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Hocaidceno moxcausicmo weuorx020 004UCIEHHA KOACK-
MUBHUX eKcnepmHux ouiHox mediannozo muny. Hezeasxcarouu
HA WUpoKe 3acmocy8anis s po3paxyHKy KoJIeKmueHux exc-
nepmuux ouinox meoian Kemeni-Cuenna i Kyxa-Ceiighopoa,
HedoCcmamusbo 00CAI0NCEHI MONCAUBOCMI CKOPOUEHHS UACY
00uUCIeHHA MedianH020 KOHCEHCYCHOZ0 PAHIICUPYBAHHS WS-
XOM 3ACMOCYEAHHAM 3a0aui NPo NPu3HAMeHHA i 6i0OMUX
anzopummie il pimenns. Ha 6iominy 6i0 Ginvwocmi eidomux
Memooie npononoeanuii 6 cmammi mMemoo He € HAOMUNCEHUM
i 30epizae euxiony medianny axciomamury Kemeni.

Hocaidxceno moxcnueicmo pospaxyuxy median Kemeni-
Cueana i Kyxa-Celipopoa i3 zacmocysannsam zadaui npo
NPUSHAMEHHS Memooamu KOMR’IOmepHoz20 excnepumenmy.
Ouineno uac paxymxy MeoiaHHUX PAHNCUPYBAHL HOMUPMA
Pi3HUMU anizopummamu piwleHHs 3a0a4wi npo NPUIHAUEHH.
Bcmanosneno, wo 3anpononoéanum memooom npu nomip-
Hil Kitbkocmi ansmepruamue (n<50) medianni panxcupyean-
HSL PO3PAX0BYIOMBCA 8 PEHCUMI HaCY, OAU3LKOMY 00 PeanbHO-
20. Iloxazano maxodic, wo Ha 6iOMiny 6i0 iHwUX Memodie uac
ob6uucaenns Mediannux pandicupyeans 3a 00noMozo10 3adaui
npPo NPUHAUEHHA He 3aTedcumsv 6i0 CmyneHs Y3200HceHocmi
THOUBIOYANLHUX eKCREPMHUX PAHIHCUPYBAHD.

Ompumani pesyaomamu KopucHi 0 nPpaKmuuHo20 3acmo-
CYBaHHs 00CAI0NHCEHOT NPOUEOYPU 8 MeEPENHCeGUX eKCNEePMHUX
cucmemax. Y maxux cucmemax 4ac 00MUCAeHHA KOHCEHCYC-
HO20 panicupyeanns mae Gymu 6ausvkum 00 peanvrozo. Kpim
MO020, 6 MEPEHCEBUX CUCTEMAX eKCNEPMU3U 3 PAXYHOK 6UNA0-
K06020 KOMNIEKMYBAHHSA KOJEKMUBY EKCNEePMi8 MONCIUGUL
HU3LKUU PieHb Y32000CeHOCHI THOUBIOYAIVHUX PAHICUPY A -
Ha. [ns docaidscenoi npouedypu ue He 6naAUBAE HA MPUBA-
aicmo pospaxynxy. Lle dozsonse pexomenoysamu pospoone-
HY 06MUCAI08ATIbHY NPOUEOYPY WEUOKO020 NOUYKY MeDIAHHUX
KoHCeHcycHux pamndcupyeanv 3a Kemeni-Cnennom i Kyxom-
Ceiihopdom 0ns npaxmuunozo 3acmocysanHs 6 CUcmemax
KOJIeKMUBHOL Mepedricesoi ekcnepmu3u

Kniouosi cnosa: xonexmuene excnepmme ouinio8amnns, me-
dianni KOHCEHCYCHI PAHICUPYBAHHS, 3A0a1a NPO NPUSHAYEHHSL
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The most theoretically justified method for constructing

The task on searching for an aggregate expert opinion
along a ranking scale based on individual rankings of a group
of experts, initiated as the classic problem about collective
expert estimation, has been widely used in various technical
and socio-economic applications. These include the tasks on
social choice (or vote), multiagent resource allocation prob-
lems, a multicriteria choice [1]. The applied interest in aggre-
gate ranking of preferences received new impetus with the
beginning of the 21th century with the emergence of search
engines and meta-search engines. In such problems, rankings
of large arrays of data from electronic sources are aggregated
(specifically global and local networks) [2].

