I[HOOPMATHUKA TA MATEMATUYHI METO/I1 B MOZEJIFOBAHHI = 2017 = Tom 7, Nel-2

VK 004.75 Informatics and Mathematical Methods in Simulation
Vol. 7(2017), No. 1-2, pp. 113-118

POSSIBILITY OF OBTAINING FUNCTIONAL
DEPENDENCES FROM DATABASE STRUCTURE

S.L Grishin', L.N. Timoshenko’

" Odessa National Maritime University,
Mechnikov 34, Odessa, 65404, Ukraine, e-mail: grishin_si@ukr.net
* Odesa National Polytechnic University,
1 Shevchenko Str., Odesa, 65044, Ukraine

We study the possibility of obtaining functional dependencies from the scheme of the
existing database, as well as the data contained in it. Statistical methods for finding
dependencies between data were used to generate probability dependencies. Software
implementation of the developed algorithm for generating dependencies provides
connection to various data providers. Application testing showed that the correct results can
be obtained with a sufficiently large amount of data in the source.

Keywords: functional dependence of attributes, normal form, probability, class C#, SQL
query

Introduction

Normalization is an obligatory stage of database design. Knowledge of the violation of
certain rules of normal forms allows foresee the occurrence of anomalies and redundancy and
apply appropriate measures for their preliminary elimination. Despite the fact that the
normalization stage is repeated a huge number of times in various developments, in most
cases it is performed manually by an experienced specialist. Normalization process is
completely formalized, however it is described in terms of the functional dependences which
are, in fact, mathematical representation of some rules and regularities of the real world. Since
they are completely determined by the subject domain, there is no possibility to automate their
search at the design stage. That is why there are no mechanisms of normalization in modern
modeling tools, such as Sybase Power Designer or IBM Rational Software Architect.

At the same time, the use of functional dependencies may be required not only at the
design stage of OLTP information systems. For example, to extend an OLTP system or design
a business intelligence system without creating a data warehouse, you may need an existing
database that is not supported by the developer. Another possible situation is operation with
the ROLAP data warehouse. The dimensional model that is used for ROLAP database design,
include means of denormalization and data division to enhance speed of request execution.
The use of outtrigger tables in the dimensional model bring to partial or complete
normalization of dimension tables. Thus, the level of normalization of ROLAP data
warehouse can be different. If there are problems with the operation laboriousness in such
systems, it may be necessary to check their normalization.

Objective and task
In this work, we investigated the possibility of obtaining functional dependencies from

the scheme of the existing database, as well as the data contained in it.
To achieve this goal in the paper we solve such problems:

113

S.I. Grishin, L.N. Timoshenko

— software has been developed for constructing functional dependencies;
— the program is tested and its scope is determined.

Main part

Finding functional dependencies in the database is not a trivial task. First, the
regularities found in particular relationship variable not always valid for whole relation.
Secondly, required functional dependences are not reflected at design of the database, so the
corresponding restrictions of integrity are not respected. Therefore, the studied tables can
contain mistakes. The way out of this situation is the probabilistic approach in the search for
functional dependencies [1].

The developed software is designed to obtain probabilistic functional dependencies
from the data contained in the tables. Statistical methods intended for search of dependences
between data are used for generation of probabilistic functional dependences. Such a search is
carried out in each separate data source. Then obtained data are combined into a general
scheme by searching for the minimum coverage for the found set of probabilistic functional
dependencies. Further, results that do not meet the requirements of the obtained scheme are
eliminated.

Let relation R be given, X is a subset of its attributes, and A4 is an attribute of this
relation. A probabilistic functional dependence is the triplet < X, A, p >, where p indicates
the probability of the existence of a functional dependence X — A. It is proposed to calculate
the probability p for all possible combinations X, 4 of the R relation. We excepted from
calculation the functional dependencies that already found, as well as those sets X that are
supersets of some potential keys. If probability of dependence existence is greater than some
parameter p0, the dependence is included in the model and analyzed together with
previously constructed dependencies.

