
auto-balancer [5]. In different fields of production, screens 
with a flat translational motion of the box are widely applied 
[2]. In this regard, it is essential to check the possibility of 
exciting dual-frequency vibrations by a passive auto-balanc-
er at such kinematics of the box motion.

2. Literature review and problem statement

Among vibration machines, the most power-effective 
are resonant [1]. The resonant mode of vibrations provides a 
possibility of using a small drive to set in motion large boxes 
of screens at a minimum expenditure of energy [2].

A further increase of energy efficiency and productivity 
of resonant vibration machines is provided with using in 
them two [3] and more [4] frequency vibroexciters.

In study [5], it is suggested to excite resonant dual-fre-
quency vibrations of the screen box by a method of using a 
passive auto-balancer. According to the method, the auto- 
balancer is mounted on a rigid shaft, and the shaft is in-
stalled in a rigid support on the screen box. When the shaft 
is rotated at superresonance velocities, there appear slow and 
fast harmonic oscillations of the box. Meanwhile, the slow 
vibrations are vibrations of the box at its own resonant fre-




