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Досліджено можливість швидкого обчислення колек­
тивних експертних оцінок медіанного типу. Незважаючи 
на широке застосування для розрахунку колективних екс­
пертних оцінок медіан Кемені­Снелла і Кука­Сейфорда, 
недостатньо досліджені можливості скорочення часу 
обчислення медіанного консенсусного ранжирування шля­
хом застосуванням задачі про призначення і відомих 
алгоритмів її рішення. На відміну від більшості відомих 
методів пропонований в статті метод не є наближеним 
і зберігає вихідну медіанну аксіоматику Кемені. 

Досліджено можливість розрахунку медіан Кемені­
Снелла і Кука­Сейфорда із застосуванням задачі про 
призначення методами комп’ютерного експерименту. 
Оцінено час рахунку медіанних ранжирувань чотирма 
різними алгоритмами рішення задачі про призначення. 
Встановлено, що запропонованим методом при помір­
ній кількості альтернатив (n<50) медіанні ранжируван­
ня розраховуються в режимі часу, близькому до реально­
го. Показано також, що на відміну від інших методів час 
обчислення медіанних ранжирувань за допомогою задачі 
про призначення не залежить від ступеня узгодженості 
індивідуальних експертних ранжирувань. 

Отримані результати корисні для практичного засто­
сування дослідженої процедури в мережевих експертних 
системах. У таких системах час обчислення консенсус­
ного ранжирування має бути близьким до реального. Крім 
того, в мережевих системах експертизи за рахунок випад­
кового комплектування колективу експертів можливий 
низький рівень узгодженості індивідуальних ранжируван­
ня. Для дослідженої процедури це не впливає на трива­
лість розрахунку. Це дозволяє рекомендувати розробле­
ну обчислювальну процедуру швидкого пошуку медіанних 
консенсусних ранжирувань за Кемені­Снеллом і Куком­
Сейфордом для практичного застосування в системах 
колективної мережевої експертизи
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1. Introduction

The task on searching for an aggregate expert opinion 
along a ranking scale based on individual rankings of a group 
of experts, initiated as the classic problem about collective 
expert estimation, has been widely used in various technical 
and socio-economic applications. These include the tasks on 
social choice (or vote), multiagent resource allocation prob-
lems, a multicriteria choice [1]. The applied interest in aggre-
gate ranking of preferences received new impetus with the 
beginning of the 21th century with the emergence of search 
engines and meta-search engines. In such problems, rankings 
of large arrays of data from electronic sources are aggregated 
(specifically global and local networks) [2].

One of the fields of wide application of the aggregation of 
expert preferences is the network expertise [3], in which par-
ticipants of social networking and professional networking 
communities act as experts [4, 5]. For the tasks of network 
expertise, it is a very principal requirement to obtain an ac-
curate aggregated expert estimate in real time peer.

The most theoretically justified method for constructing  
aggregated rankings is the median method, initiated in pa-
per [6] and named the Kemeny’s median. Median aggrega-
tion in ranking scales was further developed in studies [7, 8],  
in which the Cook-Seiford median was proposed. The main 
problem in calculating the median aggregate rankings is that 
all the medians are the NP-complete problems and require 
the non-polynomial cost of computing time. Despite the 
existence of multiple heuristic algorithms to reduce com-
puting time for the problems on the median aggregation 
based on ranking scales, this issue cannot be considered to be 
completely resolved. In this context, it is promising, though 
unfairly disregarded by specialists, to find the median aggre-
gation by stating it as the assignment problem (AP), which 
is a linear problem of integer programming, well known in 
the study of operations [9]. The assignment problem has  
a polynomial complexity, a number of efficient algorithms 
were developed in detail to solve it. Thus, research into eco-
nomical alternatives for the calculation of strict aggregated 
rankings applying the assignment problem is rather relevant.
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2. Literature review and problem statement