One of the fields of wide application of the aggregation of
expert preferences is the network expertise [3], in which par-
ticipants of social networking and professional networking
communities act as experts [4, 5]. For the tasks of network
expertise, it is a very principal requirement to obtain an ac-
curate aggregated expert estimate in real time peer.

aggregated rankings is the median method, initiated in pa-
per [6] and named the Kemeny’s median. Median aggrega-
tion in ranking scales was further developed in studies [7, 8],
in which the Cook-Seiford median was proposed. The main
problem in calculating the median aggregate rankings is that
all the medians are the NP-complete problems and require
the non-polynomial cost of computing time. Despite the
existence of multiple heuristic algorithms to reduce com-
puting time for the problems on the median aggregation
based on ranking scales, this issue cannot be considered to be
completely resolved. In this context, it is promising, though
unfairly disregarded by specialists, to find the median aggre-
gation by stating it as the assignment problem (AP), which
is a linear problem of integer programming, well known in
the study of operations [9]. The assignment problem has
a polynomial complexity, a number of efficient algorithms
were developed in detail to solve it. Thus, research into eco-
nomical alternatives for the calculation of strict aggregated
rankings applying the assignment problem is rather relevant.




2. Literature review and problem statement

The search for a consensus ranking implies the fol-
lowing: K experts are offered to consider n alternatives
that the experts organize based on personal preferences. In
accordance with positions that the alternatives take based
on the individual preferences of experts, the alternatives
are numbered along a ranking scale, forming an individual
ranking. In the process of aggregation (merging, based on
any rule, denoted as an aggregation function) of individual
rankings of experts, there should be formed a collective
ranking, commonly referred to as a consensus if it expresses
opinions of all K experts in the best fashion. Historically,
the first methods for consensus rankings are the methods
of social choice or voting, based on the principles of «fair»
vote [10]. Methods of social choice are entirely based on
heuristic rules [11]. These methods lead to well-known
controversial collective decisions, known as the «voting
paradoxes» [12]. Specifically, it is a well-known possible
violation of the transitivity of a result — the Condorcet
paradox [13]. Therefore, methods of social choice cannot be
considered sufficiently substantiated mathematically. The
first attempt at a rigorous mathematical formalization of
the problem was paper [6], which formulated the axiomatic
method for aggregating the rankings based on the distance
between them. The method of aggregation, proposed in [6],
was named the Kemeny-Snell median, and immediately
drew the attention of specialists as consensus devoid of
weaknesses inherent to the algorithms of social choice. Note
that paper [6] did not estimate the computational com-
plexity for the authors’ proposed median consensus ranking.
Later, [7] pointed out that the Kemeny-Snell median is
a problem of the non-polynomial complexity, and [8] proved
that its computational complexity is estimated to be O(n!).
Paper [14] gave impressive estimates for the volume of com-
puting the Kemeny-Snell median when solving a problem
by the brute-force method. Specifically, it is shown that at
n =17 the total number of considered rankings is expressed
by a figure with 18-th decimal digits.

The non-polynomial complexity of the Kemeny-Snell
problem has led to an intensive search for the methods to
reduce it to the polynomial problem. At present, a number
of algorithms have been proposed that solve the problem
on the median consensus ranking by reducing it to the
problem of integer linear programming. It is proposed to
subsequently solve this problem using a branch and bound
method [15].

