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process. But at the same time, its application is cumbersome 
and covers only particular cases. As a rule, they are confined 
by the description of the process of heating-cooling the bodies 
of simple shapes: infinite plate, cylinder, and sphere. Such 
solutions have been known for a long time, but up to now they 
have been applied only for a similar kind of processes. Only 
the object of application has changed in favor of contempo-
rary equipment as, for example, in [3], where the problem on 
cooling a display is solved. Article [4] examines a process of 
cooling the plate with an internal heat source. The difference 
is that the examined plate is a multilayer one. A special fea-
ture of paper [5] is the application, instead of the frequently 
utilized Fourier expansion, the Trefftz functions. In this case, 
only the approximate solution is obtained. The problem of 
nonstationary heat transfer is of practical interest and it does 
not have the analytical solution.

Numerical methods are more universal and can be used 
to solve any problems on heat transfer. From the above enu-
meration of simple shapes of bodies, a plate appears the most 
important one. It has two surfaces, which corresponds to the 
process of heat transfer. Furthermore, for the case of coaxial 
cylinders (a pipe) at the ratio between outer and inside diam-
eters of d2/d1<2, heat transfer through the cylindrical wall 
with an error less than 4 % can be described using the model 
for a flat wall. Such a relationship of diameters corresponds 
to the majority of variants of tubular heat exchangers. Heat 
transfer is predetermined by taking account of the combined 
processes of heat exchange at the surfaces of a plate. These 
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1. Introduction

The use in energy equipment of fuel with variable compo-
sition [1, 2] instead of the certified constant formulation leads 
to an increase in the number of transient modes. A change in 
calorific fuel capacity, amount of products of combustion, their 
thermophysical properties predetermines the non-stationary 
processes of heating-cooling the elements of power equipment 
design, as well as nonstationary processes of heat transfer 
through the heat exchange surfaces. As a consequence, in 
the processes of energy conversion a more important role is 
played by its variable accumulation – release in all equipment 
components in contact with the combustion products. The 
accumulation of energy (heating – cooling) affects inertness 
in the processes of heat transfer and, therefore, manageability 
of the process of energy transformations. In turn, the magni-
tude of energy accumulation is determined by temperature of 
the elements of design. Thus, determining the non-stationary 
temperature and, as a result, the nonstationary magnitude of 
energy accumulation, is an important element in solving the 
problem on optimal control of power equipment under condi-
tions of using a non-certified fuel of variable composition.

2. Literature review and problem statement

Analytical solution is a reliable and universal means to 
calculate parameters of the nonstationary heat exchange 
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processes in general are difficult to describe. But in many 
practically important cases this description is confined by 
assigning a generalized (integral) magnitude – heat-trans-
fer coefficient. Here arises a contradiction between relative 
simplicity of problem statement on the nonstationary heat 
transfer through an infinite plate and the use of sophisticated 
universal numerical methods. Thus, [6] proposes a transition 
from the distributed model to the concentrated in the form 
of a system of ordinary first order differential equations. Its 
considerable effectiveness is emphasized in this case rela-
tive to the finite-difference and finite-element methods. A 
well-known fact is indirectly highlighted here of the need to 
maintain certain ratios between the size of computational grid 
and the calculation step by time: in order to provide for the 
necessary accuracy, the computational grid is lessened with 
a simultaneous decrease in step by time to ensure stability of 
the numerical calculation. This leads to an avalanche-type in-
crease in the number of computations and to the accumulation 
of errors in calculations. For a practical application in the en-
gineering calculations, in most cases, it is sufficient to consid-
er a problem in the one-dimensional setting. This is justified 
in view of the smallness of thickness of the heat-transmitting 
surface in comparison with its other geometric dimensions. 
A confirmation of this can be found, for example, in [7]. It is 
demonstrated here that, when solving a nonstationary inverse 
problem on heat transfer, good results are obtained when us-
ing the one-dimensional model in particular.

A solution in the form of functional dependence is one 
of the advantages of analytical methods over numerical. It 
is necessary to obtain the solution only once. It can be sub-
sequently used for any arguments. In this case, in the form 
of this dependence, the interrelation of all phenomena, taken 
into account in the model, is reflected analytically. Results 
of numerical calculations lack these properties. In order to 
somewhat improve this situation, it is possible to use the 
models and, accordingly, numerical solutions based on them 
in a generalized (made dimensionless) form. The obtained 
advantage manifests iteself most vividly in complicated cas-
es. Thus, in [8], when examining the magnetohydrodynamic 
flows, using the similarity transformations, it was possible to 
reduce the Navier-Stokes equations to ordinary differential 
equations. Such a result is possible due to the representation, 
when rendering dimensionless, all terms of equations in 
the uniform form and obtaining the possibility of running 
a fractional analysis. In [9], it was possible in this way to 
obtain approximated analytical solutions of the systems of 
ordinary differential equations. However, this approach, as a 
rule, is not applied to the simpler problems, although it can 
also yield a positive effect.

Therefore, the nonstationary problem on heat transfer 
can be solved with the aid of numerical methods. A large 
number of similar practically important processes can be 
described using relatively simple one-dimensional models. 
The problem is in the mismatch between simplicity of the 
model and complexity of its proposed numerical realization. 
When employing simple models, additional possibilities to 
generalize the results of solution by representing the model 
in a dimensionless form are not used.

