ISSN 2076-2429 (print) 79

ISSN 2223-3814 (online)

COMPUTER AND INFORMATION NETWORKS
AND SYSTEMS.
MANUFACTURING AUTOMATION

KOMIT'FOTEPHI i IH®OPMAIIIMHI MEPEXKI I CUCTEMM.
ABTOMATHU3ALISA BUPOBHUILITBA

Proceedings of Odessa Polytechnic University, Issue 3(53), 2017

UDC 004.912

0.B. Kungurtsev', PhD, Prof.,

Nguyen Tran Quoc Vinh?, PhD,

N.O. Novikova®

! Odessa National Polytechnic University, 1 Shevchenko Ave., Odessa, Ukraine, 65044; e-mail: abkun@te.net.ua

2The University of Da Nang — University of Education, 459 Ton Duc Thang, Da Nang, Vietnam, e-mail: ntquocvinh@ued.udn.vn
% Odessa National Maritime University, 34 Mechnykova Str., Odessa, Ukraine, 65029

TECHNOLOGY FOR TESTING OF SOFTWARE MODULES
BASED ON USE CASES

0.5. Kyneypyes, Heysn Yan Kyox Bune, H.O. Hogikoea. TexHoJI0Tisi TeCTYBaHHSI IPOrPAMHHMX MOJYJIiB HA OCHOBI BapiaHTIB BH-
KopHcTaHHs. PO3p0o6IeHO aBTOMAaTH30BaHy TEXHOJIOTIIO, [0 HOEAHYE MPOLECH OIUCY BaplaHTa BUKOPUCTAHHS (IIPELEACHTY) 1 CKIIaTaHHs
Ha0OpiB TecT-KeHciB. JIJIst 1IbOro 3apoNOHOBaHA MaTEMAaTHYHA MOJIEIb TIPELEJICHTY, 10 PEACTABIIAE HOTro y BUITIAAI OPIEHTOBAHOTO rpada.
KoxHa BepuvHa rpaga BifloBifae MyHKTY HPELEICHTY, a KOXHA Jyra BU3Ha4ae YMOBHM IEPeXo/ly 1 JaHi, 10 BU3HAYAIOTh 1[I yMOBH. 3aCTO-
coBaHa Kiacu}ikamis MyHKTIB CIEHApiiB IpereaeHTy, 0 J03BONIIA BUAUINTY 7 THIIB IyHKTIB. I KOXKHOTO THIY IIHKTY IPELEICHTY
po3pobieH okpeMuil mabnoH TecT-Kelca. 1llabnonn MaoTe 3 po3aina: aaHi, 10 BBOAATHCS B JaHOMY MYHKTI, JaHI IO paHille HaJilIuIHa B
CHCTEMY, Ta Pe3yJIbTaTH BUKOHAHHS IyHKTY. PO3pO0IICH alropuT™ BHSABICHHS HE3aJCKHUX IUIAXIB 1 NPOLEAYpa BU3HAYCHHS 3aBEPLICHHS
00xoxy. Po3pobieni nporpaMHi 3aco0u, 10 MiATPUMYIOThH 3aIIPOIIOHOBAHY TEXHOJIOTIIO CKJIaJaHHs TecT-KeiciB. [IpoBeneHi BUIpoOyBaHHS
MOKa3aJIi iCTOTHE CKOPOYCHHS Yacy IPY BUKOPUCTAHHI IaHOI TEXHOJIOTIT B MOPIBHSAHHI 3 iCHYFOUHMH DIILCHHSAMH, sKi nependadaioTb po3ii-
JIbHI IPOLIECH ONHUCY TPELEACHTIB 1 CKJIaIaHHs TeCT-KeiiCiB.

Knrouogi cnosa: BapiaHTH BUKOPUCTAHHS, MaTEMaTHYHA MOZEIb, TECTYBaHHs, [1a0JIOH TecT-Keica

0.B. Kungurtsev, Nguyen Tran Quoc Vinh, N.O. Novikova. Technology for testing of software modules based on use cases. An automated
technology is developed that combines the processes of describing of the use case (precedent) and compiling of test cases sets. For this purpose, a
mathematical model of the precedent is proposed, representing it in the form of an oriented graph. Each vertex of the graph corresponds to a precedent
item, and each edge defines the transition conditions and data that define these conditions. The classification of the test case scenarios was used, which
made it possible to distinguish 7 types of items. For each type of test case item, a separate test case template has been developed. Templates have 3
sections: data entered in this item; data previously received in the system; and the results of the implementation of the item. An algorithm for identify-
ing independent paths and a procedure for determining the completion of traversal is developed. Software tools that support the proposed technology
of drawing test cases have been developed. The tests showed a significant reduction in the time when this technology was used in comparison with
existing solutions which provide the separate processes for describing of use cases and drawing up of test cases.