In [16], the Kemeny’s median is computed by the evolu-
tionary algorithm. Genetic algorithm for the economical cal-
culation of the Kemeny-Snell median is shown in paper [17];
it stresses that the algorithm is heuristic. Paper [18] pro-
posed the algorithm of genetic maps to solve the problem.
Two heuristic variants of the branch and bound method is
presented in [19] to find the Kemeny-Snell median. Another
approach to reduce the complexity of computing the median
ranking by searching based on a tree with constraints is de-
scribed in paper [20]. In [21], the median ranking is found
applying the algorithm of ant colonies. [15] pointed out that
by the time that paper was published, there were 104 known
calculation algorithms for the Kemeny-Snell median. The
main disadvantage of all these approaches to reducing the
computational complexity in the calculation of the Ke-
meny-Snell median is that all these algorithms disrupt the
original axiomatics and are more or less approximate.

An alternative median consensus ranking is the Cook-Sei-
ford median [7]. In their work, Cook and Seiford proposed
not only the new median ranking, satisfying the axiomatics
of Kemeny-Snell, but also showed that the proposed median
reduces to the assignment problem, well-known in the study
of operations. We shall emphasize this point. The purpose
of solving an AP is the allocation of n indivisible resources
to n objects at a minimum cost (or a maximum profit) as
a result of the allocation. One object can only be assigned
with a single resource. For the first time, AP and its solving
algorithm were formulated in paper [22]. Because AP to
a large extent was based on studies by Hungarian mathema-
ticians in 1930s, in [22] the proposed algorithm for solving
AP was named the «Hungarian method». Half a century of AP
use in applied mathematics helped investigate it in detail [23].
It is proven that the Hungarian algorithm for solving AP has
a polynomial complexity of not larger than O(n") [24]. The
proof that the complexity of solving AP could be reduced
to O(n®) was given in [9]. Paper [25] showed that the poly-
nomial complexity could be lowered below 3. It was also
proven that the Kemeny-Snell median could also be stated
as the assignment problem [26].

The above analysis allows us to argue on the following.
Median consensus rankings are the only precise solution to
the problem on collective expert estimation. However, both
the Kemeny-Snell median and the Cook-Seiford median
are the problems of the non-polynomial complexity. A large
number of the proposed algorithms to reduce the compu-
tational complexity of calculating the medians do not meet
the axiomatics of Kemeny and are approximate. At the same
time, it is known that the median rankings can be reduced
without any approximations to the assignment problem.
A given problem can be solved over a polynomial time. How-
ever, this issue has not been sufficiently investigated, neither
theoretically nor practically. The research into this issue has
necessitated our article.

3. The aim and objectives of the study

The aim of this study is to investigate the possibilities to
effectively solve the problem on computing the median con-
sensus ranking applying the assignment problem and known
algorithms for solving it.

To accomplish the aim, the following tasks have been set:

— to formalize the median rankings and representation of
medians in the form of AP;

— to analyze AP and algorithms for solving it;

— to run a computational experiment aimed at estimating
the time required to calculate median rankings formulated in
the form of AP.

4. Median rankings and reducing the median rankings
to the assignment problem

We shall state the problem on aggregating the individual
ranking preferences in the following form [14, 27]. Let there
be a set of alternatives A ={A1, A,,..., A}, which are arranged
by a group of K experts. Each expert from & (k=1,.., K)
arranges alternatives based on personal preference and rep-
resents individual ranking:

P ={A, A, ,..A ] )



Each individual ranking (1) can be represented as:
P =lg'q),..qL}, )

where ¢’ is the position taken by the i-th alternative in the
ranking of the k-th expert.

Collective consensus ranking, based on the concept of
distance, implies determining the ranking P that is closest
to all individual rankings according to a certain introduced
measure. In this case, result P is called a median consensus
ranking,

The Kemeny-Snell median.

In paper [6], Kemeny and Snell formulated four axioms
that must be met for any measure of distance between two
rankings, and proved the existence of a distance metric,
which satisfies all these axioms, and its uniqueness.