The search for a consensus ranking implies the fol-
lowing: K  experts are offered to consider n alternatives 
that the experts organize based on personal preferences. In 
accordance with positions that the alternatives take based 
on the individual preferences of experts, the alternatives 
are numbered along a ranking scale, forming an individual 
ranking. In the process of aggregation (merging, based on 
any rule, denoted as an aggregation function) of individual 
rankings of experts, there should be formed a collective 
ranking, commonly referred to as a consensus if it expresses 
opinions of all K experts in the best fashion. Historically, 
the first methods for consensus rankings are the methods 
of social choice or voting, based on the principles of «fair» 
vote [10]. Methods of social choice are entirely based on 
heuristic rules [11]. These methods lead to well-known 
controversial collective decisions, known as the «voting 
paradoxes» [12]. Specifically, it is a well-known possible 
violation of the transitivity of a result – the Condorcet 
paradox [13]. Therefore, methods of social choice cannot be 
considered sufficiently substantiated mathematically. The 
first attempt at a rigorous mathematical formalization of 
the problem was paper [6], which formulated the axiomatic 
method for aggregating the rankings based on the distance 
between them. The method of aggregation, proposed in [6], 
was named the Kemeny-Snell median, and immediately 
drew the attention of specialists as consensus devoid of 
weaknesses inherent to the algorithms of social choice. Note 
that paper [6] did not estimate the computational com-
plexity for the authors’ proposed median consensus ranking. 
Later, [7] pointed out that the Kemeny-Snell median is  
a problem of the non-polynomial complexity, and [8] proved 
that its computational complexity is estimated to be O n( !). 
Paper [14] gave impressive estimates for the volume of com-
puting the Kemeny-Snell median when solving a problem 
by the brute-force method. Specifically, it is shown that at 
n = 17 the total number of considered rankings is expressed 
by a figure with 18-th decimal digits.

The non-polynomial complexity of the Kemeny-Snell 
problem has led to an intensive search for the methods to 
reduce it to the polynomial problem. At present, a number 
of algorithms have been proposed that solve the problem 
on the median consensus ranking by reducing it to the 
problem of integer linear programming. It is proposed to 
subsequently solve this problem using a branch and bound 
method [15].

In [16], the Kemeny’s median is computed by the evolu-
tionary algorithm. Genetic algorithm for the economical cal-
culation of the Kemeny-Snell median is shown in paper [17];  
it stresses that the algorithm is heuristic. Paper [18] pro-
posed the algorithm of genetic maps to solve the problem. 
Two heuristic variants of the branch and bound method is 
presented in [19] to find the Kemeny-Snell median. Another 
approach to reduce the complexity of computing the me dian 
ranking by searching based on a tree with constraints is de-
scribed in paper [20]. In [21], the median ranking is found 
applying the algorithm of ant colonies. [15] pointed out that 
by the time that paper was published, there were 104 known  
calculation algorithms for the Kemeny-Snell median. The 
main disadvantage of all these approaches to reducing the 
computational complexity in the calculation of the Ke-
meny-Snell median is that all these algorithms disrupt the 
original axiomatics and are more or less approximate.

An alternative median consensus ranking is the Cook-Sei-
ford median [7]. In their work, Cook and Seiford proposed 
not only the new median ranking, satisfying the axiomatics 
of Kemeny-Snell, but also showed that the proposed median 
reduces to the assignment problem, well-known in the study 
of operations. We shall emphasize this point. The purpose 
of solving an AP is the allocation of n indivisible resources 
to n objects at a minimum cost (or a maximum profit) as  
a result of the allocation. One object can only be assigned 
with a single resource. For the first time, AP and its solving 
algorithm were formulated in paper [22]. Because AP to 
a large extent was based on studies by Hungarian mathema-
ticians in 1930s, in [22] the proposed algorithm for solving  
AP was named the «Hungarian method». Half a century of AP  
use in applied mathematics helped investigate it in detail [23].  
It is proven that the Hungarian algorithm for solving AP has 
a polynomial complexity of not larger than O n( )4  [24]. The 
proof that the complexity of solving AP could be reduced  
to O n( )3  was given in [9]. Paper [25] showed that the poly-
nomial complexity could be lowered below 3. It was also 
proven that the Kemeny-Snell median could also be stated 
as the assignment problem [26].