Keywords: information technology, use cases, mathematical model, test case, directed graph

Introduction. Presendents (use cases) are often used as a means of defining functional require-
ments for a software product (SP) being designed [1, 2]. In work [3], based on the study of actions
performed by use cases, a classification of possible items of scenarios was created. There the models
for the automated compilation of texts of each item type were proposed and the data structures sup-
porting the execution of scenarios were defined.

There are many testing techniques based on the use case description [4, 5]. They assume that the
process of testing of the software module should develop according to the scenarios of the relevant use
case. However, they do not include algorithms for traversing of all scenarios as well as the procedure
for preparing initial data and generating of the expected results.

DOI: 10.15276/0pu.3.53.2017.11

© 2017 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

http://pratsi.opu.ua/articles/select/3
http://pratsi.opu.ua/articles/select/3
http://pratsi.opu.ua/articles/select/3
http://pratsi.opu.ua/articles/select/3
http://pratsi.opu.ua/articles/select/3
http://pratsi.opu.ua/articles/select/3

80 ISSN 2076-2429 (print)
Ipaui Oxecpkoro noaiTexHiuHOro yHiBepcurety, 2017. Bun. 3(53) ISSN 2223-3814 (online)

Description of the precedent (use case) is made by the system analyst with the direct participation
of the representative of the customer. In this process, data entered into the system, data received from
the system, as well as their relations, at which certain items of the scenario are executed (or not per-
formed) are to be considered. Usually this information is required only to understand the essence of
the problem being solved and is not used after the description of the use case.

However, since the description of the use case is the source material for the programmer, he will
soon need information about the data to write the code and certain data sets for testing of the software
modules, subsystems and the entire software product. The ability to form test cases at the requirements
analysis stage will significantly reduce the total time for the development of the software product. It
also opens up the possibility of a partial or full application of the technology “development through
testing” (test-driven development, TDD) [6]. In work [7] the technology of TDD application is consid-
ered in detail, however there are no solutions for constructing tests based on a formalized description
of use cases. In work [8] emphasis is placed on supporting the connection of testing and working with
requirements. The following structure of the test case is proposed:

— Sequence number of the step;

— Impact on the system;

— Reference to data,;

— Expected Result.

However, the author does not link the methods of presenting requirements with the formation of a
test case. An analysis of many factors affecting the quality of unit testing was considered in [9], where
as a module one class is adopted, or a set of several classes. Combining several classes that implement
the functions of one use case into one module is not analyzed in the work.

The purpose of this work is to reduce the time and improve the quality of unit testing by auto-
mating of the preparation of test case sets at the stage of writing and agreeing on a precedent. For this,
the necessary tasks are formulated:

— development of a mathematical model of use case;

— determination of paths to bypass the branches (scenarios) of the use case;

— development of templates for test cases corresponding to the classification of scenario items [3].

Example of use case description

Automating the preparation of the use case testing requires a certain formalization of its descrip-
tion. This work was carried out in the research [3], where algorithms and a software solution for the
automated description of the use case are proposed. As an example, to which we will refer in the fu-
ture, we will give a simplified description of the precedent for the sale of a train ticket.

Use case for the sale of a train ticket

Actors: cashier.

Scope: ticket sales subsystem.

Preconditions: the cashier is identified.

Postcondition: Sales data saved. Taxes are correctly calculated. The accounting data has been
updated. Commission fees are accrued. The ticket is generated. Payment authorization completed.

Triggers: client's request to the cashier.

The main successful scenario:

1. The client addresses to the cashier with the purpose to get the ticket. The cashier opens
a new sale.

2. The client informs the station of departure and destination. The cashier enters the received data
into the system. The system confirms the existence of the route.

3. The client reports the departure date, class of the train. The cashier enters the data received
from the passenger. The system determines the number of the train and informs the cashier about the
availability of the train on the specified date.

4. The client reports the departure date and class of the place. The cashier enters the data received
from the passenger. The system determines the number of the car, seats and informs the cashier about
the availability of space.

