УДК 539.3

В.Ф. Оробей, д-р техн. наук, проф., **Н.Г. Сурьянинов**, канд. техн. наук, доц., **А.М. Лимаренко**, магистр, Одес. нац. политехн. ун-т

СОБСТВЕННЫЕ КРУТИЛЬНЫЕ КОЛЕБАНИЯ ТОНКО-СТЕННЫХ СТЕРЖНЕЙ

В.Ф. Оробей, М.Г. Сур'янинов, О.М. Лимаренко. Вільні крутильні коливання тонкостінних стержнів. Наведено розв'язки задачі Коші крутильних коливань тонкостінних стержнів з урахуванням всіх членів рівняння В.З. Власова. Показано застосування цих розв'язків в розв'язанні задач динаміки крутильних коливань тонкостінних стержнів за алгоритмом методу граничних елементів. Результати розв'язків наведено в числовій і візуальній формах. *V.F. Orobey, M.G. Suriyaninov, O.M. Limarenko.* The free torsional vibrations of thin — wall rods. The solutions of the Coshi problem for torsional vibrations of thin — wall rods with provision for all members of the equation of V.Z. Vlasov are presented. Using of these solutions is shown in solving the problem of torsional vibrations dynamics in thin — wall rods by the algorithm of the border element method. The results of the solutions are presented in numeric and visual forms.

Уравнение и параметры крутильных колебаний прямолинейного тонкостенного стержня открытого профиля с двумя осями симметрии имеют вид [1]

$$EI_{\omega}\frac{\partial^{4}\theta(x,t)}{\partial x^{4}} - GI_{\kappa\rho}\frac{\partial^{2}\theta(x,t)}{\partial x^{2}} - \rho I_{\omega}\frac{\partial^{4}\theta(x,t)}{\partial z^{2}\partial t^{2}} + \rho (I_{z}+I_{y})\frac{\partial^{2}\theta(x,t)}{\partial t^{2}} = \overline{m_{A}}(x,t)$$

где $GI_{\kappa\rho}\overline{\theta}(x,t)$ — динамический угол поворота сечения стержня вокруг центра изгиба, совпадающего в этом случае с центром тяжести сечения;

 $GI_{\kappa p}\overline{\Theta}'(x,t) = \overline{M}_{\kappa p}(x,t)$ — динамический крутящий момент в сечении, возникающий от неравномерного распределения по толщине стенок касательных напряжений;

 $EI_{\omega}\overline{\Theta}''(x,t) = -B_{\omega}(x,t)$ — динамический бимомент, вызванный нормальными напряжениями от депланации сечения;

 $EI_{\omega}\overline{\Theta}''(x,t) = -M_{\omega}(x,t)$ — динамический изгибно-крутящий момент, вызванный осевыми сдвигающими силами, действующими по касательной к дуге контура сечения;

 $\overline{L}(x,t) = \overline{M}_{\omega}(x,t) + \overline{M}_{\kappa p}(x,t) = -EI_{\omega}\overline{\Theta}'''(x,t) + GI_{\kappa p}\overline{\Theta}'(x,t)$ — полный крутящий момент относительно центра изгиба.

В данном уравнении третье слагаемое учитывает инерционные силы от продольных секториальных перемещений точек стержня. Рассмотрим гармонические колебания, для которых можно применить метод Фурье разделения переменных следующим образом:

$$\overline{\theta}(x,t) = \theta(x)\sin\lambda t ; \ \overline{\theta}'(x,t) = \theta'(x)\sin\lambda t ; \ \overline{B}_{\omega}(x,t) = B_{\omega}(x)\sin\lambda t ;$$
$$\overline{M}_{\omega}(x,t) = M(x)\sin\lambda t ; \ \overline{M}_{\kappa\rho}(x,t) = M_{\kappa\rho}(x)\sin\lambda t ; \ \overline{m}(x,t) = m(x)\sin\lambda t ;$$

где λ — частота гармонических колебаний.