The above analysis allows us to argue on the following. 
Median consensus rankings are the only precise solution to 
the problem on collective expert estimation. However, both 
the Kemeny-Snell median and the Cook-Seiford median 
are the problems of the non-polynomial complexity. A large 
number of the proposed algorithms to reduce the compu-
tational complexity of calculating the medians do not meet 
the axiomatics of Kemeny and are approximate. At the same 
time, it is known that the median rankings can be reduced 
without any approximations to the assignment problem. 
A given problem can be solved over a polynomial time. How-
ever, this issue has not been sufficiently investigated, neither 
theoretically nor practically. The research into this issue has 
necessitated our article.

3. The aim and objectives of the study

The aim of this study is to investigate the possibilities to 
effectively solve the problem on computing the median con-
sensus ranking applying the assignment problem and known 
algorithms for solving it.

To accomplish the aim, the following tasks have been set:
– to formalize the median rankings and representation of 

medians in the form of AP;
– to analyze AP and algorithms for solving it;
– to run a computational experiment aimed at estimating 

the time required to calculate median rankings formulated in 
the form of AP.

4. Median rankings and reducing the median rankings  
to the assignment problem

We shall state the problem on aggregating the individual  
ranking preferences in the following form [14, 27]. Let there 
be a set of alternatives A = {A1, A2,…, An}, which are arranged 
by a group of K experts. Each expert from k (k = 1,…, K) 
arranges alternatives based on personal preference and rep-
resents individual ranking:

Pk
k k kA A A

n
= { }

1 2
, ,..., .  (1)
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Each individual ranking (1) can be represented as:

Pk k k
n
kq q q= { }

1 2, ,..., ,  (2)

where qi
k  is the position taken by the i-th alternative in the 

ranking of the k-th expert. 
Collective consensus ranking, based on the concept of 

distance, implies determining the ranking P  that is closest 
to all individual rankings according to a certain introduced 
measure. In this case, result P  is called a median consensus 
ranking.

The Kemeny-Snell median. 
In paper [6], Kemeny and Snell formulated four axioms 

that must be met for any measure of distance between two 
rankings, and proved the existence of a distance metric, 
which satisfies all these axioms, and its uniqueness. 

The Kemeny-Snell axioms.
Axiom 1: d( ; )P P1 2  satisfies three properties of the stan-

dard metric (or distance): 
1) Positivity: equality d( ; ) ,P P1 2 0³  holds if and only  

if P P1 2= ;
2) Symmetry: d d( ; ) ( ; );P P P P1 2 2 1=
3) Triangle inequality:

d d d( ; ) ( ; ) ( ; )P P P P P P1 3 1 2 2 3£ +

for any three rankings P1, P2, P3, and the equality hods if and 
only if ranking P2 is located between P1 and P3.

Axiom 2 (invariance): distance d is invariant relative 
to designations, that is, at identical permutations of ob-
jects within rankings P1 and P2 the distance between new  
rankings P1,1 and P2,1 equals d(P1; P2).

Axiom 3 (coherence): If two rankings P1  and P2  are the 
same, except for the set S of k elements, which is a segment 
of both, then d(P1; P2) equals the distance between the  
rankings of only those k elements. 

Axiom 4 (scaling): minimal positive distance d between 
rankings is equal to unity. 

It was proven in [6] that axioms 1–4 uniquely determine 
distance d(P1; P2) at any length of rankings n ³ 2,  and ex-
pression:

Med KemSn dK

i

K
i_ , , , arg min , ( )P P P P P

P

1 2

1

( ) = ( )
=
∑  (3)

defines the only one distance d that satisfies axioms 1–4, 
which is named the Kemeny-Snell median. 