The Kemeny-Snell axioms.

Axiom 1: d(P';P?) satisfies three properties of the stan-
dard metric (or distance):

1) Positivity: equality d(P';P?)>0, holds if and only
if P'=P?

2) Symmetry: d(P';P?*)=d(P*P");

3) Triangle inequality:

d(P';P*)<d(P";P*)+d(P*P?%)

for any three rankings P!, P?, P3, and the equality hods if and
only if ranking P? is located between P! and P3.

Axiom 2 (invariance): distance d is invariant relative
to designations, that is, at identical permutations of ob-
jects within rankings P! and P? the distance between new
rankings P'! and P?! equals d(P'; P?).

Axiom 3 (coherence): If two rankings P' and P’ are the
same, except for the set S of k elements, which is a segment
of both, then d(P!; P?) equals the distance between the
rankings of only those % elements.

Axiom 4 (scaling): minimal positive distance d between
rankings is equal to unity.

It was proven in [6] that axioms 1-4 uniquely determine
distance d(P'; P?) at any length of rankings n>2, and ex-
pression:

): argminid(P,P(i)) 3)

Med _KemSn(P',P”,..., P
4 i=1
defines the only one distance d that satisfies axioms 1—4,
which is named the Kemeny-Snell median.

The Cook-Seiford median.

An alternative axiomatical collective ranking is the me-
dian that was proposed in a paper by Cook-Seiford [7].
The distance between two rankings by Cook-Seiford is de-
termined in the space of positions taken by alternatives in
individual rankings:

d(Pk1,sz)=§n“

i=1

q' -4, (4)

where ¢* is the position taken by the i-th alternative in the
k-th ranking of an expert.

Papers [7, 8] show that distance (4) satisfies the axiom
system by Kemeny-Snell. The distance of consensus vector P
from the entire set of expert rankings {P*} is equal to:

K n '
q; —4;) (5)

k=1 i=1

A(P.P0)=Fa(pp)-

=

where g; is the position of alternative A; in ranking P.

The optimization problem by Cook-Seiford can be formu-
lated in the form: it is required to find such a ranking P (the
Cook-Seiford median) for which:

Med_CookSeif (P',P”,....,

:arg;ningd(P",P):

PX)=

(6)

In [8], it was demonstrated that the computation of the
proposed median is equivalent to solving a problem of linear
integer programming.

If we assume that alternative A; may take the j-th position
inranking P (j =1, 2,..., n), then distance (6) can be written as:

(P P(k)) szuyv’ (7)

i=1 j=1

where

|1, if A, takes a place j in ranking P,
Yi 0, otherwise.

The minimization of expression (7) can be represented
as the assignment problem, known in the linear discrete pro-
gramming [9]:

argmin 2 Zdﬁyii (8)

;i =1 j=1

with constraints:

Zyy =1 9)

i=1,..,n

(one alternative may take only one position)
(10)

(in one position, there may be only one alternative).

We shall consider the problem on finding the Kemeny
median on the set of preference vectors [26].

Let (P!, P2,..., PX) be the individual rankings defined by
the experts, and P is an arbitrary ranking. We shall assign
to it a n-dimensional vector Il=(m,,=,,...,n,) whose i-th
component is equal to the number of alternatives that are
preferable than A;. In this case, the Kemeny median is such
ranking T that:

,[\4>§

d(l'[ ' ) argmmZd(HH )

i=1

(1)

i

It follows from (11):

i

i=1 j=1



Let alternative A in ranking P be located at the j-th posi-
tion. We introduce the loss matrix:

Considering the rankings in which random alternative A;,
ie{l,.., n} is located sequentially from position 1 to n, it can
be argued that the loss matrix r; characterizes the «disagree-
ment» of experts with assigning the alternative A; to the j-th
position in the resulting ranking. Introduce variable:

_ |1, if the alternative 4, is assigned to j-th place,
7710, otherwise.