3. The aim and tasks of the study

The aim of present work is to develop a simplified dis-
crete analog, designed to calculate the process of nonstation-

ary heat transfer through the infinite plate (one-dimensional 
model). This will make it possible:

– to represent the discrete analog and, therefore, results 
of the calculations in the dimensionless form with the possi-
bility of their appropriate generalization;

– to obtain the discrete analog that makes it possible 
to carry out calculations with the required accuracy on the 
rough computational grids (with a small number of com-
putational nodes) and at large steps in time retaining the 
stability of numerical calculations.

To achieve the set aim, the following tasks are to be 
solved:

– to substantiate the choice of method for constructing 
the simplified discrete analog;

– to construct a discrete analog in the dimensionless form;
– to prove working ability of the developed analog and 

evaluate the accuracy of calculations based on it by their 
comparison with the analytical solutions for the known 
particular cases;

– to determine the limits in the applicability of the ana-
log at a decrease in the magnitude of computational grid and 
an increase in the steps of calculation in time.

4. Method for constructing the discrete analog

Underlying the solution of the set problem is the control 
volume method (CVM) [10, 11]. It combines the benefits 
of other numerical methods and is deprived of their many 
shortcomings. Thus, the desired discrete analog in CVM is 
built as easy as in the finite-difference method. The desired 
parameters are calculated in the isolated points (nodes). In 
this case, with the aid of appropriate profiles, similar to the 
method of finite elements, we consider possible character of 
change in the calculated parameter between the nodes of 
a computational grid. Moreover, a discrete analog is built 
based on the compliance with conservation laws in each par-
ticular control volume. This makes it possible to obtain phys-
ically noncontradictory results on the grid of any roughness, 
which, in contrast to the finite-difference method, for exam-
ple [12], allows using computational grids of small size. The 
merits of CVM contribute to its application at present by 
many authors [13, 14].

The use in the development of a discrete analog of the a 
priori-profiles of change in the desired magnitude, similar 
to an exponential, agrees with the use of profiles in the form 
of exponents in the method of integral coefficients [15]. It 
should be noted that CVM underlies the construction of 
such a universal programming product as SolidWorks.

[10] emphasizes the development of universal two- and 
three-dimensional analogs. Only the principle of their con-
struction is explained on the example of one-dimensional 
analog, but the possibility of solving the one-dimensional 
variant of the problem based on dimensionless magnitudes 
is not examined.

Universalism also manifests itself in the fact that even 
a one-dimensional analog includes the source term that 
considers sources or sinks of heat fluxes inside the heat 
exchange surfaces. In the overwhelming majority of cas-
es, in the thermal-power equipment, the sources and the 
sinks of energy are found outside the body, through which 
heat exchange is conducted. Therefore, for the simpler 
algorithm of sources, the term should be excluded from 
consideration.
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Within the framework of CVM, the examined space, 
similar to the method of finite elements, is split into separate 
small elements – control volumes. In a three-dimensional 
orthogonal coordinate system, these are the “orthogonal” 
elements, in the Cartesian – parallelepipeds, in the one- 
dimensional model – layers (Fig. 1).

Fig. 1. Calculation scheme for the one-dimensional discrete 
analog

Inside these layers are the nodes, which, similar to the 
finite-difference method, are assigned with the values of 
calculated magnitudes. Geometric characteristics of the 
calculated region represented in this way are: δx are the 
distances between the grid nodes; Δx are the dimensions of 
layers (elements), into which the region is split. Positions of 
the nodes inside different layers may differ. The very dimen-
sions of layers may be different, too. That is why, in a general 
case, both δxi and Δxi are different from each other. Further-
more, in general, δx≠Δx. In the considered case, at constant 
thermophysical properties of heat exchange surfaces byn 
their thickness, in order to simplify the discrete analog, let 
us assume:

ix const;δ =  ix const;D =  x x.δ = D  (1)

In CVM, on the boundaries of calculated region, there 
are the nodes of computational grid (points “1” “N” Fig. 1). 
They are surrounded by incomplete boundary control vol-
umes. Taking into account (1), their magnitude in the exam-
ined case is Δx/2. This must be considered when recording 
the discrete analog for nodes on the boundaries of calculated 
region. Furthermore, for these nodes, in contrast to the 
internal, it is necessary to consider boundary conditions at 
the corresponding surfaces. Thus, discrete analogs for the 
internal and boundary nodes do not differ, but they must 
have common character of their record for the possibility of 
their regular solution.

Let us examine a discrete analog for the internal points. 
Based on common constructions from [10] for internal point 
“Рi”, taking into account parameters in points “Wi” and “Ei” 
(Fig. 1), it is possible to write in order to calculate tempera-
tures:

P P E E W Wa T a T a T b,⋅ = ⋅ + ⋅ +  (2)

where

P E W

x
a a a c ;

t
D

= + + r⋅ ⋅
D Ea ;

x
l

=
δ Wa ;

x
l

=
δ

0
P

x
b c T .

t
D

= r⋅ ⋅ ⋅
D

 (3)

Here ρ, c, λ are the density, heat capacity and thermal 
conductivity of material of the heat exchange surface; Δt is 
the step of calculation by time; TP, TE, TW are the calculated 
(current) temperatures in the corresponding points; 0

PT  is 
the value of temperature in point P from the previous step 

of calculation by time. At the first step of calculation is the 
value from the initial condition (initial temperature profile). 

