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Abstract— The accuracy of the interpolation method of 

nonlinear dynamical systems identification based on the 

Volterra model in the frequency domain is studied in this 

paper. To extract the n–th partial component in the 

response of the system to the test signal the n–th partial 

derivative of the response using the test signal amplitude is 

found and its value is taken at zero. The polyharmonic 

signals are used as the test ones. The algorithmic and 

software toolkit in Matlab is developed for identification 

processes. This toolkit is used for constructing the 

informational model of test system. The model is built as a 

first, second and third order amplitude–frequency and 

phase–frequency characteristics. The comparison of 

obtained characteristics with previous works is given. 
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I. INTRODUCTION 

It is necessary to consider technical conditions of the 

communication channels (CC) operation for effective data 

transfer. Changes in environmental conditions cause 

reducing the transmission data rate: in the digital CC – up 

to a full stop of the transmission, in analog CC – to the 

noise and distortion of the transmitted signals. The new 

methods and supporting toolkit are developing to 

automate the measurement of parameters and taking into 
account the characteristics of the CC. This toolkit allows 

obtaining the informational and mathematical model of 

such nonlinear dynamic object, as the CC [1], i.e. to solve 

the identification problem. 

Modern continuous CCs are nonlinear stochastic 

inertial systems. The model in the form of integro–power 

Volterra series used to identify them [2]–[5]. 

The nonlinear and dynamic properties of such system 

are completely characterized by a sequence of 

multidimensional weighting functions – Volterra kernels). 

Building a model of nonlinear dynamic system in the 
form of a Volterra series lies in the choice of the test 

actions form. Also it uses the developed algorithm that 

allows determining the Volterra kernels and their Fourier–

images for the measured responses (multidimensional 

amplitude–frequency characteristics (AFC) and phase–

frequency characteristics (PFC)) to simulate the CC in the 

time or frequency domain, respectively. [7]. 

The additional research of new method of nonlinear 

dynamical systems identification, based on the Volterra 

model in the frequency domain is proposed. This method 

lies in n–fold differentiation of responses of the 
identifiable system by the amplitude of the test 

polyharmonic signals. The developed identification toolkit 

is used to build information model of the test nonlinear 

dynamic object in the form of the first, second and third 

order model. [8] 

II. INTERPOLATION METHOD OF NONLINEAR 

DYNAMICAL SYSTEMS IDENTIFICATION 

The presentation of the “input–output” type nonlinear 

dynamical system presented by Volterra series were given 

in previous work [6]. 

An interpolation method of identification of the 
nonlinear dynamical system based on Volterra series is 

used [8]–[9]. It is used n–fold differentiation of a target 

signal on parameter–amplitude a of test actions to separate 

the responses of the nonlinear dynamical system on partial 

components )(ˆ tyn  [9]. 

ax(t) type test signal is sent to input of the system, 

where x(t) – any function; |a|≤1 – scale factor for n–th 

order partial component allocation )(ˆ tyn  from the 

measured response of nonlinear dynamical system 

  taxy . In such case it is necessary to find n–th private 

derivative of the response on amplitude a at a=0 
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Partial components of responses )(ˆ tyn  can be 

calculated by using the test actions and procedure (1). 



Diagonal and subdiagonal sections of Volterra kernel are 

defined on basis of calculated responses. 

Formulas for numerical differentiation using central 

differences for equidistant knots 

211 ,...,1,)],([)]([ rrrrtrhxytxayy rr   with step 

of computational mesh on amplitude h=∆a [9] are 

received. Volterra kernel of the first order is defined as the 

first derivative at 121  rr  or 221  rr  accordingly 
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Volterra kernel of the second order is defined as the 

second derivative at 121  rr  or 221  rr , 

accordingly 
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 (3) 

Volterra kernel of the third order is defined as the third 

derivative at 221  rr  or 321  rr , accordingly 
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where n – the order of transfer function being estimated; 

Al, l and l – amplitude, frequency and phase of l–th 
harmonics accordingly. It is supposed in research, that all 

amplitudes of Al are equal and phases l are equal to zero. 
The amplitudes of the test signals аi

(k) and the 

corresponding coefficients ci
(k) for responses are shown in 

table 1, where: 

k – order of the estimated Volterra kernel; 

i – number of the experiment (i=1, 2, …, N); 

N - quantity of interpolation knots, i.e. quantity of 

identification experiments. 