5. The cashier asks for the fare. The system determines the cost of the ticket and tells it to the
cashier. The ticket price is calculated using a set of rules. The cashier informs the passenger of the
ticket price. The client agrees.

KOMIT'FOTEPHI 11 IHOOPMALIIIAHI MEPEXXI I CACTEMU. ABTOMATU3AL[ISL BAPOBHULITBA

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

Proceedings of Odessa Polytechnic University, Issue 3(53), 2017 81

6. The cashier proposes to pay the ticket. The client transfers the amount for payment. The cash-
ier fixes the amount deposited. The system registers ticket sales. Calculates change and generates and
issues a ticket. The cashier gives the client a ticket and change.

Extensions (alternative scenarios):

2.a No departure station found.

2a.1. The cashier offers the client to change the name of the departure station. Go to step 2.

2.b No arrival station found.

2b.1. The cashier offers the client to change the name of the arrival station. Go to step 2.

2¢ There is no message between the specified stations.

2c.1. Completion of the use case.

3a Missing train on the specified date.

3a.1 The cashier offers the client to change the departure date. The client agrees. Go to step 3.

3a.1la Customer disagrees.

3a.1a.1. The cashier offers the client to indicate another class of the train. The client agrees.
Go to step 3.

3a.la.l.a Client does not agree.

3a.la.1.a.1 Completion of the use case.

3b There is no train of the specified class.

3b.1. The cashier offers the client to indicate another class of the train. The client agrees.
Go to step 3.

When describing the use case, the following rules for the numbering of its points are adopted.
The points of the main scenario are numbered by decimal numbers. The recommended number of
points is not more than 10 [2]. The transition condition number in the alternative scenario begins with
the number of the corresponding point of the original script, to which the Latin letter is added. The
numbers of the items of the alternative scenario are formed from the condition number, followed by a
period and a decimal number.

The use case model

Imagine an use case under consideration in the form of an directed graph [10] without loops and
multiple edges.

G=(S,U), 1)
where S — set of the vertices of the graph,

U — set of the edges.
A graphical representation of a fragment of the use case is

shown in Fig. 1. Here single arrows denote edgs leading to the ver-

tices of the graph, and double edges leading to the imaginary top of

completion of the use case.Each edgs is represented by a tuple of @ e
the form: @

ui,j ={<si,s;j,di,cond(d;) >}, (2) @
where s; — nonincident vertex, a s; — incidental;
d; — data associated with the vertex s; : ° @
cond (d;) — the condition that determines the transition along

the edge from the vertex s; to the vertex s;. The condition can be ° @_

expressed by some function that defines a Boolean value true or
false, or a constant of true if there is an unconditional jump. If the e_
connection between the vertices s; and s; is not determined by
some condition, but exists permanently, then instead of func(d;), it Fi .
ig. 1. Representation of an use

should be written true. case in the form of a graph

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

http://pratsi.opu.ua/articles/select/3

82 ISSN 2076-2429 (print)
Ipaui Oxecpkoro noaiTexHiuHOro yHiBepcurety, 2017. Bun. 3(53) ISSN 2223-3814 (online)

If the connection between the vertices s; and s; is never formed, then instead of func(d;), we
should write false.

To work with a graph, it is usually represented as an adjacency matrix or an adjacency list.
The following is a fragment of the adjacency matrix for the use of the “train ticket sale” use case. (Table 1).
Here, the node named “7” indicates the external space (completion of the use case). Boolean values or
transition conditions are written in the cells of the matrix. For example, if there is no departure station
St1, then the transition condition from vertex 2 to vertex 2a.1 will be fulfilled — the function is St(St1)
will not find station St1.

Table 1
Adjacency matrix
Nodes 1 2 3 2a.l 2b.1 2c.1 7
1 X true false false false false false
if (isSt(Stl
(1sSt(Sth o isSt(St) = | isSt(St2)= | isltinerary(StL, $t2) =
2 false X isSt(St2) A false
Lo = false = false = false
isltinerary(Stl, St2))

3 false | false X false false false false
2a.1 | false | true false X false false false
2b.1 | false | true false false X false false
2c.1 | false | false false false false X true

Since the adjacency matrix takes up a lot of space, we will use adjacency lists in the future.
An adjacency list is assigned to each vertex and specifies the vertices to which to jump from
this vertex.