The Cook-Seiford median. 
An alternative axiomatical collective ranking is the me-

dian that was proposed in a paper by Cook-Seiford [7]. 
The distance between two rankings by Cook-Seiford is de-
termined in the space of positions taken by alternatives in 
individual rankings:

d q qk k
i
k

i
k

i

n

P P1 2 1 2

1

, ,( ) = −
=
∑  (4)

where qi
k  is the position taken by the i-th alternative in the 

k-th ranking of an expert. 
Papers [7, 8] show that distance (4) satisfies the axiom 

system by Kemeny-Snell. The distance of consensus vector P 
from the entire set of expert rankings {Pk} is equal to:

d d q qk k

k

K

i
k

i
i

n

k

K

P P P P, , ,( )( ) = ( ) = −
= ==

∑ ∑∑
1 11

 (5)

where qi is the position of alternative Ai in ranking P. 
The optimization problem by Cook-Seiford can be formu-

lated in the form: it is required to find such a ranking P  (the 
Cook-Seiford median) for which:

Med CookSeif

d q

K

k

k

K

i
k

_ , , ,

arg min , arg min

P P P

P P
P P

1 2

1

…

�

( ) =

= ( ) = −
=

∑ qqi
i

n

k

K

==
∑∑

11

.  (6)

In [8], it was demonstrated that the computation of the 
proposed median is equivalent to solving a problem of linear 
integer programming. 

If we assume that alternative Ai may take the j-th position 
in ranking P (j = 1, 2,…, n), then distance (6) can be written as:

d d yk
ij ij

j

n

i

n
P P, ,( )( ) =

==
∑∑

11

 (7)

where

d d jij i
k

k

K

= −
=

∑
1

,

y
A j

ij
i=






1

0

, ,

,

if takes a place in ranking

otherwise.

P

The minimization of expression (7) can be represented 
as the assignment problem, known in the linear discrete pro-
gramming [9]:

arg min
y i

n

ij ij
j

n

ij

d y
= =
∑ ∑

1 1

 (8)

with constraints:

∀ =
=

=
∑

i n ij
j

n

y
1

1

1
,...,

 (9)

(one alternative may take only one position)

∀ =
=

=
∑

i n ij
i

n

y
1

1

1
,...,

 (10)

(in one position, there may be only one alternative). 
We shall consider the problem on finding the Kemeny 

median on the set of preference vectors [26]. 
Let (P1, P2,…, PK) be the individual rankings defined by 

the experts, and P is an arbitrary ranking. We shall assign 
to it a n-dimensional vector Π = ( , , , )p p p1 2  n  whose i-th 
component is equal to the number of alternatives that are 
preferable than Ai. In this case, the Kemeny median is such 
ranking Π* that:

d di i

i

K

i

K

Π Π Π Π*, arg min , .( ) ( )

==
( ) = ( )∑∑

11

 (11)

It follows from (11):

d i
i i

j

j

n

i

K

i

K

( , ) , .* ( ) ( )Π Π Π Π=
===

∑∑∑
111
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Let alternative A in ranking P be located at the j-th posi-
tion. We introduce the loss matrix:

rij i i
j

j

n

=
=

∑ Π Π, .( )

1

Considering the rankings in which random alternative Ai, 
i∈{1,..., n} is located sequentially from position 1 to n, it can 
be argued that the loss matrix rij characterizes the «disagree-
ment» of experts with assigning the alternative Ai to the j-th 
position in the resulting ranking. Introduce variable:

x
A j

ij
i=

1

0

,

,

if the alternative is assigned to th place,

otherwiise.





Vector X = (x11, x22,…, xnn) matches a certain ranking if 
and only if, when:

xij
j

n

=
=

∑ 1
1

,  j n∈{ }1,..., .

The Kemeny median is the ranking at which:

r xij ij
j

n

i

n

==
∑∑

11

reaches a minimum. Thus, the problem on finding the Ke-
meny median can be stated in the form of the following inte-
ger optimization problem:

arg min
Π

r xij ij
j

n

i

n

==
∑∑

11

 (12)

with constraints

xij
j

n

=
=

∑ 1
1

,  i ∈{1,..., n},

xij
i

n

=
=
∑ 1

1

,  j ∈{1,..., n},

xij =




0

1

,

,
 i ∈{1,..., n},

that is, the assignment problem.