The following algorithm is proposed to find the probability p of the existence of the
functional dependence of the attribute 4 on the set of attributes X :

1. The most common value Va of attribute A4 is found for each unique value Vx of
the set of attributes X .

2. The probability of the functional dependence X — 4 among the tuples with the
value Vx of the X attributes is calculated. It is calculated as the ratio of the number of tuples
in which Vx corresponds to the value Va, to the number of tuples with the Vx value of the
X attribute:

|Vx, Va|
P(X - A,Vx)=——,
&

where |Vx, Va| is the number of tuples in which the value Va corresponds to the value Vx,

|Vx| is the number of tuples with the Vx value of the X attribute.

3. The probability p is calculated as the average of all probabilities obtained in step 2.
Formally, if Dx — a set of unique values of a set of attributes X , then the probability
of existence of the functional dependence is described as follows:

Y P(X — 4,Vx)
P(X —> A,R) = %<l

[0

114

I[HOOPMATHUKA TA MATEMATUYHI METO/I1 B MOZEJIFOBAHHI = 2017 = Tom 7, Nel-2

The application for constructing functional dependencies in the above ways and
dependencies analysis is performed in C # and the .NET 4.0 platform.

After connecting to the database, the user is asked to select the tables he wants to
analyze.

Next, he has to specify the minimum probability value, which is significant for
probabilistic functional dependence existence.

The following information is displayed for each table:

1. Name of the table being analyzed.

2. A list of all the probabilistic functional dependencies found and their corresponding
probabilities.

3. Graph of functional dependencies.

4. The arrows with solid lines in this graph show the functional dependencies obtained
as a result of the analysis of the database schema. The dotted lines correspond to probabilistic
functional dependencies calculated on the basis of the data contained in the table.

5. Estimated normal form.

The following classes were created to represent information about the structure of the
database:

Database — represents the database. Contains its name and a list of tables.

DatabaseTable — represents the database table. Contains the name of the table, the name
of the schema that contains the table, and lists of potential and foreign keys.

Column — represents the table attribute. Contains the name and type of the attribute.

Constraint — base class for database integrity constraints. Contains the name and type of
the constraint (potential or foreign key).

ForeignKey — represents the foreign key of the table. Contains the referencing attribute,
as well as information about the table and the potential key, to which this attribute refers. This
class inherits the Constraint class.

CandidateKey — represents the potential key of the table. Contains a list of attributes
that are part of this potential key. Inherits the Constraint class.

An abstract class called DatabaseProxy was developed to obtain information about the
structure of the database. It contains the connection string to the database under investigation
and the following methods for obtaining the data required for analysis:

List <DatabaseTable> GetDatabaseTables() — returns a list of database tables, including
only information about table name and schema name.

Database GetDatabaseSchema(List <DatabaseTable> tables) — the method returns full
information about the database and those tables that are specified in the tables parameter. It
includes a list of attributes and their types, primary and foreign keys, unique indexes.

bool CheckIfColumnIsUnique(DatabaseTable table, Column column) — checks whether
the values of the specified attribute are unique. Used to search for potential keys not listed in
the conceptual diagram.

double GetFDProbability(DatabaseTable table, List<Column> determinant, Column
dependentColumn) — receives the probability of the existence of a functional relationship with
the determinant and the dependent part specified in the determinant and dependentColumn
parameters.

Various implementations of this abstract class can be used to study databases presented
in different DBMSs. We use Microsoft SQL Server. The appropriate class is called
MSSQLServerProxy. Let us consider its implementation in more detail.

The queries to the service tables of the INFORMATION SCHEMA schema were
created to get information about the database schema. After receiving necessary data on a
database structure, we pass to the analysis of its contents. The DatabaseDataAnalyzer class is
responsible for it. This class realizes search of all probable functional dependences having
only one attribute as a determinant. The main analysis algorithm of one table is shown below:

1. The list of all non-key table attributes is formed.

115

S.I. Grishin, L.N. Timoshenko

2. Attributes which all values are unique are deleted from this list. These attributes are
marked as possible potential keys that are not reflected in the database schema.

3. All possible probable functional dependences are formed. The determinant of each
of them will be the element of the set obtained on step 2. Dependent part will be any attribute
of the table, other than a determinant.

4. For each of the probabilistic functional dependencies obtained from the data
contained in the database, the probability of their existence is calculated.

5. Probable functional dependences are selected if probability exceeds some value of
p0. This value is algorithm parameter.

