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APPLICATION OF THE METHOD FOR THE CALCULATION OF 
STATICALLY INDETERMINATE SYSTEMS 

Khomyak Yu., Naumenko Y., Abu Shena О.  
 
As mentioned above, the dependence of the distribution voltage from element 

stiffness design exists only in statically indeterminate systems [1, 2]. 
Therefore, the example of applying the method of virtual objects [3] to the use 

of  an  object  with  virtual  stiffness  consider  the  example  of  loading  of  a  rod,  whose  
scheme is shown in Fig. 5. 

 

 
 

Figure 5 – An example of a statically indeterminate loading horizontal rod 
 

Horizontal rod, rigidly clamped at the ends, loaded the current along its axis by a 
force P applied at a distance ll from its  left  edge  and  lr – in from the right and the 
dividing plane for your application the rod into two parts – left and right.  

The effect of gravity is neglected. It is known that in this case there are three 
functions: σl, σr, Δσ  two variables: Fl, Fr, which specified relationships: 
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where σl,  σr – accordingly, the stress in the left and right parts of the rod; Fl, Fr – 
section of the left and right sides; El, Er – the stiffness of the rod parts. 

Analysis of equations (1) – (3) shows that, unfortunately, the condition Δσ = 0 is 
impossible at finite Fl, Fr. This corresponds to the statement that in statically 
indeterminate structures in the general case all elements at the same time it is 
impossible to obtain equal stress.  

Therefore speech can go only about minimizing Δσ, and the whole problem 
reduces to the optimization with three optimization criteria – σl, σr, Δσ,  two variables 
– Fl, Fr  and restrictions. 

Its formulation for our example is follows. 
To find the optimal values *

lF  and *
rF , where min®sD , max®s л , max®sп  

and are the following limitations: 
[ ]s£sl ;                                   (4) 
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[ ]s£sr ;                                 (5) 
maxmin lll FFF ££ ;                        (6) 

maxmin rrr FFF ££ .                           (7) 
The solution of the optimization problem with three optimization criteria 

presents significant challenges and does not provide a clear end result. Therefore, as 
the only optimization criterion chosen was the total mass m of the design part (host). 

In our example, the total mass of the rod m or, equivalently, its metal content can 
be determined according to the formula: 

( )rrllrl FlFlmmm +r=+= ,                         (8) 
and its optimal (lowest) value respectively equal to: 

( )*** +r= rrll FlFlm .                          (9) 
Let us analyze the expression (9). As mentioned above, the value Δσ = 0 is 

unattainable. The geometric meaning of the constraints (4) and (5) is that they are cut 
from the rectangle of the argument region in which the condition of strength.  

For each pair of arguments in (8) can be calculated from the value of the mass of 
the rod. A pair of values *

лF  and *
пF , which providing the minimum value of the mass 

*m , will solve the problem, that is the space of sections of parts of the rod the least 
mass that meets the requirements of (4) to (7). 

Problem was solved by numerical method, for which the field of argument was 
covered with mesh, the nodes which were calculated pairs of values Fl, Fr. For each 
node was calculated values of stresses in both parts of the rod. If these values are not 
exceeded, the received for this node the value of m compared with m-values in other 
nodes and choosing the minimum. 

In the transition to a virtual method of the rigidity value of the cross-sectional 
area of the whole stem were recorded at baseline, and the sorting in the grid nodes 
were subjected to values of moduli of elasticity is now different in the left and right 
sides.  

In this algorithm, minimization subjected to the absolute value of the difference 
between stresses in various parts of the rod: 

rl ЕЕЕ -=D .                               (10) 
The objective of the calculation is to find the minimum cross – section, wherein 

the selection of the Еl and Еr still manages to ensure implementation of the 
inequalities (4) and (5).  

Here is a concrete example of applying the method of virtual stiffness to 
calculate the optimal core designs loaded according to the scheme (Fig. 5). 

Initial data for calculation: the length of the left part of the rod – ll = 0,4 m; the 
length  of  the  right  part  of  the  rod  – lr = 0,6 m; the external force – Р = 10000 N; 
allowable stress is  – 120 МPа;  the nominal value of the elastic modulus of real 
material rod – Еnom = 200000 МPа;  the  density  of  the  material  of  the  rod  – r =                 
7800 kg/m3. 