5. The assignment problem and algorithms for solving it

An analysis of methods for solving AP shows that many 
existing solving algorithms, despite the same theoretical 
computational complexity, demonstrate in practice different 
indicators of AP solving speed at different values for n. We 
have chosen for the computational experiment, described be-
low, on estimating the speed of calculations four of the most 
popular AP solving algorithms:

– the Hungarian algorithm;
– the Mack’s algorithm [28, 29]; 
– the AP solving algorithm as a particular case of the 

transportation problem with a zero supply and demand [30]; 
– an algorithm for finding the minimal matching in a bi-

partite weighted graph [31].
We shall represent AP in the following way. Let there be 

n resources (in the original statement – employees) that can 

be utilized to perform n operations; in this case, exploiting 
the i-th employee for the j-th operation requires cij cost (i, 
j = 1,…, n). It is required to instruct each employee to perform 
a certain work to minimize total costs. Introduce variables:

x
i j

ij =




1

0

, ,

,

if th employee does th operation

otherwise.

Given that each employee performs one task and some-
body does each work, we obtain the following problem of 
integer linear programming:

arg min c xij ij
j

n

i

n

==
∑∑

11

 (13)

with constraints

xij
i

n

=
=
∑ 1

1

,  j n= 1,..., ,

xij
j

n

=
=

∑ 1
1

,  i n= 1,..., ,  

xij ∈{ }0 1, ,  i j n, ,..., .= 1

The Hungarian algorithm for AP solving is based on the 
transformation of the cost matrix. A system of zero matrix 
elements, with the property that no two of them lie in the 
same line or column, is called the system of independent 
zeros (SIZ). The Hungarian method implies converting the 
original problem with matrix C to the equivalent minimiza-
tion problem with matrix D. If matrix D contains a system 
of n independent zeros, a solution to the problem then is the 
matrix X, in which positions that correspond to independent 
zeros are taken by unities, while other elements are zero. 
Thus, the Hungarian algorithm aims to build SIZ through 
equivalent transformations of matrix D. Basic equivalent 
transform is applied: if the elements of matrices Cn n×  and Dn n×  
are related through equalities 

d c i j nij ij i j i j= + + ³ ³ =α β α β( , , , ,..., ),0 0 1

the assignment problems are then equivalent with these 
matrices, that is, the sets of solutions (optimal points) in the 
matrices are the same. The original Kuhn’s algorithm and 
its numerous modifications [32, 33] defines the sequence of 
steps that lead to forming the SIZ of assignment matrix. 

The same transformations underlie the algorithm to solve 
AP proposed by Mack [28]. Paper [29] indicated that the 
Mack’s algorithm largely focuses on program implementa-
tion, and, given this, it has a better computational efficiency.

The assignment problem is a particular case of the classic 
problem of linear programming – a transportation problem, 
in which the number of departure points equals the number 
of destinations, that is, a transportation table is shaped like  
a square. In addition, at each destination, the required 
volume is 1, and the proposed quantity at each production 
point is equal to 1. Therefore, the assignment problem can be 
solved employing the algorithm for solving a transportation 
problem, based on the method of potentials [30].

Another group of algorithms to solve AP are the al-
gorithms based on the equivalence between AP and the 
problem on searching for a minimal matching in a weighted 
bipartite graph [31]. The vertices of the graph correspond 
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to the lines and columns of the cost matrix, and the edges 
have equal weights to the elements of the Kmatrix [32]. 
This problem can be effectively solved employing the Hop-
croft-Karp algorithm [33]. Its computational complexity  
is O(n2.5) [34].