Если подставить последние соотношения в уравнение колебаний и выражения для параметров, то получим исходные данные для задачи Коши крутильных колебаний тонкостенного стержня с двумя осями симметрии в амплитудном состоянии.

$$\theta^{\rm IV}(x) + 2r^2\theta''(x) - s^4\theta(x) = \frac{k^2m(x)}{GI_{\rm sp}};$$
(1)

$$GI_{\kappa p}\theta(x); GI_{\kappa p}\theta'(x); B_{\omega}(x) = -\frac{GI_{\kappa p}}{k^2}\theta''(x); M_{\omega}(x) = -\frac{GI_{\kappa p}}{k^2}\theta'''(x)$$

где $k^2 = \frac{GI_{\kappa p}}{EI_{\omega}}$ — изгибно-крутильная характеристика;

$$r^{2} = \frac{\rho\lambda^{2}}{E} - \frac{k^{2}}{2} ; s^{4} = \frac{\rho\lambda^{2}(I_{z} + I_{y})}{EI_{\omega}}.$$
 (2)

Характеристическое уравнение для уравнения (1) принимает вид

$$t^4 + 2r^2t^2 - s^4 = 0, (3)$$

корни которого определяются формулой

$$t_{1-4} = \pm \sqrt{-r^2 \pm \sqrt{(r^2)^2 + s^4}}.$$
(4)

Из последнего выражения следует, что внутренний корень всегда неотрицательный $\left(\sqrt{(r^2)^2 + s^4} \ge 0\right)$ и корни (4) могут быть только двух видов (как и в поперечных колебаниях):

Два действительных

$$t_1 = \pm \alpha = \pm \sqrt{-r^2 + \sqrt{(r^2)^2 + s^4}};$$
(5)

Два мнимых

$$t_2 = \pm i\beta = \pm i\sqrt{r^2 + \sqrt{(r^2)^2 + s^4}}.$$

В этом случае решение соответствующего однородного уравнения запишется как

$$\theta(x) = C_1 \operatorname{chax} + C_2 \operatorname{sh} \alpha x + C_3 \cos \beta x + C_4 \sin \beta x.$$
(6)

По стандартному алгоритму [2] решение задачи Коши крутильных колебаний предстанет следующим образом

$GI_{\kappa p}\theta(x)$		A ₁₁	A ₁₂	$-A_{13}$	$-A_{14}$	$GI_{\kappa p}\theta(0)$		$A_{14}(x-\xi)$		
$GI_{\kappa p}\theta'(x)$	_	A ₂₁	A ₂₂	-A ₂₃	-A ₂₄	$GI_{\kappa p}\theta'(0)$	x ſ	$A_{13}(x-\xi)$	$m(\xi)d\xi$	(7)
$B_{\omega}(x)$	-	$-A_{31}$	$-A_{32}$	A ₃₃	A ₃₄	$B_{\omega}(0)$	$\begin{bmatrix} + \\ 0 \end{bmatrix}$	$-A_{34}(x-\xi)$	$m(\varsigma)u\varsigma$,	(7)
$M_{\omega}(x)$		$-A_{41}$	$-A_{42}$	A ₄₃	A ₄₄	$M_{\omega}(0)$		$-A_{33}(x-\xi)$		

где фундаментальные ортонормированные функции имеют вид

$$A_{11} = \frac{\beta^{2} \operatorname{ch} \alpha x + \alpha^{2} \cos \beta x}{\alpha^{2} + \beta^{2}}; \quad A_{12} = \frac{\beta^{3} \operatorname{sh} \alpha x + \alpha^{3} \sin \beta x}{\alpha \beta (\alpha^{2} + \beta^{2})}; \quad A_{13} = \frac{k^{2} (\operatorname{ch} \alpha x - \cos \beta x)}{\alpha^{2} + \beta^{2}};$$

$$A_{14} = \frac{k^{2} (\operatorname{sh} \alpha x - \sin \beta x)}{\alpha \beta (\alpha^{2} + \beta^{2})}; \quad A_{21} = \left(\frac{\alpha \beta}{k}\right)^{2} A_{14}; \quad A_{23} = \frac{k^{2} (\alpha \operatorname{sh} \alpha x + \beta \sin \beta x)}{\alpha^{2} + \beta^{2}};$$

$$A_{31} = \frac{(\alpha \beta)^{2}}{k^{4}} A_{13}; \quad A_{32} = \frac{\alpha \beta^{2} s h \alpha x - \alpha^{2} \beta \sin \beta x}{k^{2} (\alpha^{2} + \beta^{2})} = \frac{(\alpha \beta)^{2}}{k^{4}} A_{14};$$