Let us substitute (3) into (2), divide all terms of the 
equation by λ/δx. As a result, taking into account (1), we 
shall obtain

2 2
0

P E W P

1 ( x) 1 ( x)
2 T T T T ,

a t a t

 D D
+ ⋅ ⋅ = + + ⋅ ⋅ D D 

 (4)

where a=λ/(ρ·c) is the coefficient of thermal diffusivity. 
Expression (4) is the one-dimensional discrete analog in 

dimensional form for solving the problem on nonstationary 
thermal conductivity. In order to bring it to the dimension-
less form, let us assume that thickness of the heat exchange 
surface is equal to 2l. Let us multiply second term in brack-
ets by (2l)2/(2l)2=1. Designate in this expression Δx/2l= 
=δx/2l=Δ. It is the dimensionless (relative) thickness of layer 
of the discrete analog. We shall obtain, taking into account 
further transformations:

2 2
2 21 ( x) (2l) 1

( ) ( ) .
a t a t (Fo)

D
⋅ = ⋅ D = ⋅ D

D ⋅ D D
 (5)

Here Δ(Fo) is the dimensionless step of calculation by 
time – a step of a change in the Fourier number. 

After carrying out analogous transformations for the last 
addend in the right side of expression (4), we shall obtain:

2 2 0
P E W P

1 1
2 ( ) T T T ( ) T .

(Fo) (Fo)

 
+ ⋅ D ⋅ = + + ⋅ D ⋅ D D 

 (6)

Expression (6) is the dimensionless discrete analog for 
internal points of the computed region. 

Let us examine a discrete analog for the node of com-
putational grid on the boundary of calculated region, for 
the certainty in point “1” on the left boundary (Fig. 1). In 
order to compute temperature in point P1, it is necessary 
to consider boundary conditions to the left of it, as well as 
value in point E1. As the boundary conditions, let us examine 
conditions of the third kind as the most general ones. Based 
on general constructions from [10], it is possible to write for 
the boundary point “1”

P P E Ea T a T b,⋅ = ⋅ +  (7)

where

P E 1

x
a a c ;

t
D

= + a + r⋅ ⋅
D Ea ;

x
l

=
δ

1

0
1 amb P

x 1
b T c T .

2 t
D

= a ⋅ + r⋅ ⋅ ⋅ ⋅
D

 (8)

Here α1, Tamb1 are the heat transfer coefficient and am-
bient temperature from the corresponding side of a heat 
exchange surface. 

Similar to the previos case, let us substitute (8) in (7), 
divide all terms of the equation by λ/δx. As a result, taking 
into account (1), we shall obtain

1

2

1 P

2
0

E 1 amb P

x 1 ( x) 1
1 T

a 2 t

x 1 ( x) 1
T T T .

a 2 t

 δ D
+ a ⋅ + ⋅ ⋅ ⋅ = l D 

δ D
= + a ⋅ ⋅ + ⋅ ⋅ ⋅

l D
 (9)

1 2
W

3 4
EP

N

δx

Δx
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Let us multiply in expression (9) the terms, which con-
tain δx, by (2l)/(2l)=1. The terms that contain (Δx)2 shall be 
multiplied by (2l)2/(2l)2=1. Consider that Δx/2l=δx/2l=Δ. 
Let us designate as 

1
1

2l
Bi

a ⋅
=

l
 

the Biot criterion from the side of node “1” of the computa-
tional grid. As a result, we shall obtain:

1

2
1 P

2 0
1E amb P

1 1
1 Bi ( ) ( ) T

2 (Fo)

1 1
T Bi T ( ) ( ) T .

2 (Fo)

 
+ ⋅ D + ⋅ ⋅ D ⋅ = D 

= + ⋅ ⋅ D + ⋅ ⋅ D ⋅
D

 (10)

Expression (10) is the dimensionless discrete analog for 
the left boundary point of computed region (Fig. 1).

Upon carrying out transformations, analogous to (7)–
(10), but for the right boundary (node “n”, Fig. 1), we shall 
receive the dimensionless discrete analog for the right 
boundary point of computed region:

2

2
2 P

2 0
2W amb P

1 1
1 Bi ( ) ( ) T

2 (Fo)

1 1
T Bi T ( ) ( ) T .

2 (Fo)

 
+ ⋅ D + ⋅ ⋅ D ⋅ = D 

= + ⋅ ⋅ D + ⋅ ⋅ D ⋅
D

 (11)

Here 
2

2 ambBi , T
 
is the Biot criterion and ambient tempera-

ture from the side of node “N” of of the computational grid.

5. Form of the discrete analog and algorithm of solution 
based on it

Expressions (6), (10) and (11), taken together, represent 
the dimensionless discrete analog for calculating the non-
stationary heat transfer through a flat plate at boundary 
conditions of the third kind.

The algorithm of solution based on such discrete analog 
can be realized with the help of TDMA (Tri-diagonal- 
Matrix Algorithm) – the sweep method. Results of calcula-
tion are obtained in one “sweep”, without iterations, which 
simplifies the computation. In order to facilitate the reali-
zation of the solution algorithm, let us write discrete ana-
log (6), (10), (11) in the index form, where the indices are 
counted from the left to the right boundary of calculated re- 
gion (Fig. 1):

– for internal points

i i i i 1 i i 1 ia T b T c T d ,+ −⋅ = ⋅ + ⋅ +  (12)

where 

2
i

1
a 2 ( ) ;

(Fo)
= + ⋅ D

D ib 1;= ic 1;= 2 0
i P

1
d ( ) T ;

(Fo)
= ⋅ D ⋅

D

– for the left boundary

1 1 1 2 1a T b T d ,⋅ = ⋅ +  (13)

where

2
11

1 1
a 1 Bi ( ) ( ) ;

2 (Fo)
= + ⋅ D + ⋅ ⋅ D

D 1b 1;=

1

2 0
11 amb P

1 1
d Bi T ( ) ( ) T ;

2 (Fo)
= ⋅ ⋅ D + ⋅ ⋅ D ⋅

D

– for the right boundary

N N N N 1 Na T c T d ,−⋅ = ⋅ +  (14)

where

2
2N

1 1
a 1 Bi ( ) ( ) ;

2 (Fo)
= + ⋅ D + ⋅ ⋅ D

D Nc 1;=

2

2 0
2N amb P

1 1
d Bi T ( ) ( ) T .