6. Experimental study into computational efficiency  
of calculating the consensus median rankings  

as the assignment problem

To study the time required to compute consensus me-
dian rankings by Kemeny-Snell and Cook-Seiford using the 
methods to solve AP of various dimensionality n by diffe-
rent algorithms, we performed a computational experiment 
whose general scheme is shown in Fig 1. We investigated the 
dependence of time required to solve AP on dimensionality 
of n (number of alternatives). In order to solve the problem 
by employing different algorithms, we generated a repre-
sentative statistical sample of pseudorandom sets of indi-
vidual rankings for which we calculated the Kemeny-Snell 
and Cook-Seiford medians. When calculating, the median  
rankings were stated in the form of AP based on relations (8) 
and (12). Next, AP was solved by the above four algorithms:

– the Hungarian algorithm;
– the Mack’s algorithm;
– the algorithm for solving a transportation problem  

using the method of potentials;
– the Hopcroft-Karp algorithm to search for a minimal 

matching in a weighted bipartite graph.

Generation of set of
individual rankings

Collective ranking in
the form of the

Kemeny median

Collective ranking in
the form of the Cook-

Seiford median

Statement of the
assignment problem
based on relation (12)

Statement of the
assignment problem
based on relation (8)

Solving AP by the
Hungarian method

Solving AP by the
Mack method

Solving AP as the
transportation

problem

Solving AP by
searching for a

minimal matching in
a weighted bipartite

graph

Fig.	1.	Scheme	of	computational	experiment

Each of the above algorithms was implemented in the 
software of computer algebra system Scilab. The experiment 
was conducted at the hardware-software platform: CPU In-
tel Core i5 2450M 2.5 Ghz; RAM 6 GB DDR3 1,300 MHz; 

OS Win7. During calculations, we estimated the average 
count time for all algorithms. We shall describe in detail 
the generation of pseudo-random rankings. Paper [35] ap-
plied, in order to generate pseudo-random rankings, rather 
complicated algorithms based on ranking statistics [36]. 
The experiment reported here utilized the productive idea 
of generation, proposed in paper [37], based on which we 
formulated the following simplified algorithm for generating 
the rankings. To generate a synthesized matrix of collective  
rankings the size of M × N, the following algorithm was 
applied. Standard operator rand generates M independent 
arrays of N pseudo-random numbers uniformly distributed 
in the range of [0,1]. The arrays are ordered line by line, the 
values for the elements of arrays are replaced with a num-
ber that these elements accept in the ordered row (that is, 
rank). As a result, in each line, there forms a pseudorandom 
sequence along the ranking scale the size of [1, N] with evenly 
distributed ranks. This sequence is considered as an indi-
vidual ranking by expert number i, i M∈[ , ],1  and the entire 
generated ranking matrix as the set of individual rankings  
by M experts. The following values were selected for the di-
mensionality of the problem (the power of the set of alterna-
tives) n = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. For clarity, the 
number of experts K in each synthesized matrix was taken 
to be equal to 2n. The sample size of each dimensionality is 
150 elements.

Results of the experiment are shown in Fig. 2.
Papers [36, 38] that addressed the calculation of median 

consensus rankings using a branch and bound method and 
the decomposition combinatorial techniques, highlighted 
the important fact. It was established that the time required 
to solve the problem on the search for a consensus ranking 
significantly depends on the coherence degree of individual 
expert rankings. 

This coherence is estimated based on the Kendall’s con-
cordance coefficient [26, 39], which shall be calculated from 
formula:

W
S

K n n
=

−( )
12

2 3
,  (14)

where S is the variance estimate; K is the number of experts; 
n is the number of alternatives. 

Estimation of variance:
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where k is the index of an expert (k = 1, 2,…, K), rnkik is the 
rank value, assigned by the k-th expert to the i-th alternative; 
rnk0 is the estimate of the mean value of ranks based on alter-
natives, derived from:
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The concordance coefficient is equal to 1 if all experts’ 
rankings in a group are the same, and is equal to 0 if all  
rankings are different. According to [40], the coherence of in-
dividual expert rankings is considered to be weak if W £ 0 3. , 
moderate if 0 3 0 5. . ,£ <W  strong if W > 0.5, respectively. To 
verify the dependence of calculation time of median rankings 
as AP on the coherence degree of individual rankings by ex-
perts, we performed a separate computational experiment.
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For the sets of individual expert rankings, synthesized 
by the above algorithm, upon generating each matrix, we 
estimated its coherence degree based on a concordance coef-
ficient by testing its statistical significance for criterion χ2.  
At W<0.3, the generated matrix was assigned to sample 
«1 – Weak coherence»; at 0 3 0 5, ,£ <W  – to sample «2 – 
Moderate coherence»; at W ³ 0 5.  – to sample «3 – Strong 
coherence». Each sample was generated to a volume of 
150 matrices for the above set n – 50 matrices of each dimen-
sionality and three levels of coherence. Next, we calculated 
the Kemeny-Snell and Cook-Seiford medians as AP in the 
formed samples by the four algorithms described above, and 
the estimated the mean calculation time. Table 1 gives an 
example of the summary results of the experiment, for calcu-
lation based on the Hungarian algorithm.