Thus, the test signal can be written in complex form: 
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Then the n–th partial component in the response of 

system can be represented in the following form: 
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where 









2

n

 means function for extraction of an integer part 

of number. 

The component with summary frequency 1+…+n is 

selected from the response to test signal (2): 

 .),,(arg)(cos),,( 111 nnnnn
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In [10] it is defined that during determination of 

multidimensional transfer functions of nonlinear systems 

it is necessary to consider the imposed constraints on 

choice of the test polyharmonic signal frequencies. It 

provides an inequality of combination frequencies in 

output signal harmonics: ω1≠0, ω2≠0 and ω1≠ω2 for the 

second order identification procedure, and ω1≠0, ω2≠0, 

ω3≠0, ω1≠ω2, ω1≠ω3, ω2≠ω3, 2ω1≠ω2+ω3, 2ω2≠ω1+ω3, 

2ω3≠ω1+ω2, 2ω1≠ω2–ω3, 2ω2≠ω1–ω3, 2ω3≠ω1–ω2, 2ω1≠–

ω2+ω3, 2ω2≠–ω1+ω3 и 2ω3≠–ω1+ω2 for the third order 

identification procedure. 
Given method was fully tested on a nonlinear test 

object (fig. 1) described by Riccati equation: 
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Figure 1. Simulink–model of the test object 

Analytical expressions of AFC and PFC for the first, 

second and third order model were received: 
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TABLE 1. AMPLITUDES AND CORRESPONDING COEFFICIENTS OF THE INTERPOLATION METHOD 

Kernel order, k Experiments quantity, N а1
(k) а2

(k) а3
(k) а4

(k) а5
(k) а6

(k) c1
(k) c2

(k) c3
(k) c4

(k) c5
(k) c6

(k) 

1 

2 -1 1     -0,5 0,5     

4 -1 -0,5 0,5 1   0,0833 -0,6667 0,6667 -0,0833   

6 -1 -0.67 -0,33 0,33 0,67 1 -0,0167 0,15 -0,75 0,75 -0,15 0,0167 

2 

2 -1 1     1 1     

4 -1 -0,5 0,5 1   -0,0833 1,3333 1,3333 -0,0833   

6 -1 -0.67 -0,33 0,33 0,67 1 0,0111 -0,15 1,5 1,5 -0,15 0,0111 

3 
4 -1 -0,5 0,5 1   -0,5 1 -1 0,5   

6 -1 -0.67 -0,33 0,33 0,67 1 0,125 -1 1,625 -1,625 1 -0,125 

III. THE TECHNIQUE OF TEST OBJECT IDENTIFICATION 

The main purpose was to identify the multi frequency 
performances characterizing nonlinear and dynamical 

properties of nonlinear test object. Volterra model in the 

form of the second order polynomial is used. Thus, test 

object properties are characterized by transfer functions of 

W1(jω1), W2(jω1,jω2), W3(jω1,jω2,jω3) − by Fourier–images 

of weight functions w1(t), w2(t1, t2), w3(t1, t2, t3). 

Structure chart of identification procedure – 

determination of the 1‒, 2‒ or 3–order AFC of CC is 

presented on fig. 2. 

 

Figure 2. The structure chart of identification procedure using the 

first order Volterra model in frequency domain, number of experiments 
N=4 

The weighted sum is formed from received signals – 

responses of each group (fig. 2). As a result the partial 

components of CC responses y1(t), y2(t) and y3(t) are got. 

For each partial component of response the Fourier 

transform (the FFT is used) is calculated, and from 

received spectrum only an informative harmonics (which 

amplitudes represent values of required characteristics of 
the first, second and third orders AFC) are taken. 

The first order AFC |W1(jω1)| and PFC argW1(jω1), 

where ω1=ω are received by extracting the harmonics with 
frequency f from the spectrum of the CC partial response 

y1(t) to the test signal x(t)=A/2(cos ωt). 

The second order AFC |W2(jω1,jω2)| and 

PFC argW2(jω1,jω2), where ω1=ω and ω2=ω1+Ω1, were 

received by extracting the harmonics with summary 

frequency ω1+ω2 from the spectrum of the CC partial 

response y2(t) to the test signal x(t)=(A/2)(cosω1t+cosω2t). 