Vector X =(x11, X99,..., Xup) Matches a certain ranking if
and only if, when:

ixij =1, je{t..n}.
=

The Kemeny median is the ranking at which:

n n
ZZ%

=1 j=1

reaches a minimum. Thus, the problem on finding the Ke-
meny median can be stated in the form of the following inte-
ger optimization problem:

n n
arg rEnin z z 10

=1 j=1

12)
with constraints

zxij =1, ie{l,., n},
=
inj =1, je{l,.., n},
i=1

07 .
X, = {17 ie{l,.,n},

that is, the assignment problem.

5. The assignment problem and algorithms for solving it

An analysis of methods for solving AP shows that many
existing solving algorithms, despite the same theoretical
computational complexity, demonstrate in practice different
indicators of AP solving speed at different values for n. We
have chosen for the computational experiment, described be-
low, on estimating the speed of calculations four of the most
popular AP solving algorithms:

— the Hungarian algorithm;

— the Mack’s algorithm [28, 29];

—the AP solving algorithm as a particular case of the
transportation problem with a zero supply and demand [30];

— an algorithm for finding the minimal matching in a bi-
partite weighted graph [31].

We shall represent AP in the following way. Let there be
n resources (in the original statement — employees) that can

be utilized to perform n operations; in this case, exploiting
the i-th employee for the j-th operation requires c¢; cost (i,
j=1,..,n). Itis required to instruct each employee to perform
a certain work to minimize total costs. Introduce variables:

|1, ifi-th employee does j-th operation,
7710, otherwise.

Given that each employee performs one task and some-
body does each work, we obtain the following problem of
integer linear programming:

arg min zn: zn: €%

i1 j=t

(13)

with constraints

n

SYx,=1 j=1..n,

i=1

n

inj =1, i=1,..,n,

J=1

x; 6{0,1}, ,j=1..n

The Hungarian algorithm for AP solving is based on the
transformation of the cost matrix. A system of zero matrix
elements, with the property that no two of them lie in the
same line or column, is called the system of independent
zeros (SI17). The Hungarian method implies converting the
original problem with matrix C to the equivalent minimiza-
tion problem with matrix D. If matrix D contains a system
of n independent zeros, a solution to the problem then is the
matrix X, in which positions that correspond to independent
zeros are taken by unities, while other elements are zero.
Thus, the Hungarian algorithm aims to build SIZ through
equivalent transformations of matrix D. Basic equivalent
transform is applied: if the elements of matrices C,, and D,
are related through equalities

nxn

d;=c;+o,+B(0;20,8,20,i,j=1..,n),

the assignment problems are then equivalent with these
matrices, that is, the sets of solutions (optimal points) in the
matrices are the same. The original Kuhn’s algorithm and
its numerous modifications [32, 33] defines the sequence of
steps that lead to forming the SIZ of assignment matrix.

The same transformations underlie the algorithm to solve
AP proposed by Mack [28]. Paper [29] indicated that the
Mack’s algorithm largely focuses on program implementa-
tion, and, given this, it has a better computational efficiency.

The assignment problem is a particular case of the classic
problem of linear programming — a transportation problem,
in which the number of departure points equals the number
of destinations, that is, a transportation table is shaped like
a square. In addition, at each destination, the required
volume is 1, and the proposed quantity at each production
point is equal to 1. Therefore, the assignment problem can be
solved employing the algorithm for solving a transportation
problem, based on the method of potentials [30].

Another group of algorithms to solve AP are the al-
gorithms based on the equivalence between AP and the
problem on searching for a minimal matching in a weighted
bipartite graph [31]. The vertices of the graph correspond



to the lines and columns of the cost matrix, and the edges
have equal weights to the elements of the Kmatrix [32].
This problem can be effectively solved employing the Hop-
croft-Karp algorithm [33]. Its computational complexity
is O(n23) [34].