2 (Fo)
= ⋅ ⋅ D + ⋅ ⋅ D ⋅

D

The solution algorithm is built based on [10] as follows. 
Direct course of computation – auxiliary coefficients P 

and Q are computed:
first from (13) P1 and Q1

1

1
1

21 1

2 0
1 amb P

1
1

21 1

b 1
P ,

1 1a 1 Bi ( ) ( )
2 (Fo)

1 1
Bi T ( ) ( ) T

d 2 (Fo)
Q ,

1 1a 1 Bi ( ) ( )
2 (Fo)

 = =
+ ⋅ D + ⋅ ⋅ D

D
 ⋅ ⋅ D + ⋅ ⋅ D ⋅ D = =
 + ⋅ D + ⋅ ⋅ D D

 (15)

then from (12) and (15) Pi and Qi  

i
i

2i i i 1
i 1

2 0
P i 1

i i i 1
i

2i i i 1
i 1

b 1
P ,

1a c P 2 ( ) P
(Fo)

1
( ) T Q

d c Q (Fo)
Q .

1a c P 2 ( ) P
(Fo)

−
−

−
−

−
−

 = = − ⋅ + ⋅ D −
D

 ⋅ D ⋅ + + ⋅ D = =
− ⋅ + ⋅ D − D

 (16)

Inverse course of computation – for the right boundary 
bi=0. Consequently, PN=0. From (16):

2

N i 1
N

N i 1

2 0
2 amb P N 1

2
2 N 1

d Q
Q

a P

1 1
Bi T ( ) ( ) T Q

2 (Fo)
.

1 1
1 Bi ( ) ( ) P

2 (Fo)

−

−

−

−

+
= =

−

⋅ ⋅ D + ⋅ ⋅ D ⋅ +
D=

+ ⋅ D + ⋅ ⋅ D −
D

 (17)

Assume from (17)

N NT Q .=  (18)

and then in reverse order

i i i 1 iT P T Q .+= ⋅ +  (19)

Simplicity of the obtained algorithm (15)–(19) makes 
the realization possible even based on Excel, to say nothing 
of the more powerful computational tools. 
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6. Evaluation of adequacy of the obtained results by the 
available solutions. Possibilities and constraints in the 

application of the obtained discrete analog

An algorithm must qualitatively and quantitatively cor-
rect reflect the processes under investigation. Given this, the 
estimation of physicalness and adequacy of the developed 
discrete analog can be carried out in two ways:

1) after appropriate transformation, by the comparison 
of analog itself with the exact solution in the extreme case 
of stationary heat transfer through an infinite flat wall (esti-
mation of physicalness – qualitatively correct representation 
of the examined process);

2) by comparing the results of numerical calculations 
with the results of analytical solutions in a particular case of 
the nonstationary process of symmetrical heating (cooling) 
of an infinite plate (estimation of correctness of quantitative 
representation of the studied process).

For both these cases, there are precise analytical solu-
tions.

1. Stationary heat transfer through a flat wall 
When solving the problem on stationary heat transfer 

through a flat wall, the heat flux through both surfaces of 
the wall is assumed identical. For certainty, let us accept 
(Fig. 2) that the ambient temperature to the left of the wall 
exceeds temperature to the right, and the heat flux is direct-
ed from left to right.

Fig. 2. Minimal computational grid

This can be written in the form:
– 

1 11 1 amb wq (T T )= a ⋅ −  is conditionaly for the left side of 
the wall;

– 
2 22 2 w ambq (T T )= a ⋅ −  is conditionaly for the right side 

of the wall.
Here: 
q1, q2 is the heat flux, respectively, entering from the en-

vironment from the left to the wall and exiting the wall from 
the right to the environment;

α1, α2 are the heat transfer coefficients on the left and 
right side of the wall, respectively;

Tw1, Tw2 is the temperature of the left and right side of the 
wall, respectively;

(Tamb1, Tamb2) is the ambient temperature from the left 
and from the right sides of the plate, respectively. 

Taking into account the condition accepted q1=q2, we 
shall obtain:

1 1 2 21 amb w 2 w amb(T T ) (T T )a ⋅ − = a ⋅ −

or

1 1

2 2

amb w 2 2

w amb 1 1

(T T ) Bi
.

(T T ) Bi

− a
= =

− a
 (20)

Here BI1, Bi2 are the Biot criteria for the left and right 
side of the wall. 

The discrete analog in the form (17)–(19) is obtained 
for the case of nonstationary heat transfer. But at constant 
ambient temperatures from the left and right sides of the 
wall and sufficiently long course of the heat transfer process, 
the analog, if correctly constructed (17)–(19), must yield 
the result, analogous to (20). Furthermore, in the examined 
case, the profile of a change in temperature from Tw1 to Tw2 
(Fig. 2) inside the wall must be of linear character, and the 
correctly constructed discrete analog also must reflect it. 
Let us transform the analog (17)–(19) to test the feasibility 
of these requirements.