Since the logic of executing and testing the use case provides for the location of the traversal
paths of the graph in a certain sequence, we introduce the concept of the level of the vertices of
the graph.

To the first level we assign the vertices (1, 2, 3,...) that are included in the main successful sce-
nario (the names do not contain the symbol “.”).

To the second level, we assign the vertices (2a.1, 2b.1, 2¢.1, 3a.1) of the additional scenario (the
names contain one “.” Symbol).

The third level includes the vertices of the supplementary scenario from the supplementary sce-
nario (3a.1a.1). These names contain two “.” Symbols, etc.

For some NameS vertex, we represent the ListNameS adjacency list in the form of a set ordered
by vertex names:

©)

ListNameS, {NameS;, LevS;, TypeS;, Cond;, Lab;},

where NameS; — any vertex attainable from NamesS;

LevS; — level of the vertex;

TypeS; — type of the vertex (1 — root, 0 — ordinary);

Cond; — jump condition to the vertex NameS;;

Lab; — a note on the possibility of crossing the edge. Possible values for Lab;: 0 — open,
1 —closed.

Determining independent paths

Use case-based testing involves the preparation of such input data that will provide access to all in-
dependent paths of the graph. Known algorithms for finding independent paths in the flow graph [10].
However, when constructing the graph of a use case, predicate nodes can not be formed that represent
only simple conditions. The style of writing a use case provides that a step of the scenario can corre-
spond to an unlimited number of steps in the expansion scenario. This leads to the need to develop new
algorithms for traversing the graph. For the same reason, it is possible to use only one formula for deter-
mining cyclomatic complexity V(G), which is based on counting all edges and vertices:

V(G)=Nu-Ns+2, 4)

KOMIT'FOTEPHI 11 IHOOPMALIIIAHI MEPEXXI I CACTEMU. ABTOMATU3AL[ISL BAPOBHULITBA

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print) 83

ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 3(53), 2017

where Nu—- Number of edges;

Ns— Number of vertices.

For the use case fragment shown in Figigure. 1, number of independent paths will be 5.

Traversing strategy

1. For all paths, the initial vertex is the vertex with the name “1”.

2. Each path ends with one of the end vertices.

3. Each path traveled is remembered and does not repeat.

4. The first path is the main successful scenario (first level vertices).

5. Each new path must differ from the previous one by the minimum number of new edges
and vertices.

Algorithm for determining independent paths of use case graph

Denote the name of the current vertex — NameScur.

Denote the name of the next vertex — NameSnext.

We will maintain independent paths in the list of independent paths (LIP).

Define the procedure for completing the path when the final vertex is reached.

Procedure for completing a traversing finish (NameSnext)

If the NameSNext is end vertex with level L>1, then we set Lab;=1, we fix the traversed path
in LIP. Go to to the Step 2 of the algorithm.

Below are the steps of the algorithm.

1. Pass all the vertices of level 1 from initial to ending. Form the path. Fix the path to LIP num-
ber 1.

2. If the number of paths in LIP = V(G), then complete the algorithm. Otherwise, start a new trav-
eling from the initial vertex.

3. Determine the nearest NameScur vertex that has the path to the vertex of the next level. Select
the vertex of the next level NameSnext with the smallest number and the open edge (Lab;=0).

4. Call the procedure finish (NameSnext). Go to the vertex NameSnext (NameScur = NameSnext).

5. If the NameScur vertex has an open edge to the vertex of the next level NameSnext, go to step
4. Otherwise go to step 6.

6. If the vertex has an reachable edge to the vertext of its NameSnext level, then call the proce-
dure finish (NameSnext) and go to step 5. Otherwise go to step 7.

7. If the vertex has an available edge to the vertex of the lowest level of NameSnext, then mark
the edge to the vertex of NameSnext as closed and go to the NameSnext t node. Go to item 8. Other-
wise, mark the traversed edge to the vertex of NameScur as closed and go to step 2.

8. If the level of current node is of 1, then complete the traversal of the nodes of the first level.
Fix the path to LIP, go to step 2. Otherwise, go to step 6.

As an example in Table 2 shows the LIP obtained for the graph in Fig. 1.