$$A_{33} = \frac{\alpha^{2} \operatorname{ch} \alpha x + \beta^{2} \cos \beta x}{\alpha^{2} + \beta^{2}}; \quad A_{34} = \frac{\alpha \operatorname{sh} \alpha x + \beta \sin \beta x}{\alpha^{2} + \beta^{2}} = \frac{A_{23}}{k^{2}};$$

$$A_{41} = \left(\frac{\alpha \beta}{k}\right)^{2} \frac{\alpha \operatorname{sh} \alpha x + \beta \sin \beta x}{\alpha^{2} + \beta^{2}} = \frac{(\alpha \beta)^{2}}{k^{4}} A_{23}; \quad A_{43} = \frac{\alpha^{3} \operatorname{sh} \alpha x - \beta^{3} \sin \beta x}{\alpha^{2} + \beta^{2}}.$$
(8)

Внешнюю крутящую нагрузку на тонкостенный стержень в соответствии с рис. 1 необходимо представить с помощью дельта-функции Дирака $\delta(x-a)$ и единичной функции Хевисайда H(x-a) со сдвигом

$$m(x) = B_{\omega}\delta'(x-a_1) + M_{\kappa\rho}\delta(x-a_2) + m[H(x-a_3) - H(x-a_4)].$$
(9)

При подстановке выражения (9) в решение задачи Коши (7) элементы матрицы нагрузки примут вид

$$B_{11}(x) = B_{\omega}A_{13}(x-a_{1})_{+} + M_{\kappa\rho}A_{14}(x-a_{2})_{+} + m[A_{15}(x-a_{3})_{+} - A_{15}(x-a_{4})_{+}];$$

$$B_{21}(x) = B_{\omega}A_{23}(x-a_{1})_{+} + M_{\kappa\rho}A_{13}(x-a_{2})_{+} + m[A_{14}(x-a_{3})_{+} - A_{14}(x-a_{4})_{+}];$$

$$B_{31}(x) = B_{\omega}A_{33}(x-a_{1})_{+} + M_{\kappa\rho}A_{34}(x-a_{2})_{+} + \frac{m[A_{13}(x-a_{3})_{+} - A_{13}(x-a_{4})_{+}]}{k^{2}};$$

$$B_{41}(x) = B_{\omega}A_{43}(x-a_{1})_{+} + M_{\kappa\rho}A_{33}(x-a_{2})_{+} + m[A_{34}(x-a_{3})_{+} - A_{34}(x-a_{4})_{+}];$$

$$A_{15} = \frac{k^{2}[\beta^{2}(ch\alpha x - H(\alpha x)) + \alpha^{2}(cos\beta x - H(\beta x))]}{(\alpha\beta)^{2}(\alpha^{2} + \beta^{2})}.$$
(10)

В соответствии с алгоритмом метода граничных элементов (МГЭ) частоты крутильных колебаний определяются из уравнения [2]

$$|\mathbf{A}_*(\lambda)| = 0,\tag{11}$$

где $A_*(\lambda)$ — матрица, которая формируется для определенных краевых условий опирания стержня.

Например, если концы стержня жестко защемлены, то схема формирования краевой задачи и частотное уравнение примут вид

-	1	2	3	4	_				_	
1			$-A_{13}$	$-A_{14}$		$GI_{\kappa p}\theta(0) = 0; B_{\omega}(l)$		$GI_{\rm kp} \Theta(l) = 0$		
2			-A ₂₃	$-A_{13}$		$GI_{\kappa p}\theta'(0) = 0; \ M_{\omega}(l)$	_	$GI_{\kappa p}\theta'(l) = 0$	=0,	(12)
3	-1		-A ₃₃	$-A_{34}$		$B_{\omega}(0)$		$B_{\omega}(l)$		
4		-1	$-A_{43}$	-A ₃₃		$M_{\omega}(0)$		$M_{\omega}(l)$		
$ \mathbf{A}_{*}(\lambda) = A_{13}^{2} - A_{14}A_{23} = 0.$										

Аналогично строят частотные уравнения стержней при других условиях опирания. В таблице приведены частоты собственных крутильных колебаний двутавровых стержней (рис. 2) при распространенных условиях опирания.