The third order AFC |W3(jω1,jω2,jω3)| and 

PFC argW3(jω1,jω2,jω3), where ω1=ω, ω2=ω1+Ω1, 

ω3=ω2+Ω2 were received by extracting the harmonics with 

summary frequency ω1+ω2+ω3 from the spectrum of the 
CC partial response y2(t) to the test signal 

x(t)=(A/2)(cosω1t+cosω2t+cosω3t). 

The results (first, second and third order AFC and 

PFC) which had been received after procedure of 

identification are represented in fig. 3–5 (number of 

experiments for the model N=4). 

 

Figure 3. First order AFC and PFC of the test object: analytically 

calculated values (1), section estimation values with number of 
experiments for the model N=4 (2) 



 
Figure 4. Second order AFC and PFC of the test object: analytically 

calculated values (1), subdiagonal cross–section values with number of 

experiments for the model N=4 (2), Ω1=0,01 rad/s 

 
Figure 5. Third order AFC and PFC of the test object: analytically 

calculated values (1), subdiagonal cross-section values with number of 
experiments for the model N=6 (2), Ω1=0,01 rad/s, Ω2=0,1 rad/s 

The surfaces shown on fig. 6–9 are built from 

subdiagonal cross–sections which were received 

separately. Ω1 was used as growing parameter of 

identification with different value for each cross–section 

in second order characteristics. Fixed value of Ω2 and 
growing value of Ω1 were used as parameters of 

identification to obtain different value for each cross–

section in third order characteristics.  

The second order surfaces for AFC and PFC had been 

received after procedure of the test object identification 

and are shown in fig. 6–7 (number of experiments for the 

model N=4). 

 

 
Figure 6. Surface of the test object AFC built of the second order 

subdiagonal cross–sections received for N=4, Ω1=0,01 rad/s 

 
Figure 7. Surface of the test object PFC built of the second order 

subdiagonal cross–sections received for N=4, Ω1=0,01 rad/s 

The third order surfaces for AFC and PFC had been 

received after procedure of the test object identification 

and are presented in fig. 8–9 (number of experiments for 

the model N=6). 

 

Figure 8. Surface of the test object AFC built of the third order 

subdiagonal cross–sections received for N=6, Ω1=0,01 rad/s, 
Ω2=0,1 rad/s 

 

Figure 9. Surface of the test object PFC built of the third order 

subdiagonal cross-sections received for N=6, Ω1=0,01 rad/s, 
Ω2=0,1 rad/s 

Numerical values of identification accuracy using 

interpolation method for the test object are represented in 

table 2. 



TABLE 2. NUMERICAL VALUES OF IDENTIFICATION ACCURACY USING 

INTERPOLATION METHOD 

Kernel 

order, k 

Experiments quantity / 

approximation order, N 

AFC relative 

error, % 

PFC relative error, 

% 

1 

2 2.1359 2.5420 

4 0.3468 2.0618 

6 0.2957 1.9311 

2 

2 30.2842 76.8221 

4 2.0452 3.7603 

6 89.2099 5.9438 

3 
4 10.981 1.628 

6 10.7642 1.5522 

IV. HARDWARE-SOFTWARE TOOLKIT AND TECHNIQUE 

OF RADIOFREQUENCY CC IDENTIFICATION 

Experimental research of the Ultra High Frequency 

range CC were done. The main purpose was the 
identification of multifrequency performances that 

characterize nonlinear and dynamical properties of the 

CC. Volterra model in the form of the second order 

polynomial is used. Thus physical CC properties are 

characterized by transfer functions of W1(j2πf) and 

W2(j2πf1,j2πf2) − by the Fourier–images of weighting 

functions w1 (t) and w2 (t1, t2). 

Implementation of identification method on the IBM 

PC computer basis has been carried out using the 

developed software in Matlab software. The software 

allows automating the process of the test signals forming 
with the given parameters (amplitudes and frequencies). 

Also this software allows transmitting and receiving 

signals through an output and input section of PC 

soundcard, to produce segmentation of a file with the 

responses to the fragments, corresponding to the CC 

responses being researched on test polyharmonic effects 

with different amplitudes. 

