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Abstract—One of the significant disadvantages of MC-

CDMA (Multi Code-Code Division Multiple Access) technology 

is a high PAPR (Peak-to-Average Power Ratio) values of used 

signals in such telecommunication systems. The most modern 

and effective solution to this problem is the C-codes based on 

bent-sequences. However, C-codes introduce significant 

redundancy in communication systems, which consumes only 

to reduce the signals PAPR value. In this paper, we developed 

a method for the synthesis of C-codes with error-correction 

properties on the basis of an arbitrary Agievich bent-square. 

To build a C-code with the specified distance properties, we 

used the proposed sets of semidyadic permutations. Structural 

properties of built C-codes allow the use of simplified 

procedures for coding and decoding. In this case, for length 

= 256N  and PAPR value κ = 1 , the cardinalities of 

constructed C-codes are in the range 512...1032 0= 192J  for 

the code distances = 128...64d . 

 

Index Terms—Constant Amplitude Code; MC-CDMA; Bent-

Sequence; Bent-Square. 

 

I. INTRODUCTION 

 

Further development in 4G mobile data transmission 

systems and the promising LTE technology are largely 

based on improving the CDMA technology (Code Division 

Multiple Access). In recent years, researchers have been 

focusing on one of the most promising CDMA technology 

modifications — MC-CDMA (Multi Code - Code Division 

Multiple Access). 

According to the MC-CDMA technology, the binary data 

vector  , 0,1,..., 1iD d i N    is subjected to the 

orthogonal transform [1]. Each data bit 
id  changes the sign 

of one of N  orthogonal functions of discrete time ( )ia t , 

and the output is the sum of these N  modulated functions. 

The transmitted signal is a Walsh-Hadamard spectrum 

coefficients of sequence D . 
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where A  is the Hadamard matrix of order 2kN  , which is 

constructed in accordance with the following recurrent 

relation: 
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Although it has numerous advantages, such as high noise 

immunity, flexibility of system bandwidth distribution 

among subscribers, efficiency and good electromagnetic 

compatibility, MC-CDMA technology still has some 

disadvantages. One of the most significant disadvantages of 

MC-CDMA technology is the high PAPR (Peak-to-Average 

Power Ratio) values of signals. This fact leads to an 

inefficient use of the transmitter power, non-linear 

distortions. Consequently, the rise in the cost of the 

equipment used reduces the potentially achievable noise 

immunity. 

The PAPR of the signals in the system is determined by 

the peak of Walsh-Hadamard transform coefficients [2]. 
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where 
maxP is the peak power of the signal ( )DS t ; 

           avP  is the average power of the signal ( )DS t ; 

           N  is the length of the signal ( )DS t . 

 

One of the most effective solutions to this problem is 

using the C-codes (constant amplitude codes) to reduce the 

PAPR in the system signals. The main results on C-codes 

are represented in [3]. 

 

Definition 1: C-code or constant amplitude code is a set of 

codewords that have a predetermined, fixed codeword for 

each PAPR value [3]. 

Application of C-code suggests the replacement of 

encoder input vectors  jd
 
of length m  to such codeword 

vectors  ic  of length n , which have the lowest value of 

PAPR as shown in Figure 1. 
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Figure 1: C-code application scheme 
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It is clear that in practice n m , thus, C-code introduces 

redundancy into the transmitted messages, which is used 

only to reduce the PAPR, thereby reducing data 

transmission rate in time of R m n . Note, that the 

redundancy introduced by the C-code can be used not only 

to reduce the PAPR, but also to give the C-code some 

correcting properties. This fact makes it necessary to 

develop such a C-code, which would have the corrective 

properties [4]. 

The purpose of this article is to develop a synthesis 

method of the families of constant amplitude correction 

codes based on an arbitrary bent-square. 

The optimal algebraic constructions to generate the C-

code codewords of the length 2 , 2,4,6,...kN k   are 

bent-sequences. They have a uniform Walsh-Hadamard 

spectrum, and accordingly, the value of the PAPR κ 1   

[5]. 