It is necessary to be able to quickly check the set of attribute values for uniqueness, and
also to calculate the probability of existence of functional dependencies between some sets of
attributes for effective operation of the algorithm.

To implement such checks, it is proposed to generate an SQL-query that solves the task
and transfer it for execution to an SQL server. This approach allows you to efficiently
examine remote databases. Import database content to local storage can take a long time. At
an execution stage we don't know the schema of the database under investigation. It will be
necessary to generate a separate query for check of uniqueness of values or computation of
probable functional dependence for each set of attributes

Here are some examples of SQL queries that solve the set tasks. The request to verify
the uniqueness of the values of the attribute A of the TABLE table of the SCHEMA schema
will look like this

SELECT [A]

FROM [SCHEMA].[TABLE]
GROUP BY [A]

HAVING COUNT(1) >=2

The calculation of probabilistic functional dependencies requires a series of
calculations. Let it be necessary to calculate the probability of the existence of a functional
dependence of the attribute B on the attribute A4 in the table 1. The SQL query that solves
this problem has the following syntax:

select AVG(probability)
from
(select
(select MAX(count)/CAST(SUM(count) As REAL)
from
(select COUNT(y.B) as count
from
(select t1.B
from TABLE as t1

where t1.A =t.A and

A is not null and

B is not null) as x

join

(select t1.B
from TABLE as t1
where t1.A =t.A and

A is not null and

B is not null) as y
onx.B=yB

group by x.B
) as tempTable

116

I[HOOPMATHUKA TA MATEMATUYHI METO/I1 B MOZEJIFOBAHHI = 2017 = Tom 7, Nel-2

) as probability
from TABLE as t
where A is not null and B is not null
group by A
) as distinctProbabilities.

The Microsoft sample database Adventure Works [2] was used for testing of the created
application. Examples of testing are given in the table 1.

Table 1.
Examples of Adventure Works database testing
Table name Number of records Amount of Normalization
dependences assessment
CreditCard 19118 0 3NF
Address 19614 2 2NF
EmployeePayHistory 316 3 2NF

The program found no probabilistic functional dependencies, except dependencies from
the primary key. It correctly defined the normal form of the CreditCard table.

There are dependencies of the city and the state ID from the zip code in the Address
table. That is quite logical — the same zip code always points to a certain state and city, while
in one city there can be many different postal codes. The program successfully defined both
dependences, displayed them on the chart and in specified that the table is only in the second
normal form.

For the EmployeePayHistory table, all the dependencies obtained were found to be
incorrect. The first functional dependence in terms of the subject area indicates that each
employee is inclined to receive a salary with a certain frequency convenient for him.
Although this statement is rather plausible, it is not a restriction on the integrity of the
database. In the process of work, an employee or an employer may revise an employment
contract. Thus, a false result was obtained though it was based on the correct data.
Unfortunately, there is no way to identify such cases programmatically — you need a manual
analysis by an expert. The second probabilistic functional dependence (the periodicity of
payment from its hourly rate), unlike the first one, has no semantic meaning. The error is due
to insufficient data in this case. The number of accidental coincidence of two attributes values
increases in case of a small amount of records. That is shown especially strongly in this case
as the “periodicity of payment” attribute accepts only 2 different values in all tables. This
error can be eliminated by some modification of the calculation method for the case of a small
number of records, or by searching for a more suitable data source. There is the dependence
of the date of changing the line on the frequency of payment in the third case. This
dependence also does not make any sense. The detailed analysis of basic data showed that the
high percent of identical values of “date of change” attribute is a cause of error in this case.
277 records of 316 have identical values. This situation can also be resolved
programmatically by means of a preliminary analysis of the researched data.

Conclusion

A large amount of data is needed to obtain a qualitative result using the probabilistic
approach in the search for functional dependencies.

In case of dominance of the correct data the considered algorithms are capable to
process even the sources containing erratic or inexact information.

117

S.I. Grishin, L.N. Timoshenko

References

1. Wang, D.Z. Functional dependency generation and applications in pay-as-you-go data integration
systems [Electronic Resource]. / D.Z. Wang, L. Dong, A.D. Sarma, M. Franklin, A. Halevy. -
Mode of access: http://webdb09.cse.buffalo.edu/papers/Paperl8/webdb09.pdf.