6. Experimental study into computational efficiency
of calculating the consensus median rankings
as the assignment problem

To study the time required to compute consensus me-
dian rankings by Kemeny-Snell and Cook-Seiford using the
methods to solve AP of various dimensionality n by diffe-
rent algorithms, we performed a computational experiment
whose general scheme is shown in Fig 1. We investigated the
dependence of time required to solve AP on dimensionality
of n (number of alternatives). In order to solve the problem
by employing different algorithms, we generated a repre-
sentative statistical sample of pseudorandom sets of indi-
vidual rankings for which we calculated the Kemeny-Snell
and Cook-Seiford medians. When calculating, the median
rankings were stated in the form of AP based on relations (8)
and (12). Next, AP was solved by the above four algorithms:

— the Hungarian algorithm;

— the Mack’s algorithm;

—the algorithm for solving a transportation problem
using the method of potentials;

— the Hopcroft-Karp algorithm to search for a minimal
matching in a weighted bipartite graph.

Generation of set of
individual rankings

/\

Collective ranking in
the form of the Cook-
Seiford median

Collective ranking in
the form of the
Kemeny median

v Y

Statement of the
assignment problem
based on relation (8)

Statement of the
assignment problem
based on relation (12)

Solving AP as the
> transportation
problem

Solving AP by the | _
Hungarian method [

Solving AP by

searching for a

| minimal matching in

a weighted bipartite
graph

Solving AP by the
Mack method

4
\

Fig. 1. Scheme of computational experiment

Each of the above algorithms was implemented in the
software of computer algebra system Scilab. The experiment
was conducted at the hardware-software platform: CPU In-
tel Core i5 2450M 2.5 Ghz; RAM 6 GB DDR3 1,300 MHz;

OS Win7. During calculations, we estimated the average
count time for all algorithms. We shall describe in detail
the generation of pseudo-random rankings. Paper [35] ap-
plied, in order to generate pseudo-random rankings, rather
complicated algorithms based on ranking statistics [36].
The experiment reported here utilized the productive idea
of generation, proposed in paper [37], based on which we
formulated the following simplified algorithm for generating
the rankings. To generate a synthesized matrix of collective
rankings the size of MxN, the following algorithm was
applied. Standard operator rand generates M independent
arrays of N pseudo-random numbers uniformly distributed
in the range of [0,1]. The arrays are ordered line by line, the
values for the elements of arrays are replaced with a num-
ber that these elements accept in the ordered row (that is,
rank). As a result, in each line, there forms a pseudorandom
sequence along the ranking scale the size of [1, N| with evenly
distributed ranks. This sequence is considered as an indi-
vidual ranking by expert number i, i e[1,M], and the entire
generated ranking matrix as the set of individual rankings
by M experts. The following values were selected for the di-
mensionality of the problem (the power of the set of alterna-
tives) n={5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. For clarity, the
number of experts K in each synthesized matrix was taken
to be equal to 2n. The sample size of each dimensionality is
150 elements.

Results of the experiment are shown in Fig. 2.

Papers [36, 38] that addressed the calculation of median
consensus rankings using a branch and bound method and
the decomposition combinatorial techniques, highlighted
the important fact. It was established that the time required
to solve the problem on the search for a consensus ranking
significantly depends on the coherence degree of individual
expert rankings.

This coherence is estimated based on the Kendall’s con-
cordance coefficient [26, 39], which shall be calculated from
formula:

128
- (1)
K (n - n)
where S is the variance estimate; K is the number of experts;
n is the number of alternatives.
Estimation of variance:

n K 2
S= Z(kaﬂe —mkoj ,
i=1 \ k=1

(15)

where & is the index of an expert (k=1, 2,..., K), mkj, is the
rank value, assigned by the &-th expert to the i-th alternative;
mky is the estimate of the mean value of ranks based on alter-
natives, derived from:

1 & K
mky=—3> mk,.
n

i=1 k=1

The concordance coefficient is equal to 1 if all experts’
rankings in a group are the same, and is equal to 0 if all
rankings are different. According to [40], the coherence of in-
dividual expert rankings is considered to be weak if W <0.3,
moderate if 0.3<W <0.5, strong if W>0.5, respectively. To
verify the dependence of calculation time of median rankings
as AP on the coherence degree of individual rankings by ex-
perts, we performed a separate computational experiment.
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For the sets of individual expert rankings, synthesized
by the above algorithm, upon generating each matrix, we
estimated its coherence degree based on a concordance coef-
ficient by testing its statistical significance for criterion y*.
At W<0.3, the generated matrix was assigned to sample
«1 — Weak coherence»; at 0,3<W<0,5 — to sample «2 —
Moderate coherences; at W >0.5 — to sample «3 — Strong
coherence». Each sample was generated to a volume of
150 matrices for the above set 7 — 50 matrices of each dimen-
sionality and three levels of coherence. Next, we calculated
the Kemeny-Snell and Cook-Seiford medians as AP in the
formed samples by the four algorithms described above, and
the estimated the mean calculation time. Table 1 gives an
example of the summary results of the experiment, for calcu-
lation based on the Hungarian algorithm.

Mean calculation time of the Kemeny-Snell median (ms) by the Hungarian method
for different degrees of coherence of individual expert rankings

We applied to the constructed tables the non-parametric
Friedman-Babington-Smith test (hereinafter abbreviated as
the Friedman test) — a known ranking nonparametric statis-
tics [41]. The Friedman test null hypothesis H, is considered
to be the following: «differences between the values for rows
in the table are random». The alternative hypothesis is H, —
«there are significant differences in the rows of the non-ran-
dom character». The confidence level for the Friedman test
was accepted equal to 0.95. For two of the four tables, at the
required significance level, the Friedman statistics do not
yield a definite answer. We applied, in order to analyze these
two tables, more powerful non-parametric statistics — the
Anderson-Kahneman-Schach test [42] and the Dana Quade
test [43]. By using these tests, we obtained for all four tables
an unambiguous result with the above-specified confidence
probability — the differences bet-
ween the table’s rows are random.

Consider the results shown
in Fig. 2. At a moderate number

Table 1

- — of alternatives (n<50), calcula-

Coherence Problem dimensionality ting the both median rankings
degree | N=5 [N=10[N=15[N=20 [N=25 [N=30 [ N=35 [ N=40 | N=45 | N=50 | ysing AP requires low computa-
Weak | 117 | 42.0 | 853 | 152.3 | 272.1 | 426.3 | 5317 | 9253 [1420.3[1,850.2| tional cost that are well within the
Moderate | 17.3 | 374 | 939 | 1569 | 2932 | 4411 | 5232 | 9960 | 1355.1|2,009.7| real time scale (1-2s), regardless
of the algorithm employed. The

Swong | 153 | 47.4 | 867 | 1475 [ 3075 [ 4128 [ 5452 [10145] 14835 [ 19435] i of the count time, given in




a logarithmic scale, really demonstrate the computational
complexity of the problem, not exceeding O(n). The shape
of dependences corresponds to the power function logarithm.
Computational costs for calculating the Kemeny-Snell and
Cook-Seiford medians almost do not differ. At a small num-
ber of alternatives (n<15), all algorithms require a roughly
equal time. With the growing number of alternatives, the
algorithm for solving AP as the transportation problem runs
noticeably slower than the rest. The highest performance is
demonstrated by the Mack’s, although its high-speed perfor-
mance is almost comparable to the Hungarian algorithm and
the Hopcroft-Karp algorithm.

Results of the second part of the computational experi-
ment demonstrate another important result. When calcula-
ting the median consensus rankings as AP, the computational
complexity does not depend on coherence degree of indi-
vidual expert rankings. Given this, the proposed procedure
differs favorably from the solution to the problem on collec-
tive ranking applying a branch and bound method. At such
a solution, at a low coherence of individual expert opinions,
the time required to solve the problem increases.