Let us split the examined flat wall into three layers 
(Fig. 2): two near-wall ones and one internal. In this case, 
temperatures T1, T3 of the analog correspond to tempera-
tures Tw1, Tw2 at the surface of the wall. Temperature 
T2 is the temperature in the central layer. The near-wall 
layers in accordance with (Fig. 1) have a half thickness. 
The choice of only three layers for the splitting is prede-
termined by the following considerations. The discrete 
analog for temperatures Ti in central cells (17) is built 
with the use of temperatures in the adjacent cells Ti-1 and 
Ti+1. Three layers allow us to construct a similar analog 
for temperature T2 taking into account temperatures 
Tw1,Tw2. The near-wall layers make it possible to employ 
analogs (18), (19) for the left and right boundaries of the 
plate. Thus, in order to evaluate correctness of represent-
ing the process of stationary heat transfer with the help 
of the developed discrete analog, three calculated layers 
will suffice and an increase in the number of inner layers 
at partition adds nothing fundamentally new to the com-
putation.

In the analog (17)–(19), magnitudes 
i 1 n

0 0 0
p p pT , T , T , uti- 

lized in coefficients di, d1, dn, are the temperatures in the cor-
responding nodes of computational grid from the previous 
step of calculation by time. In the computation of heat trans-
fer process over a prolonged time interval and its reaching 
the stationary state, temperatures from the previous step of 
calculation by time must be equal to the estimated tempera-
tures currently in the corresponding points. We obtain for 
the case of three layers in question:

2

0
p 2T T ;=  

1

0
p 1T T ;=  

3

0
p 3T T .=  (21)

We shall obtain from (17) upon the substitution of ex-
pressions for all coefficients:

2

2 2 0
2 2 3 1 P

1 1
2 T ( ) T T T ( ) T .

(Fo) (Fo)
⋅ + ⋅ D ⋅ = + + ⋅ D ⋅

D D
 (22)

Taking into account equality 
2

0
p 2T T=  from (21), we shall 

receive the equality of terms from the left and right sides of 
expression (22):

2

2 2 0
2 P

1 1
( ) T ( ) T ,

(Fo) (Fo)
⋅ D ⋅ = ⋅ D ⋅

D D

and after their reduction:

Tamb1

T1

(Tw1)

(Bi1)

0 X
Tamb2

T3

(Tw3)

(Bi2)
α2

T

δx

ф1,2ф2,3

 T2

Δx
Δx
2 δx

α1
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2 3 12 T T T⋅ = +  or 3 1
2

T T
T .

2
+

=  (23)

After carrying out analogous transformations for the 
analogs of left (18) and right (19) boundaries, we shall 
obtain: 

– for the left boundary

11 1 1 2 1 ambT Bi ( ) T T Bi ( ) T ;+ ⋅ D ⋅ = + ⋅ D ⋅  (24)

– for the right boundary

23 2 3 2 2 ambT Bi ( ) T T Bi ( ) T .+ ⋅ D ⋅ = + ⋅ D ⋅  (25)

Substitute expression for T2 from (23) to (24) and (25). 
Carry out transformations and, as a result, we shall obtain: 

– for the left boundary

1

3 1
1 1 1 amb

T T
Bi ( ) T Bi ( ) T ;

2
−

= ⋅ D ⋅ − ⋅ D ⋅  (26)

– for the right boundary

2

3 1
2 amb 2 3

T T
Bi ( ) T Bi ( ) T .

2
−

= ⋅ D ⋅ − ⋅ D ⋅  (27)

In expressions (26) and (27), the left sides are equal. 
Equate in these expressions the right sides, reduce by Δ:

1 21 1 amb 2 amb 3Bi (T T ) Bi (T T ),⋅ − = ⋅ −

or

1 21 amb 1 2 3 ambBi (T T ) Bi (T T )⋅ − = ⋅ −  (28)

we receive as a result:

1

2

amb 1 2 2

3 amb 11

(T T ) Bi
.

(T T ) Bi

− a
= =

− a
 (29)

Comparing the expressions (29) and (20) reveals their 
concurrence, which confirms correct construction of the 
analog (17)–(19) in this part. 

Let us consider the second part of the test – representa-
tion with the help of the proposed discrete analog of the form 
of temperature profile inside a flat wall. For this purpose, let 
us determine the tangents of temperature profile angles of 
inclination in sections (T1–T2) and (T2–T3): 

– from (Fig. 2) for the section between temperatures 
(T1–T2) taking into account (24):

1

1 2
1,2 1 amb 1

(T T )
tg( ) Bi (T T ),

−
φ = = ⋅ −

D
 (30)

– from (Fig. 2) for the section between temperatures 
(T2–T3) taking into account (25): 

2

2 3
2,3 2 3 amb

(T T )
tg( ) Bi (T T ).

−
φ = = ⋅ −

D
 (31)

The equality of right sides in expressions (30) and (31) 
follows from (28). Hence, the left sides are equal in them:

1,2 2,3tg( ) tg( ).φ = φ  (32)

Thus, in the process of stationary heat transfer the sec-
tions of profiles of temperatures, represented using the ana-
log (17)–(19), have a common point T2 and identical angles 
of inclination (32). Consequently, they are one straight line. 
This agrees with the analytical solution and confirms cor-
rect construction of the analog (17)–(19) in this part as well.

2. Symmetrical heating of an infinite plate.
The accuracy of numerical calculations, executed with 

the help of the discrete analog proposed, can be evaluated by 
comparing their results with the available analytical solu-
tions. The case of bilateral symmetrical heating of an infinite 
plate is one of a few that exist. Let us examine a variant when 
at the initial moment of time (t=0), initial temperature in 
the plate is distributed evenly. Under these conditions, the 
proposed analytical solution takes the form of summation of 
a series. The indicated articles note that at Fo≥0.3 a series 
starts so rapidly converging that the temperature distribu-
tion is determined accurately enough by the first term of a 
series in the form:

21
1 1

1 1 1

2 sin
1 cos( X) exp( Fo).

sin cos
⋅ µ

Θ = − ⋅ µ ⋅ ⋅ −µ
µ + µ ⋅ µ

 (33)

Here Θ is the relative (dimensionless) temperature of 
a plate; X is the relative (dimensionless) coordinate of the 
point in question. It is counted from the center of the plate 
to its surface;

Fo=(a·t)/(δ2) – Fourier number;

where a is the coefficient of thermal diffusivity; δ is the half 
thickness of the plate.