Table 2
Independent paths for the use case fragment “Ticket Sale”

Path number Path Comment
152>3—>4—>5—>6 -
152—>2a1—>2—>3—>4—>5—>6 -

1>2->2al Dead end

152521 —>2—>3—>4—>5—>6 -

1-52—>2b1 Dead end
1—5>2—>2cl -
1>2—>3—>3al1—>3alal—3alalal -
1-52—>3—>3al1—>3alal—>3—>4—>5—>6 -
152—>3—>31—>3—>4—>5—>6 -

N[OOI |WWIN|N| -

Development of test case templates
The set of test variants consists of the groups of tests necessary for passage along each independ-
ent path. The presentation of the input data and the expected results depends on the actions envisaged

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

http://pratsi.opu.ua/articles/select/3

84 ISSN 2076-2429 (print)
Ipaui Oxecpkoro noaiTexHiuHOro yHiBepcurety, 2017. Bun. 3(53) ISSN 2223-3814 (online)

in each step of the scenario. In [11], a classification of the scenario steps is proposed. 8 types of items
were considered totally.

— Create.

— Enter data.

— Request value.

— Request a list.

— Choose from the list.

— Enter the service (document).

— Repetition of actions.

— User action that does not fit into the proposed classification.

Testing the step “Create”

This item can have the condition of creating a textCondition object and a list of parameters for
the object being created. Consider the possible options for preparing data and transitions to other steps
in the scenario.

A) There are no parameters, there is no condition for creating the object. As a result of the execu-
tion of the item, an object is created that has only a name and has no data, or has data set by default.
The test version contains only the name of the object.

The fact of creating an object is not directly checked. Because a new object is created for storing
and working with data, its testing will obviously be performed when operations with this object are
performed. The step provides an unconditional jump to some node.

B) There is no condition for creating an object, there are parameters, there are no parameters
checking. The test version contains the name of the object and the parameters.The item provides an
unconditional transition to some node.

V) There is a condition for creating an object, there are no parameters. The test version contains
the name of the object and some characteristic (for example, the term of existence).

The step provides for the jump to the node S1 or to the node S2.

G) There is a condition for creating an object, there are unverifiable parameters. The test version
contains the name of the object, a list of parameters and some characteristic of the object.

The step provides for the jump to the node S1 or to the node S2.

D) There is no condition for creating the object, there are checked parameters. The test version
contains the name of the object and a list of parameters.

The step provides for the transition to the node S1 or to the nodes S2, S3, ..., Sn.

E) There is a condition for creating an object, there are checked parameters. The test version con-
tains the name of the object, a list of parameters and some characteristics. Some other object in the
system has conditions for receiving parameters and a valid and invalid characteristic value. Table 3
presents a template for testing the step “Create” for the most general case. If for a specific case some
input data are missing, then the corresponding positions of the template are not filled.

Testing the item “Enter data”

This step provides for data entry. Some data may require verification (Table 4).

If for some input data there is no verification, then the receiving condition is represented by a
constant of true.

The step provides a jump to the node S1 or to the nodes S2, S3, ..., Sn (the conditions for data in-
put are not fulfilled).

Testing the item “Request value”

This item provides for the receipt from the system of the value of some variable, possibly, if cer-
tain conditions are met (Table 5). The user retains the right to accept the received value or reject it.

The consent or disagreement of the user with the received value is realized at the level of the sys-
tem interface. The item provides for the transfer to the node S1 (the user agrees), to the node S2 (the
user disagrees), to the node S3 (the condition is not fulfilled).

Testing the item “Request a list”

This item provides a list of several records, each of which contains a number of fields (the num-
ber of records and fields is determined by the logic of the problem being solved). The output of the list
may depend on some condition (Table 6).

KOMIT'FOTEPHI 11 IHOOPMALIIIAHI MEPEXXI I CACTEMU. ABTOMATU3AL[ISL BAPOBHULITBA

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print)

. . L 85
ISSN 2223-3814 (online) Proceedings of Odessa Polytechnic University, Issue 3(53), 2017

The item provides a jump to the node S1 (the condition is met) or to the node S2 (the condition is
not met).