Step 0. Believe sl =  [s] and by the formula (1) defined the value of Fl, that 
provides the left part tension equal to [s]: 
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As in step 0 the rod has a uniform cross-sectional area *
0FFF lr == , the tension 

in the right side: 
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+

×=s
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l
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r ll

l
F
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Thus, all of the rods of equal cross section has the smallest mass *
0m : 

kg39,0)(*
0

*
0 =+×r= rl llFm .                 (13) 

Step 1. From design considerations to select the boundaries of variation: Fl min  = 
0,000035 m2; Fl max = 0,0002 m2; Fr min = 0,000035 m2; Fr max = 0,0002 m2. 

Define square sections *
1lF  and *

1rF , that providing *
1m : 

24*
1 m1060,0 -×=lF ; 

  24*
1 m1036,0 -×=rF ;                           (14) 

kg3559,0*
1 =m  

at stresses equal to 119,0476 МPа in left and 79,36507 МPа in right parts. 
Calculated the relative change in the cross-sectional area in the transition from 

step 0 to step 1: 

54,1*
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F
FF l
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F
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r .                                    (16) 

Step 2. Select the border of the variation of the stiffness: Еl min = 100 000 МPа; 
Еl max = 250 000 МPа; Еr min  = 100 000 МPа; Еr max = 250 000 МPа. 

Virtual determined values of moduli of elasticity *
2lE  and *

2rE , that providing *
2m : 

МPа1066,1 11*
2 ×=lE ; 

МPа1049,2 11*
2 ×=rE ;                                 (17) 

gm k3276,0*
2 = . 

Calculated the elastic modulus relative change in the transition from step 1 to 
step 2: 
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Step 3. Count the rod area by the method of virtual models, based on the ratios: 
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Using (20) and (21), obtain: 
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what provides the stress in the left part 115,119 МPа and right – 76,746 МPа at 
weight *

3m  = 0,375 kg, that is within the normal range. Comparing *
1lF  and *

1rF , then 
*
1rF  and *

3rF , then *
1m  and *

3m , we find that these values are exceedingly close.  
Especially it should be noted that the final result (22) and (23) were obtained 

without  using  the  data  of  step  1,  only  where  the  rod  is  composed  of  two  parts  of  
unequal cross sections. 

For design stages using does not recognize the asymmetry of CAD, detail of the 
left symmetrical in form, allowing other factors – properties and the external loading 
to make very exotic (virtual) values.  

And only at the last stage, these factors acquire the features of reality through 
shape recovery [4]. Thus the «whimsical» CAD manages to fool on the information 
level and result-set to design asymmetric, complex shapes, and thus optimal, parts 
and components. 

A method is proposed in which the model of the future design object 
transformation, some intermediate States which can exist only in the virtual view. 
This way it helps to find such intermediate state, in which the optimization of 
geometric characteristics can be performed most efficiently. The method involved 
when you design a symmetrical variable thickness bottoms of tanks [5, 6], working 
under pressure, with positive technical and economic effect. 

Under asymmetric mechanical loading (that is most often found in machine) is 
optimal asymmetric design details, the design of which, as a rule, very hardly. 
Modern computer software means for calculation of stress-strain state of parts and 
components sharply increase its effectiveness only when given the symmetry of the 
structure. In this case a real significant gain in conflict with the requirement of 
optimality of the latter, – «symmetric» CAD can't design asymmetrical shape of the 
part.  

There is a vicious circle: then detail farther from the symmetry, so it is «better», 
but the harder in modeling and design. 

Method of virtual object allows to overcome these contradictions. For this for 
design stages using does not recognize the asymmetry of CAD, detail of the left 
symmetrical in form, allowing other factors – properties and the external loading to 
make very exotic (virtual) values. And only at the last stage, these factors acquire the 
features of reality through shape recovery. Thus the «whimsical» CAD manages to 
fool on the information level and result-set to design asymmetric, complex shapes, 
and thus optimal, parts and components. 

A method in which the model of the future design object transformation, some 
intermediate states which can exist only in the virtual view is proposed. This way it 
helps to find such intermediate state, in which the optimization of geometric 
characteristics can be performed most efficiently. The method involved when you 
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design a symmetrical variable thickness bottoms of tanks, working under pressure, 
with positive technical and economic effect. 
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