We applied to the constructed tables the non-parametric 
Friedman-Babington-Smith test (hereinafter abbreviated as 
the Friedman test) – a known ranking nonparametric statis-
tics [41]. The Friedman test null hypothesis H0  is considered 
to be the following: «differences between the values for rows 
in the table are random». The alternative hypothesis is H1  – 
«there are significant differences in the rows of the non-ran-
dom character». The confidence level for the Friedman test 
was accepted equal to 0.95. For two of the four tables, at the 
required significance level, the Friedman statistics do not 
yield a definite answer. We applied, in order to analyze these 
two tables, more powerful non-parametric statistics – the 
Anderson-Kahneman-Schach test [42] and the Dana Quade 
test [43]. By using these tests, we obtained for all four tables 
an unambiguous result with the above-specified confidence 

probability – the differences bet-
ween the table’s rows are random.

Consider the results shown 
in Fig. 2. At a moderate number  
of alternatives (n<50), calcula-
ting the both median rankings 
using AP requires low computa-
tional cost that are well within the 
real time scale (1–2 s), regardless 
of the algorithm employed. The 
charts of the count time, given in 

Fig.	2.	Dependence	of	mean	count	time	on	dimensionality	of	the	problem	for	different	algorithms	to	solve	AP:		
a –	Cook-Seiford	median,	c –	Kemeny-Snell	median,	b, d – same	dependences	with	a	timeline	based	on	the	logarithmic	scale	
(1	–	Mack’s	algorithm,	2	–	Hungarian	algorithm,	3	–	Hopcroft-Karp	algorithm	to	search	for	a	minimal	matching	in	a	weighted	

bipartite	graph,	4	–	algorithm	for	solving	a	transportation	problem	using	the	method	of	potentials)
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Table	1

Mean	calculation	time	of	the	Kemeny-Snell	median	(ms)	by	the	Hungarian	method		
for	different	degrees	of	coherence	of	individual	expert	rankings

Coherence 
degree

Problem dimensionality

N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50

Weak 11.7 42.0 85.3 152.3 272.1 426.3 531.7 925.3 1,420.3 1,850.2

Moderate 17.3 37.4 93.9 156.9 293.2 441.1 523.2 996.0 1,355.1 2,009.7

Strong 15.3 47.4 86.7 147.5 307.5 412.8 545.2 1,014.5 1,483.5 1,943.5
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a logarithmic scale, really demonstrate the computational 
complexity of the problem, not exceeding O n( ).3  The shape 
of dependences corresponds to the power function logarithm. 
Computational costs for calculating the Kemeny-Snell and 
Cook-Seiford medians almost do not differ. At a small num-
ber of alternatives (n<15), all algorithms require a roughly 
equal time. With the growing number of alternatives, the 
algorithm for solving AP as the transportation problem runs 
noticeably slower than the rest. The highest performance is 
demonstrated by the Mack’s, although its high-speed perfor-
mance is almost comparable to the Hungarian algorithm and 
the Hopcroft-Karp algorithm.

Results of the second part of the computational experi-
ment demonstrate another important result. When calcula-
ting the median consensus rankings as AP, the computational 
complexity does not depend on coherence degree of indi-
vidual expert rankings. Given this, the proposed procedure 
differs favorably from the solution to the problem on collec-
tive ranking applying a branch and bound method. At such  
a solution, at a low coherence of individual expert opinions, 
the time required to solve the problem increases.