2. AdventureWorks. Data Dictionary. Dataedo. 2017-05-30 [Electronic Resource]. - Mode of access:
https://dataedo.com/download/AdventureWorks.pdf

MOKJIUBICTh OTPUMAHHS ®YHKIIOHAJIBHUX 3AJEXKXHOCTEA YEPE3 CTPYKTYPY
BA3U JAHUX

C.L rpI/IHII/IHl, JLM. Tumomienko”

" OnechKuil HALIOHATBHIIT MOPCHKHI YHIBEPCHTET,
Meunukosa 34, Oneca, 65404, Ykpaina, e-mail: grishin_si@ukr.net
2 Opecpknii HaLlIOHATHHAN TONMITEXHIYHUHA YHIBEPCHTET,
npocr. [lleBuenka, 1, Onmeca, 65044, Ykpaina

HaBenmeno pe3ynbTaTd JOCHIIKEHHS MOXJIMBOCTI OTPUMaHHS (DYHKIIOHATBHUX
3aJIeKHOCTEH 31 CXeMH iCHYI04O0i 0a3H, a TaKOXK JaHWX, 10 MICTAThCA B Hil. J{s reHepartii
HMOBIpHICHNX (YHKIIIOHAJBHUAX 3aJI€KHOCTEH BUKOPHCTaHI CTATHCTHYHI METOAW TOIIYKY
3aJexHOCTeH Mix nanumu. [IporpamHa peamizamisi po3poOJICHOTO aIropuTMy TeHeparii
3aJIeKHOCTEH 3abe3neuye MiJKII0UYEeHHs 10 PI3HUX I0CTAaYyalbHUKIB JaHHUX. TecTyBaHHS
JI0ZIaTKa TMOKAa3aio, IO KOPEKTHI pe3yjJbTaTH MOKHA OTPUMATH IPH JOCHTH BEIUKOMY
00Cs131 TaHUX B JPKEpelti.

KurouoBi ciioBa: (yHKIiOHaTBHA 3aJI€XKHICTh aTpUOYTiB, HOpMabHa opma, HMOBIpHICTB,
kimac C#, sanut SQL

BO3MOXXHOCTH NOJYYEHUS ®YHKIIMOHAJIbHBIX 3ABUCUMOCTEM U3 CTPYKTYPBI
BA3bI JAHHBIX

C.H. rpI/IHII/IHl, JI.H. TuMoIenko”

' Onecckuit HAMOHATBHBIH MOPCKO# YHUBEPCHTET,
Meunukosa 34, Onecca, 65404, Ykpauna, e-mail: grishin_si@ukr.net
? OpeccKuii HAMOHABHBIN TIOJTHTEX HUYECKHIT YHUBEPCUTET,
npocr. [llesuenko, 1, Onecca, 65044, Ykpanna

[IpuBeneHs! pe3yiabTAaTHl HCCICIOBAHUS BO3MOXKHOCTH IONYYCHHS (YHKIHMOHATBHBIX
3aBHCHMOCTEH M3 CXEMBI CYIIECTBYIOIIEH 0a3bl, a TakKe JaHHBIX, CONEPKAIIUXCS B HEH.
Jns reHepauuM BEPOSTHOCTHBIX (YHKIMOHAJIBHBIX 3aBHCHUMOCTCH HCIOJB30BaHBI
CTaTHCTHYECKHE METOJbl IIOMCKAa 3aBUCHUMOCTEH MeXay JMaHHbIMH. [Iporpammuas
peanuzanusi pa3pabOTaHHOTO JITOpPUTMA TI'eHEpalM 3aBUCHMOCTEH obecnednBaeT
NOAKIIIOYEHHE K pPAa3IMYHbIM IIOCTaBIIMKAM JaHHBIX. TECTHpOBaHWE TPUIOKEHHS
MOKa3aJI0, YTO KOPPEKTHBIE Pe3yJbTaTbl MOXKHO IOJyYUTh HPH JIOCTATOYHO OOJIBIIOM
o0beMe JaHHBIX B HCTOYHHKE.

KiroueBble cioBa: (QyHKIMOHAIbHAS 3aBHUCHUMOCTh aTpUOYTOB, HOpMaibHas ¢opMma,
BEPOSITHOCTH, kitacc C#, 3ammpoc SQL

118