Расчетные схемы, частоты и частотные уравнения отдельных стержней

-0	Частоты собственных крутильных колебаний λ, c^{-1}						
тона к баний	<i>l</i> =10 м	<i>l=</i> 10 м	<i>l</i> =10 м				
ле($ \mathbf{A}_{*}(\lambda) =$	$ \mathbf{A}_{*}(\lambda) =$	$\left \mathbf{A}_{*}(\lambda)\right $ =				
Нс	$=A_{13}^2 - A_{14}A_{23} = 0$	$= A_{13}A_{34} - A_{14}A_{33} = 0$	$= A_{33}^2 - A_{34}A_{43} + A_{23}A_{34} - A_{13}A_{33} = 0$				
1	2,7835	1,9501	0,6510				
2	7,4035	6,0501	2,9510				
3	14,3335	12,4501	7,5510				
4	23,4685	21,1501	14,4510				
5	34,9135	31,8501	23,5510				
6	48,5635	44,9501	35,1510				
7	64,4275	60,2501	48,6510				
8	82,3825	77,6501	64,4510				

9	102,4175	97,1501	82,3510					
10	124,3624	118,6501	102,3510					
L. a	Частоты собственных крутильных колебаний λ, c^{-1}							
ер тон баний	<i>l</i> =10 м	<i>l</i> =10 м	<i>l</i> =10 м					
Номе коле	$\left \mathbf{A}_{*}(\lambda) ight =$	$\left \mathbf{A}_{*}(\lambda)\right = -A_{32}A_{33} + A_{31}A_{34} - A_{31}A_{34} - A_{32}A_{33} + A_{31}A_{34} - A_{33}A_{34} - A_{34}A_{34} - $	$\left \mathbf{A}_{*}(\lambda)\right = -A_{31}^{2} - A_{31}A_{33} + A_{32}A_{41} + A_{34}A_{41}$					
Ц —	$= A_{12}A_{34} - A_{14}A_{33} = 0$	$-A_{11}A_{34} + A_{13}A_{32} = 0$	$+A_{21}A_{32} + A_{21}A_{34} - A_{11}A_{31} - A_{13}A_{31} = 0$					
1	1,3501	0,3501	0,0000					
2	4,8501	2,1501	2,7835					
3	10,6501	6,1501	7,4035					
4	18,6501	12,4501	14,3335					
5	28,9501	21,0501	23,4685					
6	41,4501	31,9501	34,9135					
7	56,1501	45,0501	48,5635					
8	73,0501	60,2500	64,4275					
9	91,9501	77,6500	82,3825					
10	112 9501	97 1500	102 4175					

Рис. 1. Крутящая нагрузка на тонкостенный стержень

Рис. 2. Сечение тонкостенного стержня

Геометрические параметры сечения: $I_z = 68479,33 \text{ см}^4$; $I_y = 4504,83 \text{ см}^4$; $I_{\omega} = 3,91 \cdot 10^6 \text{ см}^6$; $I_{\kappa p} = 39,792 \text{ см}^4$; $A = 118,0 \text{ см}^2$. Модули упругости $E = 2 \cdot 10^4 \frac{\text{kH}}{\text{см}^2}$; $G = 0,4E = 0,8 \cdot 10^4 \frac{\text{кH}}{\text{см}^2}$. Плотность материала стержня $\rho = 7800 \frac{\text{кг}}{\text{м}^3}$; длина стержня l = 10 м. Изгибио крупиция изд нарадствирающие $k = 0,20176 \text{ м}^{-1}$

Изгибно-крутильная характеристика сечения $k = 0,20176 \text{ m}^{-1}$.

Таким образом, из представленных результатов видно, что решение задачи Коши (7) и алгоритм МГЭ позволяют решать задачи крутильных колебаний с минимальными преобразованиями и весьма точно. Данный вывод имеет практическое значение при решении разнообразных задач расчета тонкостенных стержней, имеющих широкое распространение в машино-, авиа-, судостроении и строительстве.

Литература

1. Власов В.З. Тонкостенные упругие стержни. — М.: Физматгиз, 1959. — 568 с.

2. Строительная механика. Применение метода граничных элементов / Баженов В.А., Дащенко А.Ф., Коломиец Л.В., Оробей В.Ф. — Одесса: Астропринт, 2001. — 288 с.

Поступила в редакцию 5 декабря 2006 г.