7. Discussion of results of estimating the speed  
of computation of median consensus rankings

In the process of study, we showed the computational 
efficiency of applying the assignment problem for calcu-
lating collective consensus rankings in the form of the Ke-
meny-Snell and Cook-Seiford medians. 

Numerical experiment has revealed that the three prac-
tically investigated algorithms for solving the assignment 
problem out of four are practically equivalent in terms of 
high-speed performance; however, with the increasing num-
ber of alternatives, the Mack’s algorithm demonstrates the 
highest speed performance. The calculation time based on  
a medium power platform using the system Scilab for the 
number of alternatives n <50 employing the Mack’s algo-
rithm does not exceed 2 s.

This result is useful for applying in collective systems for 
expert estimation of real time. Specifically, such systems are 
the network expertise systems. 

The proposed method for the calculation of median ran-
kings has an important positive quality. It is established that 
the calculation time of consensus rankings, in contrast to 
other methods for reducing the computational complexity 
of a problem, does not depend on coherence degree of indivi-
dual expert rankings. This favorably distinguishes it from, for 
example, solving a problem on medians using a branch and 
bound method and by combinatorial methods. This result is 
important for the application of the method in network expert 
systems with a random selection of the contingent of experts.

The result of the computational experiment is also useful 
for practical application of the proposed procedure at net-
work expert systems. In network expertise systems, due to  
a random gathering of the team of experts, there is a possi-

bility for a low coherence level of individual rankings. In such 
cases, the application of the proposed method does not affect 
duration of the calculation.

The reported results of the study are not exhaustive. 
Specifically, during expert evaluation, there is a possible  
situation when experts assign to different alternatives the 
same ranks: this is the situation of so-called tied ranks [26]. 
In the presence of associated ranks, the ratios, given in our 
work, should be improved or adjusted. Study into compu-
tational efficiency of the proposed method in the presence 
of associated ranks in the individual experts’ rankings is the 
subject of further research.

8. Conclusions 

1. Calculation of a collective expert opinion based on 
individual experts’ rankings has two axiomatically sub-
stantiated variants – the Kemeny-Snell median and the 
Cook-Seiford median. Since both options are the problems 
of the non-polynomial computational complexity, in order 
to decrease labor intensity of the problem, we suggested 
reducing the median rankings to the problem of integer pro-
gramming – the assignment problem. In contrast to many 
approximated and heuristic methods for solving the problem 
on median rankings, reducing median rankings to AP retains 
the original axiomatics of Kemeny-Snell and is, therefore, 
the precise solution to the original problem. In this case, the 
computational complexity of solution does not exceed O n( ),3  
which produces a significant gain in time during computa-
tion without violating the strict axiomatics of the problem.

2. The assignment problem to which the Kemeny-Snell 
and Cook-Seiford medians are reduced, has been sufficiently 
explored. A number of algorithms to solve the assignment 
problem exist. The most popular are the Mack’s algorithm, 
the Hungarian algorithm, the Hopcroft-Karp algorithm. All 
these algorithms yield a polynomial computational com-
plexity with a power not exceeding 3. The algorithms were 
implemented in software and investigated experimentally.

3. The numerical experiment showed that the use of algo-
rithms to solve the assignment problem when evaluating the 
median consensus rankings makes it possible to fast compute 
the ranking medians. For the number of alternatives not ex-
ceeding 50, at a typical computing platform, the count time 
does not exceed 2–3 s, that is, the computation is executed 
almost in real time. It was also found that the median calcu-
lation time in this case, in contrast to other methods, does not 
depend on coherence degree of individual experts’ rankings.

Results of the conducted research allow us to recom-
mend the proposed rapid computational procedure for the 
search of median consensus rankings by Kemeny-Snell and 
Cook-Seiford for practical application in the network exa-
mination systems. The investigated computational procedure 
combines the axiomatic accuracy, computational efficiency, 
and independence from the coherence degree of individual 
experts’ rankings.
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