Definition 2: A binary sequence 
0 1 1[ , , , , , ]i NB b b b b 

 1ib   , of the length 22kN n  , 2,4,6,...k   is called 

a bent-sequence, if it has a uniform modulo of the Walsh-

Hadamard spectrum, which can be represented in the matrix 

from [5]. 

 

  B NW BA  , 0, 1N   . (4) 

 

Further, we consider in detail the main types of 

representation and methods of constructing the bent-

sequences. 

 

II. REPRESENTATION OF BENT-FUNCTIONS BY BENT-

SQUARES, AND A METHOD FOR CONSTRUCTION OF 

SEMIDYADIC PERMUTATIONS SET 

 

The theory of synthesizing the  bent-functions is complex, 

multifaceted and has a highly developed mathematical 

apparatus [6]. One of the most valuable achievements of this 

theory is a form of representation of bent-functions by the 

bent-squares proposed by S. Agievich [7]. 

Definition 3: Bent-square is a matrix, in which each row 

and each column is the spectral vector of the Walsh-

Hadamard transform. 

In [8] an algorithm for the synthesis of Agievich bent-

squares of arbitrary order on the basis of a given spectral 

vector and regular operator of dyadic shift is presented. We 

briefly explain the essence of this algorithm, which is based 

on a few definitions. 

Definition 4: The elementary structure of the spectral 

vector is said to be a set of absolute values of its spectral 

components [9]. 

Definition 5: The parameter  maxγ max iW  of spectral 

vector 
iW  is defined as the maximum absolute value. 

Definition 6: The equivalent class of spectral vectors 

 jW  is the set of vectors, each of which has the same 

elementary structure but different position structures and/or 

sign coding. 

Thus, when 16N  , the set of vectors  iW  is divided 

into 8 equivalent classes (Table 1). 

In Table 1, we used the following notation of spectral 

vectors: the number before the brackets indicates the 

absolute value of the Walsh-Hadamard that transforms the 

coefficient, whilst the number in brackets indicates the 

number of times it occurs in the spectral vector. 

 
Table 1 

Classification of spectral vectors of length 16N   

  

No. 

The elementary 

structure of the spectral 

vector 

Cardinality 

of 
equivalent 

class 

Number of 

different 
position 

structures 

Number 

of sign 

coding 

1  16(1),0(15)  32 16 2 

2  14(1),2(15)  512 16 32 

3  12(1),4(7),0(8)  3840 240 16 

4  10(1),6(3),2(12)  17920 560 32 

5  8(2),4(8),0(6)  26880 840 32 

6  8(4),0(12)  1120 140 8 

7  6(6),2(10)  14336 448 32 

8  4(16)  896 1 896 

 

Definition 7: The basic (primary) bent-square is said to be 

those that are being built by direct method based on dyadic 

shift [8] and based on non-equivalent spectral vectors. 

 

Proposition 1: For each of the basic classes of spectral 

vectors, the bent-square can be built on the basis of one 

representative vector and a regular dyadic shift operator. 

 

Definition 8: The dyadic shift operator can be represented 

in the form of a square matrix of the order n , which is 

based on the recurrent rule [10]. 
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n
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where 1, 2Dyad(2)
2,1
 
  

. 

Using Equation (5), it is not difficult to construct a dyadic 

shift matrix of the order 16n  . 

 

 

(16)
1 2 3 4 5 6 7 8 9 10 1112 1314 1516
2 1 4 3 6 5 8 7 10 9 12 1114 1316 15
3 4 1 2 7 8 5 6 1112 9 10 1516 1314
4 3 2 1 8 7 6 5 12 1110 9 16 1514 13
5 6 7 8 1 2 3 4 1314 1516 9 10 1112
6 5 8 7 2 1 4 3 14 1316 1510 9 12 11
7 8 5 6 3 4 1 2 1516 1314 1112 9 10
8 7 6 5 4 3 2 1 16 1514 1312 1110 9
9 10 111

Dyad 

 2 1314 1516 1 2 3 4 5 6 7 8
10 9 12 1114 3 16 15 2 1 4 3 6 5 8 7
1112 9 10 1516 3 14 3 4 1 2 7 8 5 6
12 1110 9 16 1514 13 4 3 2 1 8 7 6 5
1314 1516 9 10 1112 5 6 7 8 1 2 3 4
14 1316 1510 9 12 11 6 5 8 7 2 1 4 3
1516 1314 11 2 9 10 7 8 5 6 3 4 1 2
16 1514 1312 1 10 9 8 7 6 5 4 3 2 1