Relative temperature of plate Θ is determined by rela-
tionship

0

amb 0

Т(X) Т
,

Т Т
−

Θ =
−

 (34)

where Τ(Χ) is the current temperature in the corresponding 
point of plate; Τ0 is the initial temperature, evenly distrib-
uted in the plate; Tamb is the ambient temperature, to the 
magnitude of which the plate is heated. 

Relative temperature of the plate changes in the range 
of ΘÎ[0…1].

Relative coordinate is determined from relationship 
X=x/δ and changes in the range of XÎ[0…1]. Here x is the 
absolute coordinate that is counted from the center of the 
plate to its surface.

Magnitude μ is the root of transcendental equation 
ctg(μ)=μ/Bi. Equation (33) is the first term of a series. 
Therefore, it employs μ1 – the first positive root of the tran-
scendental equation. 

In order to compare results of the analytical and numer-
ical calculations, one should consider that:

– biot criterion in the analytical solution is computed 
for the half thickness of the plate (because of its symmetry). 
However, in the numerical calculation, taking into account 
the possibility of solving the non-symmetrical problems, it 
is determined for the full thickness of the plate. Thus, it is 
necessary to apply relationship

                                       
,2nc nc a1(Bi ) (Bi ) 2 Bi .= = ⋅  (35)
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where 1 2nc nc(Bi ) , (Bi )  are the Biot criteria for the corre-
sponding sides of the plate in the discrete analog (numerical 
calculation) for the case of symmetrical heating; (Bi)а is the 
Biot criterion in analytical calculations;

– the Fourier number due to the above noted reason also 
differs for the cases of analytical and numerical solutions. 
Comparing the results, which correspond to the identical 
moments of dimensionless time, should be conducted based 
on relationship:

 (36)

where Foa is the Fourier number in the analytical calcula-
tion; Fonc is the corresponding Fourier number in the nu-
merical calculation. 

Fig. 3 shows results of computation based on analytical 
expression (33) and discrete analog (12)–(14). Since the 
analytical calculations are carried out for the dimension-
less temperature (34), then the numerical solutions are 
obtained based on it. Fig. 3 shows results that cover the 
broad range of change in the Biot criterion. In the brackets 
is its value for the numerical calculations based on (35). 
Each figure presents results for the two moments of time. 
Magnitudes of the Fo numbers corresponding to them are 
bound by relationship (36). Maximum relative error e  in 
the numerical results from all estimated points by thick-
ness of the plate is given for each moment of time. All in 
all, 21estimated points were considered. Relative error was 
determined relative to the range of change in temperature 
ΘÎ[0…1].

A comparison of results of the numerical and analytical 
calculations reveals their good concurrence. However, sim-
ilar accuracy at a large number of estimated points can be 
attained by other numerical methods. The employed meth-
od of control volumes differs by abiding the conservation 
laws on computational grids of any accuracy. In order to 
evaluate an influence of the number of estimated points on 
the computation error, we performed calculations using the 
maximally small grids – with three nodes only (Fig. 2). The 
obtained results and their comparison with the analytical 
and numerical calculations on a large grid (21 nodes) are 
given in Table 1. Here, similar to Fig. 3, the magnitudes 
of Bi and Fo that relate to the numerical calculations are 
given in brackets. The values of Bi and Fo in the analytical 
and numerical calculations, similar to the previous case, 
are bound by relationships (35), (36). The first three lines 
show the values of relative temperatures for Fo=0.4(0.1). 
In this case:

– in the first line are the temperatures in the analytical 
calculations;

– in the second line – in the numerical calculations on a 
grid with 21 nodes;

– in the third line – in the numerical calculations on a 
grid with 3 nodes.

The next three lines show relative errors in determining 
the relative temperatures, represented in the previous lines. 
In this case:

– in the line, designated by ε21, are the errors of results in 
the numerical calculations on a grid with 21 nodes relative to 
the analytical calculations;

– in the line, designated by ε3, are the errors of results in 
the numerical calculations on a grid with 3 nodes relative to 
the analytical calculations;

– in the line, designated by ε21-3, are the errors of results 
in the numerical calculations on a grid with 3 nodes relative 
to the numerical calculations on a grid with 21 nodes.

Further in the table, the order of results arrangement is 
analogous.

a                                   b 

c                                   d 
Fig. 3. Relative temperature Θ dependent on  

the relative X coordinate and relative moment of time Fo for 
the analytical Θа numerical Θnc calculations: a – Bi=0.004 
(0.008); b – Bi=0.5 (1.0); c – Bi=5 (10); d – Bi=50 (100)

Relative errors do not exceed 3.5 % in all given points. 
The magnitudes of Bi=5 and Bi=50 are selected because of 
the maximal relative error received in this case. At Bi=0.04 
and Bi=0.5, an error in the numerical solution does not 
exceed 1 %. The magnitudes of the noted errors do not ex-
ceed permissible values for the engineering computations 
(<5 %). This testifies to the applicability of the developed 
discrete analog for solving the problems on nonstationary 
heat transfer.