Table 3
Template for testing the step “Create”
Data in the system
Output data Input data Entered There are

System message Object name Object name Object name

Parameters Parameters Conditions for receiving
Variable Value Variable Value Parameter name Condition
""" Object name
Characteristic | | ..
""" Characteristic
Table 4
Test templete for the step “Enter dat”
Output data Inout data Data in the system
System message P Entered There are
Variable | Value | Object storing Variable Value Receiving conditions
........ true
Table 5 Table 6
Test template for the item “Request value” Test pattern for the item “Request value™
Output data Input data | Data in the system Output data Input data | Data in the system
Variable | Value | Variable Object name List name List name Object name

Data List name

............... Variable | Value

List records

System message | Condition Object name Condition Object name

System message | 00 [—F—=—

Testing the item “Choose from the list”

This item allows the user to select a record from the list (Table 7). There are two types of records:
data and services (documents). Selecting a record of the first type involves receiving data by the sys-
tem. Selecting a record of the second type provides a transition to the corresponding step in the scenar-
io. If the transition is not provided, then a constant is written in the “Transition” field. User has the
right to refuse to choose from the list if there is no necessary service (document) or suitable data.

The item provides for the transition to a node S1 or nodes S2, S3, ..., Snh.

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

http://pratsi.opu.ua/articles/select/3

86 ISSN 2076-2429 (print)
Ipaui Oxecpkoro noaiTexHiuHOro yHiBepcurety, 2017. Bun. 3(53) ISSN 2223-3814 (online)

Table 7
Test template for the item ““Choose from the list”
Output data Input data Data in the system
System message List name Receiving There are
Object name Object name
..... Record List name
List name
Record Record Transition
..... false

Testing the item “Enter service (document)”

This item provides for the user to enter some service (document). The system compares the or-
dered service with the services provided from the existing list. A variant of the breakdown of the en-
tered service into elementary services and comparison with services from the list is possible (Table 8).

Table 8
Test template for the item “Enter a service (document)”
Output data Input data Data in the system
Service Service (document) Receiving There are
..... Object name Object name
System message

Service Service list

..... Service Transition

Testing the item “Repeating actions”

The execution of the “Repeating actions” item is implemented at the system interface level. From
the point of view of preparing data for testing in repeated passes, it may be necessary to increase the
amount of data of some types in the system.

Software implementation and testing

In the scope of work [3], master tools were created for the automated compilation of script items
using a pre-compiled vocabulary of the subject area [11, 12]. Also, there were proposed the structures
of objects that can support the execution of script points. Within context of this work, software has
been created for the automated compilation of adjacent lists, determination of independent paths, and
providing test templates for each type of scenario item to the system analyst. The conducted experi-
ments showed that the formation of test variants simultaneously with the setting up of the use case in-
creases the total operating time by less than 20 %, while the compilation of tests in the offline mode is
commensurate with the time of writing the use case.

Conclusions

It is proposed to combine the processes of describing the use cases and compiling case test sets.
For this, a mathematical model of the use case was developed, which allows determine the sequence
and completeness of testing. Based on the previously proposed classification, case-test templates for
each type of item from the use case scenarios have been developed. Software tools have been devel-
oped that support the technology of developing case-test sets. The experiments carried out by the tech-
nology showed a significant reduction in time compared to existing solutions that provide separate
processes for describing and compiling of test case sets.

KOMIT'FOTEPHI 11 IHOOPMALIIIAHI MEPEXXI I CACTEMU. ABTOMATU3AL[ISL BAPOBHULITBA

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

Proceedings of Odessa Polytechnic University, Issue 3(53), 2017 87

Jluteparypa

1.

2

3.

10

12.

. Jleppunrysmn, JI. Yuapur. [IpuHiunsr paboTsl ¢ TpeOoBaHUSIMHA. Y HUQHUIIMPOBAHHBIN 101X0. Mo-
ckBa: M3marensckuii moMm Bunbsamce, 2002. 450c.

. Amuctep Kobepn. CoBpeMeHHBIE METO/IbI ONMCaHMs (PYHKIMOHAIBHBIX TpeOOBaHUH K cucremaM. Moc-

kBa: Jlopu, 2002. 266 c.

Bososukos 10.H., Kynrypues A.b., HoBukoBa H.A. MHpopmanuonHas TEXHOJIOTUS aBTOMAaTH3UPO-
BaHHOT'O COCTaBJICHHsI BAPUAHTOB UCIIONIb30BaHUA. Haykosi npayi JJoneybko2o HayioHANbHO20 MEeXHIY-
Hoeo ynigepcumemy. ITokposcerk, 2017. Ne1(30). C. 46-59.

. Co3nanme mpoekTa. AHAJIN3 TpeneneHToB. Peanu3anus npereaeHToB. Y TOUHEHHOE OINMCaHUe Mperie-

nenta. URL: http://vunivere.ru/work72704 (nata 3sepuenss 27.06.2017)

. Kymuxos, C.C. TectupoBanue nporpaMmuoro obecrieueHus. basossrit kypc. Munck: Uetsipe 4eTBepTH,

2017.312 c.