 
 
 
 
 
 
 
 
 
 
 

 




 (6) 

 

For example, let us consider a third class of spectral 

vectors by selecting one representative spectral vector 

 

 
S=[12 -4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0]  (7) 

 

Applying Proposition 1, on the basis of a representative 

vector in Equation (7), we can construct a bent-square by 

using dyadic shift operator in Equation (6). 
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3

12 -4 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0
-4 12 -4 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0
-4 -4 12 -4 -4 -4 -4 -4 0 0 0 0 0 0 0 0
-4 -4 -4 12 -4 -4 -4 -4 0 0 0 0 0 0 0 0
-4 -4 -4  -4 12 -4 -4 -4 0 0 0 0 0 0 0 0
-4 -4 -4 -4 -4 12 -4 -4 0 0 0 0 0 0 0 0
-4 -4 -4 -4 -4 -4 12 -4 0 0 0 0 0 0 0 0
-4 -4 -4 -4 -4 -4 -4 12 0 0 0 0 0 0 0 0
0 0 0BS  0 0 0 0 0 12 -4 -4 -4 -4 -4 -4 -4
0 0 0 0 0 0 0 0 -4 12 -4 -4 -4 -4 -4 -4
0 0 0 0 0 0 0 0 -4 -4 12 -4 -4 -4 -4 -4
0 0 0 0 0 0 0 0 -4 -4 -4 12 -4 -4 -4 -4
0 0 0 0 0 0 0 0 -4 -4 -4 -4 12 -4 -4 -4
0 0 0 0 0 0 0 0 -4 -4 -4 -4 -4 12 -4 -4
0 0 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 12 -4
0 0 0 0 0 0 0 0 -4 -4 -4 -4 -4 -4 -4 12
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(8) 

  

 

Based on bent-square in Equation (8), we can build a lot 

of square-equivalent bent-functions with the help of the sign 

coding operations and permutations of rows and columns of 

the original bent-square [7]. 

The operation of sign coding of bent-square in Equation 

(8) is used to obtain a new square-equivalent bent-functions 

based on the application of sign coding matrices. To 

perform the permutation operation of bent-square rows in 

this article, we developed such a new design as semidyadic 

permutations. 

Definition 9: The semidyadic permutation is a 

permutation in which each component Boolean function is 

an affine Boolean function. 

In this paper, we proposed an algorithm for the synthesis 

of semidyadic permutations that can be written in the form 

of specific steps accompanied with an example for the 

length 16N  . 

Step 1: Consider the biorthogonal code of length 16N   

and cardinality 32J   . We deleted from the biorthogonal 

code such codewords, which are not balanced (consisting of 

all elements "0" or "1"), thereby the cardinality of the 

obtained code is 30J  , and the codewords are represented 

by further matrix. 

  

 

0101010101010101
0011001100110011
0110011001100110
0000111100001111
0101101001011010
0011110000111100
0110100101101001
0000000011111111
0101010110101010
0011001111001100
0110011010011001
0000111111110000
01011010

1010101010101010
1100110011001100
1001100110011001
1111000011110000
1010010110100101
1100001111000011
1001011010010110
1111111100000000
1010101001010101
1100110000110011

10100101
0011110011000011
0110100110010110

1001100101100110
1111000000001111
1010010101011010
1100001100111100
1001011001101001
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 
 
 
 
 
 

 (9) 

 

Step 2. To construct a permutation of the length 16N  , 

we used balanced Walsh functions in Equation (9) as a 

component of Boolean functions. Selecting the component 

Boolean functions from the code of cardinality 30J  , 

which is built in Step 1 combination can be done in 
4

30 27 405C   ways. 

Step 3. Based on the obtained codes in Step 2, 

permutations should be tested for bijectivity. All non-

bijective permutations must be eliminated. Thus, we 

obtained a set of 13 440 permutations. 

Step 4: The obtained set in Step 3 permutations underwent  

all the possible permutations component Boolean functions. 