In experimental research two identical 

S.P.RADIO A/S, RT2048VHF VHF–radio stations (the 

range of operational frequencies is 154,4−163,75 MHz) 

and IBM PC with Creative SBLive! soundcards were 

used. Sequentially AFC of the first and second orders 
were defined. The method of identification with number 

of experiments N=4 was applied. 

General scheme of a hardware–software complex of 

the CC identification, based on the data of input–output 

type experiment was studied in [6]. 

The CC received responses )]([ txay i  to the test 

signals )(txai , compose a group of the signals, which 

amount is equal to the used number of experiments N 

(N=4), shown in fig.10. 

In each following group the signals frequency 

increases by magnitude of chosen step. А cross–

correlation was used to define the beginning of each 

received response. Information about the form of the test 

signals given in [7] were used. 
In described experiment with use of sound card the 

maximum allowed amplitude was A=0,25V (defined 

experimentally). The range of frequencies was defined by 

the sound card pass band (20…20000 Hz), and 

frequencies of the test signals has been chosen from this 

range, taking into account restrictions specified above. 

Such parameters were chosen for the experiment: start 

frequency fs =125 Hz; final frequency fe =3125 Hz; a 

frequency change step ∆f=125 Hz; to define AFC of the 

second order determination, an offset on frequency 

F1=f2-f1 was increasingly growing from 201 to 3401 Hz 

with step 100 Hz. 

 

Figure 10. The group of signals received from CC with 

amplitudes: -1 (1); 1 (2); -0,644 (3); 0,644 (4); N=4 

The weighed sum is formed from received signals – 

responses of each group (fig. 2). As a result we get partial 

component s of response of the CC y1(t) and y2(t). For 

each partial component of response a Fourier transform 

(the FFT is used) is calculated, and from received spectra 

only an informative harmonics (which amplitudes 

represents values of required characteristics of the first 

and second orders AFC) are taken. 

The first order AFC |W1(j2πf)| is received by extracting 

the harmonics with frequency f from the spectrum of the 

partial response of the CC y1(t) to the test signal 
x(t)=A/2(cos2πft). 

The second order AFC |W2(j2πf,j2π(f+ F1))|, where 

f1=f and f2=f+F1, was received by extracting the harmonics 

with summary frequency f1+f2 from the spectrum of the 

partial response of the CC y2(t) to the test signal 

x(t)=(A/2)(cos2πf1t+cos2πf2t). 

The wavelet noise–suppression was used to smooth 

the output data of the experiment [11]. The results 

received after digital data processing of the data of 

experiments (wavelet “Coiflet” de–noising) for the first 

and second order AFC are presented in fig. 11–13. 
The surface shown in fig. 13 was built from 

subdiagonal cross–sections that have been received 

separately. A growing parameter of identification f with 
different value for each section was used. 



 

Figure 11. AFC of the first order after wavelet “Coiflet” second level 

denoising 

 

Figure 12. Subdiagonal cross–sections of AFCs of the second order 

after wavelet “Coiflet” second level de–noising at different frequencies: 
201 (1), 401 (2), 601 (3), 801 (4), 1001 (5), 1401 (6) Hz 

 

Figure 13. Surface built of AFC cross–sections of the second order 

after wavelet “Coiflet” 3rd level de–noising 

CONCLUSIONS 

The method based on Volterra model using 

polyharmonic test signals for identification nonlinear 

dynamical systems is analyzed. The method based on 

composition of linear responses combination on test 

signals with different amplitudes were used to 

differentiate the responses of object for partial 

components. New values of test signals amplitudes were 
defined and model were validated using the test object. 

Excellent accuracy level for received model is achieved as 

in linear model so in nonlinear ones. Given values are 

greatly raising the accuracy of identification in compare to 

amplitudes and coefficients written in [12]-[13]. The 

identification accuracy of nonlinear part for the test object 

has grown almost at 10 times while the standard deviation 

in best cases is no more than 5%. 

Interpolation method of identification using the 

hardware methodology written in [13] is applied for 

constructing of informational Volterra model as an APC 

of the first and second order for UHF band radio channel. 

Received results had confirmed significant 
nonlinearity of the test object characteristics that leads to 

distortions of signals in different type radio devices. 

In the further researches it is necessary to study the 

third order frequency characteristics of the real CC for 

ability to decrease level of high order nonlinear distortions 

in telecommunication systems. 
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