7. Discussion of results of estimating the speed
of computation of median consensus rankings

In the process of study, we showed the computational
efficiency of applying the assignment problem for calcu-
lating collective consensus rankings in the form of the Ke-
meny-Snell and Cook-Seiford medians.

Numerical experiment has revealed that the three prac-
tically investigated algorithms for solving the assignment
problem out of four are practically equivalent in terms of
high-speed performance; however, with the increasing num-
ber of alternatives, the Mack’s algorithm demonstrates the
highest speed performance. The calculation time based on
a medium power platform using the system Scilab for the
number of alternatives n<50 employing the Mack’s algo-
rithm does not exceed 2 s.

This result is useful for applying in collective systems for
expert estimation of real time. Specifically, such systems are
the network expertise systems.

The proposed method for the calculation of median ran-
kings has an important positive quality. It is established that
the calculation time of consensus rankings, in contrast to
other methods for reducing the computational complexity
of a problem, does not depend on coherence degree of indivi-
dual expert rankings. This favorably distinguishes it from, for
example, solving a problem on medians using a branch and
bound method and by combinatorial methods. This result is
important for the application of the method in network expert
systems with a random selection of the contingent of experts.

The result of the computational experiment is also useful
for practical application of the proposed procedure at net-
work expert systems. In network expertise systems, due to
a random gathering of the team of experts, there is a possi-

bility for a low coherence level of individual rankings. In such
cases, the application of the proposed method does not affect
duration of the calculation.

The reported results of the study are not exhaustive.
Specifically, during expert evaluation, there is a possible
situation when experts assign to different alternatives the
same ranks: this is the situation of so-called tied ranks [26].
In the presence of associated ranks, the ratios, given in our
work, should be improved or adjusted. Study into compu-
tational efficiency of the proposed method in the presence
of associated ranks in the individual experts’ rankings is the
subject of further research.

8. Conclusions

1. Calculation of a collective expert opinion based on
individual experts’ rankings has two axiomatically sub-
stantiated variants — the Kemeny-Snell median and the
Cook-Seiford median. Since both options are the problems
of the non-polynomial computational complexity, in order
to decrease labor intensity of the problem, we suggested
reducing the median rankings to the problem of integer pro-
gramming — the assignment problem. In contrast to many
approximated and heuristic methods for solving the problem
on median rankings, reducing median rankings to AP retains
the original axiomatics of Kemeny-Snell and is, therefore,
the precise solution to the original problem. In this case, the
computational complexity of solution does not exceed O(n*),
which produces a significant gain in time during computa-
tion without violating the strict axiomatics of the problem.

2. The assignment problem to which the Kemeny-Snell
and Cook-Seiford medians are reduced, has been sufficiently
explored. A number of algorithms to solve the assignment
problem exist. The most popular are the Mack’s algorithm,
the Hungarian algorithm, the Hopcroft-Karp algorithm. All
these algorithms yield a polynomial computational com-
plexity with a power not exceeding 3. The algorithms were
implemented in software and investigated experimentally.

3. The numerical experiment showed that the use of algo-
rithms to solve the assignment problem when evaluating the
median consensus rankings makes it possible to fast compute
the ranking medians. For the number of alternatives not ex-
ceeding 50, at a typical computing platform, the count time
does not exceed 2—3 s, that is, the computation is executed
almost in real time. It was also found that the median calcu-
lation time in this case, in contrast to other methods, does not
depend on coherence degree of individual experts’ rankings.

Results of the conducted research allow us to recom-
mend the proposed rapid computational procedure for the
search of median consensus rankings by Kemeny-Snell and
Cook-Seiford for practical application in the network exa-
mination systems. The investigated computational procedure
combines the axiomatic accuracy, computational efficiency,
and independence from the coherence degree of individual
experts’ rankings.
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