For the results based on each semidyadic permutation, we 

derived a set of 
2(log 16)! 4! 24   new semidyadic 

permutations. 

Total cardinality of semidyadic permutations is the 

superposition of all the above sets, which is 

13 440 24 322 560DJ    . Note that each semidyadic 

permutation applied to the rows of bent-square in Equation 

(8) generates a new unique bent-square and respectively, a 

new bent-sequence. 

 

III. THE METHOD OF CONSTRUCTION FOR FAMILIES OF 

CONSTANT AMPLITUDE CORRECTION CODES 

 

Let us separately perform the Walsh-Hadamard 

transformation for each row of bent-square in Equation (8), 

whereby rows are represented in the temporal domain. 

 

 

3BST

               
               
               
               
               
               
               
                               
               
               
               
  

.

 
 
 
 
 
 
 
 
 

             
               
                
                 

 

(10) 

 

For the construction of the set of bent-sequences based on 

a plurality of equivalent bent-squares, we performed 

concatenation of its rows. Thus, the distance property of 

bent-square rows defines a distance property of the code, 

which can be built on its basis. 

The research of the property of bent-square rows in 

temporal domain in Equation (10) shows that the Hamming 

distance between the rows of the matrix for each pair is 

equal to 8. Accordingly, a set of the matrix 
3BST  rows is 

the equidistant code with a codeword length 8N  . Thus, 

the following statement in Proposition 2 is true: 

Proposition 2: Selecting such different permutations of the 

matrix rows in Equation (10) in such a way that rows 

(segments) of two different bent-sequences in the matrix 

will be different from each other, resulting in the total 

distance will either increase by 8 or does not increase at all. 

Thus, by manipulating the permutations of the matrix rows, 

we can control the code distance of the constructed code. 

Obviously, the maximum possible distance of the code on 

the basis of the matrix in Equation (10) will be equal to 

max 16 8 128d    . To achieve higher cardinality of the code 

based on bent-squares, we propose a few rules of coding and 

permutations of the original matrix. 

Rule 1: It was discovered that the permutations of dyadic 

shift (6) have a number of matches λ 0 . Thus, we can 

apply to the original matrix rows (10) 16 dyadic shift 

permutations (6), receiving 16 new codewords with a code 

distance of 128. 

Rule 2: Bent-square allows column-wise symbolic coding 

(element-wise multiplication of the columns) of codewords 

by biorthogonal code, and the code distance in the length of 
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the resulting code of length 16N   stays unchanged and 

equal to 8. 

Using Rule 1 and Rule 2 allows us to reach a total 

cardinality of code equals to 32 16 512J     codewords. 

Note that from the permutations of a complete set of 

semidyadic permutations, for example the length of 16N   

and cardinality 322 560J  , we can choose (even by a 

brute force method) such permutations, that the number of 

matches in them would be smaller than 
0λ λ . Thus, by 

varying the value of  
0λ , we can control the code distance of 

constructed correcting code. 

Table 2 summarizes the data about families of correcting 

codes based on a predetermined bent-square to the different 

selected values of 
0λ . 

 
Table 2 

The Characteristics of The Families of The 

Error-Correcting C-Codes 
 

n  
2logk J  d  t  Perms J  κ  0λ  

256 9 128 63 16 512 1 0 

256 11.8074 120 59 112 3584 1 1 

256 13.4717 112 55 355 11360 1 2 
256 18.8341 96 47 14604 467328 1 4 

256 23.2992 64 31 322560 10321920 1 8 

 

In Table 2, the following designations were used:  n  is 

the length of codeword of error-correcting C-code;  k  is the 

number of information bits, d  is the minimum  code 

distance, t  is the number of correctable errors, Perms is the 

number of permutations of the semidyadic permutations set 

having the number of matches 
0λ λ ; J  is the cardinality 

of error-correcting code; κ  is the PAPR. 

 

IV. ENCODING AND DECODING ALGORITHMS 

 

Consider the code ( , , ,κ) (256,9,128,1)n k d   for example; 

however, the algorithm may be applied to other codes 

(Table 2) with a difference only in the number of lines 

permutations of chosen bent-square. 