Let us examine an example of solving a problem on 
the nonstationary heat transfer. The absence of analytical 
solution is its special feature. Assume that at the initial 
moment of time body temperature and ambient tempera-
ture are in equilibrium. Let us designate it similar to the 
previous cases, T0. At a certain moment of time, tempera-
ture of the environment from one side of the plate rises 
abruptly to magnitude Tamb From the other side of the 
plate, ambient temperature remains equal to T0. We shall 
examine a nonstationary process of change in the tem-
perature inside the plate during heat transfer. We shall 
perform the computation for relative temperature Θ, de-
termined in accordance with (34) using the relative node 
coordinates of grid X. Some results for the computational 
grid with 21 nodes at different values of the Fo numbers 
are shown in Fig. 4. The value of Fo=0 corresponds to the 
initial moment of time.
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Table 1

Results of the analytical and numerical calculations of relative 
temperature Θ at symmetrical heating of an infinite plate. 

Magnitudes of error in the numerical calculations relative to 
the analytical ones

Bi Fo/ε
X

0.0 0.5 1.0

5 
(10)

0.4 0.842 0.378 0.842

(0.1)21 0.837 0.366 0.837

(0.1)3 0.873 0.393 0.873

ε21 0.005 0.012 0.005

ε3 0.031 0.015 0.031

ε21-3 0.036 0.027 0.036

1.0 0.944 0.779 0.944

(0.25)21 0.941 0.766 0.941

(0.25)3 0.955 0.765 0.955

ε21 0.003 0.013 0.003

ε3 0.011 0.014 0.011

ε21-3 0.014 0.001 0.014

50 
(100)

0.4 0.985 0.507 0.985

(0.1)21 0.984 0.487 0.984

(0.1)3 0.991 0.528 0.991

ε21 0.001 0.020 0.001

ε3 0.006 0.020 0.006

ε21-3 0.007 0.041 0.007

1.0 0.996 0.881 0.996

(0.25)21 0.996 0.868 0.996

(0.25)3 0.997 0.851 0.997

ε21 <0.001 0.013 <0.001

ε3 0.001 0.03 0.001

ε21-3 0.001 0.017 0.001

Fig. 4. Profiles of relative temperatures Θ along the relative 
thickness of plate X depending on different Fo numbers

In accordance with (34), for the accepted initial data in 
this moment of time, the value of relative temperature in all 
points of the plate is Θ=0. The value of Fo=1.7 models reach-
ing the state of stationary heat transfer.

For the estimated calculations of the nonstationary heat 
transfer processes, of interest is the use of “rough” computa-
tional grids. Let us define a possibility of applying the meth-
od of control volumes at minimal computational grid, the 
same as in the case of symmetrical heating (with 3 nodes). 
For this purpose, let us compare results when using it to the 

results on a grid with 21 nodes (Table 2). The structure of 
data here and in Table 1 is analogous.

Table 2

Results of the numerical calculation of relative temperature Θ 
at nonstationary heat transfer through an infinite plate. The 
magnitudes of error in the numerical calculations on a small 

computational grid

Fo Θ/ε
X

0.0 0.5 1.0

(0.12)

Θ21 0.710 0.178 0.015

Θ3 0.718 0.177 0.024

ε21-3 0.009 0.001 0.009

(0.26)

Θ21 0.790 0.336 0.047

Θ3 0.799 0.332 0.052

ε21-3 0.009 0.004 0.005

Errors in the calculations on the “rough” grid in compar-
ison with results on the more detailed one are insignificant. 
This accounts for its use in many cases. Insignificant errors 
on such a “rough” grid can be explained based on the follow-
ing considerations:

– on one hand, the profile of change in the temperature 
inside the plate, both at its heating and at nonstationary 
heat transfer, is of exponential character. On the other hand, 
as noted above, to determine temperature in the nodes, they 
use the profiles of its change between the nodes. In a general 
case, the profiles can be any, including as parts of exponents. 
In the considered case, in order to simplify the form of a dis-
crete analog when using the implicit scheme of its construc-
tion, we accepted a spasmodic character of change in tem-
perature between the nodes. Nevertheless, such a simplified 
character in the representation of change in the temperature 
profile between the nodes of a computational grid does not in 
general contradict the character of change in temperature in 
the real process. In other words, the discrete analog satisfies 
the physics of examined processes, which predetermines its 
accuracy on the “rough” computational grids;

– as it was noted above, the discrete analog is built based 
on abiding the conservation laws on the grids with any 
“roughness”. In combination with the preceding point, this 
also contributes to improving the accuracy of computations. 

It should be noted that in a general case stability and 
accuracy of numerical methods depend on the relationship 
between the step of calculation by time and a geometric 
dimension in the step of a computational grid. Thus, in order 
to provide for the stability of computation when using the 
explicit scheme in the finite-difference method, Δt is deter-
mined from relationship [10]:

2c ( x)
t .

2
r⋅ ⋅ D

D <
⋅l

 (37)

Upon performing the transformations, applied to (5), we 
shall obtain:

2a t 1
(Fo) ( ) .

2 l 2
⋅ D

= D < ⋅ D
⋅

 (38)

In the above examined case of computation in the 
relative coordinates with 21 nodes of computational 
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grid and, accordingly, 20 intervals between them, we 
receive Δ=0.05. In accordance with (38), when applying 
the finite-difference method, it would be necessary to 
obtain Δ(Fo)<0.0012. In the performed calculations, we 
employed Δ(Fo)=0.005, which actually exceeds the noted 
boundary.