. Kent Bek. DkcTpemanbHoe MporpaMMHUpOBaHMe: pa3paboTka udepe3 TecTupoBanune = Test—driven

Development. TIutep, 2003. 224 c.

. Kpucniun, Jlaiiza, Jlxanet ['peropu. ['mbkoe TectupoBaHue: MPaKTUIECKOE PYKOBOACTBO JJISI TECTUPO-

BumkoB [0 u rubkmx komann = Agile Testing: A Practical Guide for Testers and Agile
Teams. Mocksa: «Buibsamcy, 2010. 464 c.

. AnexcannpoB A.. Tecr-nu3aiiH: mpolie yuTaTh WM npoiue nucarb. Joknan Ha 15-of SQA Days B

Mockge. URL.: https://habrahabr.ru/company/sqalab/blog/242385/ (nara 3sepuenns 11.07.2017)

. Kama, Amngpeit. MonynsHoe TtectupoBanue: 2+2 = 4? Jlata wucnpasienus: 10.12.2016 URL:

ttp://rsdn.org/article/testing/UnitTesting.xml (nara 3sepuenns 17.07.2017)

. OpnoB C. Texnonorus pazpadotku mporpammaoro odbecnedenus. CI16.: TTurep, 2002. 464 c.
11.

Kynrypues A. b., Ilotounsik S.B., CunseB J.®. MeToa aBTOMAaTU3UPOBAHHOIO MOCTPOEHUSI TOJIKOBOTO
cIoBaps MpeAMETHOW oOmactu. Texnonoeuueckuti ayoum u pesepgvl npoussoocmea. Ne 2/2(22), 2015.
C 58-63.

Kynrypues O., KoBanpuyk C., [Torounsk f., lllupokoctyn M. [loGynoBa cioBHHKa MpeaMeTHOI 00-
JIacTi Ha OCHOBI aBTOMATH30BAaHOTO aHAJi3y TEKCTiB YKPAaiHCHKOIO MOBOIO. Texuiyni nayku ma mexmo-
nozii. 2016. Ne 3 (5). C. 164-174.

Referenses

1.

2

10.
11.

12.

Leffinguell, D., & Uidrig, D. (2002). Principles of work with requirements. An unified approach. Mos-
cow: Publishing house Williams.

. Alister, Kobern. (2002). Modern methods of describing of functional requirements for systems. Mos-

cow: Lori.

. Vozovikov, Yu.N., Kungurtsev, A.B., & Novikov, N.A. (2017). Information technology for automated

generation of use cases. Scientific papers of the Donetsk National Technical University. 1 (30), 46-59.

. Project creation. Analysis of precedents. Implementation of precedents. Refined description of the prec-

edent. vunivere.ru. Retrieved from: http://vunivere.ru/work72704

. Kulikov, S.S. (2017). Software testing. Basic course. Minsk: Four quarters.
. Kent, Bek. (2003). Extreme programming: development through testing = Test-driven Development.

Peter.

. Krispin, Layza, & Janet, Gregory. (2010). Flexible testing: a practical guide for software testers and

flexible teams. Moscow: Williams.

. Aleksandrov, A. (2014). Test-design: easier to read or easier to write. Report on the 15th SQA Days in

Moscow. Retrieved from: https://habrahabr.ru/company/sqalab/blog/242385/

. Kasha, Andrew. (2016). Unit testing: 2 + 2 = 4? rsdn.org. Date of correction: 10/12/2016. Retrieved

from: http: //rsdn.org/article/testing/UnitTesting.xml

Orlov, S. (2002). Technology of software development. St. Petersburg: Peter.

Kungurtsev, A. B., Potocnjak ,Ya.V., & Silyaev, D.F. (2015). The method of automated construction of an
explanatory dictionary of a subject domain. Technological audit and production reserves. 2/2 (22), 58-63.
Kungurtsev, O., Kovalchuk, S., Potokonyak, Ya., & Shirokokest, M. (2016). Construction of a domain-
specific dictionary on the basis of automated analysis of texts in Ukrainian. Technical sciences and
technologies. 3 (5), 164-174.

Received September 12, 2017
Accepted October 02, 2017

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

http://pratsi.opu.ua/articles/select/3