Obviously, the source of information is stored in the 

number of dyadic permutation (
2log 16 4  bits) and in a 

number of Walsh function (
2log 32 5  bits). 

Suppose the initial information word to be 

1 2[11010111] [1101]; [0111]I I I    . Next we 

performed a coding procedure. 

 

A. Algorithm A.1. Coding 

Step 1: In accordance with Rule 1 we performed the 

temporal bent-square (10) dyadic shift permutation of 

number 
1 1 14I    (numbering begins from one), resulting 

in a new temporal bent-square. 

 

 1BST

               
               
               
               
               
               
               
                               
               
               
               
  

 
 
 
 
 
 
 
 
 

             
               
                
                 

. (11) 

 

Step 2: In accordance with Rule 2, we performed a sign 

coding. Because of 
2 1 8I   , each column of 1BST  was 

multiplied by the eighth Walsh function in a Hadamard 

matrix. As a result, we obtained the following matrix. 

 

 2BST

               
               
               
               
               
               
               
                               
               
               
               
  

 
 
 
 
 
 
 
 
 

             
               
                
                 

. (12) 

 

Step 3: To obtain a codeword, we performed a consistent 

string concatenation of the matrix in Equation (12). 

 

 

[S  







].





 (13) 

 

Assume that during the transmission of the codeword 63, 

the errors occurred were equivalent to the multiplication of 

the transmitted vector in Equation (13) to the next error 

vector. 

 

 

[E                      
                       
                       
                       
                       
                       
                       
                       
       

].

               
                       
                  

 (14) 

 

Thus, the recipient received the following codeword. 

 

 

[S S E                       
                          
                          
                          
                          
                          
                          
         

].

                
                          
                  

 (15) 
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To perform the decoding operation the receiver should 

have the initial temporal bent-square in Equation (10). After 

receiving all the elements of the codeword, and before 

decoding, the receiver must perform the algorithm for 

detecting and correcting errors. 

 

B. Algorithm A.2. Error correction 

We performed a universal decoding algorithm: Find the 

distance from the received codeword to a set of allowed 

codewords and make a decision on the criterion of maximal 

likelihood. Next, go to the decoding operation. In our case, 

by using universal decoding algorithm, we get the 

transferred bent-square in Equation (12). 

 

C. Algorithm A.3. Decoding 

The essence of the decoding operation is to determine 

permutation and Walsh function used in coding operation. 

Step 1: We wrote down the permutation of received bent-

square with respect to the original bent-square. 

 

 Original 1 2 3 4 5 6 7 8 9 10111213141516

Recieved 1413161510 9 1211 6 5 8 7 2 1 4 3

P

 
  
 

. (16) 

 

Accordingly, the dyadic permutation 14 was applied to 

the initial bent-square in the process of coding operation, 

and thus the first part of the source code was 
1 [1101]I  . 

Step 2: Find the Walsh function that was used to perform 

a sign coding of initial bent-square. For this, we performed 

an element-wise multiplication on the first column of the 

original temporal bent-square in Equation (10) with the first 

column of received bent-square in Equation (12). 

 

 

       
         
       
       
         
               
         
       
       
  
       
            

, (17) 

 

which corresponds to the eighth row of the Hadamard 

matrix, and accordingly, the second part of information code 

was 
2 [0111]I  . As a result, we restored the original 

information. 

IV. CONCLUSION 

 

In this paper, we proposed a family of constant amplitude 

correction codes based on an arbitrary Agievich bent-square. 

The effective coding and decoding algorithms based on 

structural properties of the proposed code were developed. 

We introduced the definition of semidyadic permutations. 

An algorithm for the synthesis of the full set of semidyadic 

permutations based on the Walsh functions was proposed. 

The semidyadic permutations may be used to increase the 

number of Agievich bent-squares, which makes such class 

of permutations an important element in the theory of bent-

functions. 

The proposed family of error-correcting constant 

amplitude codes can be used to implement the concept of 

operational change of used signals. For example, the 

selected type of initial bent-square can be used as an 

element of (long-term) key, providing structure secrecy to 

the communication system based on the MC-CDMA 

technology. 
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