Let us examine an impact of the magnitude of step by 
time on the stability and accuracy of calculations. Results 
at different steps are given in Table 3. Calculations were 
carried out for 21 nodes, but, for visibility, the results are 
given only for the points at the surfaces and in the center 
of the plate. In order to compare, we took the same values 
of Fo=0.12 and Fo=0.26, as those used in Table 2. Taking 
into account Δ(Fo)=0.005, the value of temperature at 
Fo=0.12 was obtained in 24 steps, which is reflected in the 
appropriate line Δ(Fo)24. The next lines contain results of 
the temperature calculation at the same 21 nodes and at the 
same moment of time Fo=0.12, but at other steps by time 
and, accordingly, different number of these steps (subscript): 
Δ(Fo)8=0.015 and Δ(Fo)4=0.03.

Table 3

Results of the numerical calculations of relative temperature 
Θ in the process of nonstationary heat transfer through an 

infinite plate at different calculation steps by time

Fo Δ(Fo)
X

0.0 0.5 1.0

(0.12)

(0.005)24 0.710 0.178 0.015

(0.015)8 0.704 0.173 0.015

(0.03)4 0.694 0.167 0.015

(0.26)

(0.005)52 0.792 0.336 0.047

(0.02)13 0.786 0.328 0.046

(0.065)4 0.774 0.306 0.042

Errors in the calculations at Δ(Fo)8 and Δ(Fo)4 relative 
to the variant at Δ(Fo)24 are not indicated, though they can 
be computed easily. The second part of Table 3 contains 
analogous data, but for the moment of time Fo=0.26 at 
steps, corresponding by the magnitude, and their number: 
Δ(Fo)52=0.005, Δ(Fo)13=0.02 and Δ(Fo)4=0.065. A com-
parison of the given data demonstrates maintaining the 
high accuracy of calculations also during the partition of 
the assigned time interval into a maximally small number of 
calculation steps.

Tables 2, 3 give the results that allow us to argue 
about the stability of calculations when using the “rough” 
computational grids and large steps by time. We, however, 
examined the influence of these factors separately. Of prac-
tical interest is the possibility to perform calculations with 
engineering precision at simultaneous influence of both 
factors. Based on the example of data, given in Table 4, it is 
possible to estimate the results of this kind of calculations 
when comparing to the case of detailed grid and small step 
by time. Results of the computation on a grid with 21 nodes 
and at calculation step by time Δ(Fo)=0.005 are accepted 
as reference. The first part of the table, as previously, con-
siders time moment Fo=0.12. In order to reach this time 
at selected step, 24 steps are required. Results for this 
case are represented in the first line of the table. The sec-
ond line contains results of the calculation on a grid with  
3 nodes and at step by time Δ(Fo)=0.03, requiring 4 calcu-
lation steps to achieve the considered time. The third line 

contains relative errors in the rough calculations relative 
to those accepted as reference. The second part of the table 
contains analogous data for the moment of time Fo=0.26. 
The errors calculated demonstrate that when using the 
discrete analog based on the method of control volumes 
within the limits of engineering accuracy of computations, 
it is possible to employ maximally “rough” grids and large 
steps by time.

Table 4

Results of the numerical calculations of relative temperature 
Θ in the nonstationary heat transfer process through an 

infinite plate at different combination of the number of nodes 
in a computational grid and the magnitude of calculation 

steps by time

Fo Δ(Fo)/ε
X

0.0 0.5 1.0

(0.12)

21
24(0.005) 0.7097 0.1775 0.0145

3
4(0.03) 0.6863 0.1684 0.0230

ε 0.023 0.009 0.009

(0.26)

21
52(0.005) 0.7920 0.3362 0.0470

3
4(0.065) 0.7797 0.3035 0.0473

ε 0.012 0.033 <0.001

The adequacy of computation on the “rough” grids can 
be used also in the numerical-analytical calculations of the 
nonstationary heat transfer processes. The thing is that 
the discrete analog on the grid with 3 nodes consists of 
the system of 3 linear algebraic equations. For the current 
time moment, it is possible to receive a sufficiently simple 
analytical solution of this system. However, the possibility 
of using large steps by time allows based on this solution 
rapid estimation of temperatures at the surfaces of a plate in 
the nonstationary heat transfer process of and, accordingly, 
heat fluxes on them. In line with the classical approach, the 
energy accumulated in the plate is determined by integrat-
ing the temperature profile in it. In the examined case, it 
suffices to find a difference in the heat fluxes at the surfaces 
of a plate.

7. Conclusions

1. The method of control volumes selected for the dis-
crete analog is based on fulfilling the conservation laws on 
computational grids of any size, including the smallest ones. 
This corresponds in the best way to the set problem on de-
veloping a simplified discrete analog.

2. The use of the simplified, one-dimensional form of 
the record of discrete analog made it possible to represent 
it in the dimensionless form. Such approach contributes not 
only to a decrease in the number of calculations, but it also 
facilitates comparing their results with data of the existing 
analytical calculations. The latter, as a rule, are represented 
in the dimensionless form.

3. A comparison of results of the calculations based 
on the developed analog to the available analytical data 
demonstrates their good recurrence. Relative errors do not 
exceed, and they are even substantially less than the per-
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missible engineering accuracy (<5 %). Furthermore, this is 
substantially lower than the errors in determining the initial  
data – heat-transfer coefficients.

4. Based on the numerical calculations, using large 
grids and small steps by time as the rererence, we evaluated 
stability and accuracy of calculations on the rougher grids. 

We demonstrated maintaining the engineering accuracy on 
maximally small grids (to 3 nodes) and retention of stability 
and accuracy at large steps by time, substantially larger than 
the other numerical methods permit. Such special features of 
the discrete analog can be used to solve the inverse problems 
on heat exchange.
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