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DETERMINISTIC IDENTIFICATION METHODS FOR NONLINEAR DYNAMICAL
SYSTEMS BASED ON THE VOLTERRA MODEL

Abstract. The paper solves an important scientific and practical problem, which is to improve the accuracy and computational
stability of the methods of deterministic identification of nonlinear dynamic systems in the form of Volterra model based on
experimental data of observations "input-output” taking. On the base of theoretical and experimental studies created effective
instrumental algorithmic and software tools for estimating Volterra kernels in the time domain Into account measurement errors.
Results of the further development of methods of deterministic identification of nonlinear dynamic systems based on Volterra models
using irregular pulse sequences show. The methods are based on the use of the Tikhonov regularization procedure. The amplitude of
test impulses is used as a regularization parameter. In the identification, procedure applies wavelet filtering for smooth the estimates
of the Volterra kernels apply. This gives increase the accuracy and noise immunity of identification methods. The approximation
method of identification of the nonlinear dynamic systems based on Volterra models is improved. Method is consists in the choice of
amplitudes of test signals and of coefficients scaling of the partial components of responses a nonlinear system in procedure of
processing of signals-responses. The improvement is reduced to minimizing the methodological error in the allocation of partial
components from the response of the identification object and allows obtaining more accurate estimates of Volterra nuclei. To
improve the computational stability of the developed identification algorithms and for noise reduction in the obtained estimates of
multidimensional Volterra kernels the wavelet filtration is used. This allows obtaining smoothed solutions and decreases error of the
identification by 1.5-2.5 times. A new robust method of deterministic identification of nonlinear dynamic systems based on Volterra
models in the time domain is developed. In contrast to the interpolation method, where finite difference formulas with a
predetermined number of experimental studies of the object of identification are used for numerical differentiation. It is proposed to
solve the corresponding Volterra integral equations of the first kind, for the numerical implementation of which an unlimited number
of experiments can be used. This makes it possible to increase the accuracy of the calculation of derivatives, and consequently, the
accuracy of identification. Software tools on the system Matlab platform have been developed to implement the developed
computational algorithms for deterministic identification of nonlinear dynamic systems in the form of Volterra kernels.

Keywords: nonlinear dynamical systems; identification; Volterra model; Volterra kernels; ill-posed problem; Tikhonov
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Introduction
Mathematical ~ modeling  methods  and

separation of the y(f) reply of examined approaches
for extraction of partial component out of NDS

experiment [1-5] are the main research means of
complex nonlinear dynamical systems (NDS). For
exposition of NDS an appliance of Volterra integro-
power series is often used [6-13]. Nonlinear and
dynamical properties of the system are fully charac-
terized by a sequence of multidimensional weight
functions — Volterra kernels. NDS identification
problem — creation of model as Volterra series — is
based on identification of Volterra kernels using
experimental “input-output” system investigation
data [14-18].

Identification itself is a reverse task so during
solving such severe calculation problems occur due
to inconsistent problem definition. The occurred
results appear to be unstable to input data errors due
to changes in replies of the identified NDS [19-20].
In addition, in case of the use of models as Volterra

serie some NDS for partial component ))(f), which

correspond to different parts of Volterra series, since
1(?), total reply to the input signal x(¢) [15]. Thus, it
is required to use specialized difficulties rise in
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replies. Different methods of such decomposition
based on compensation [21-22], approximation [23-
25] and interpolation [26-28] approaches are
proposed. NDS deterministic identification method
with the use of test no regular impulse sequences is
shown. The advantage of proposed methods in
comparison to statistic identification [29] based ones
lies in simplified experimental data processing and
implementation of test signals. Though deterministic
identification results a greatly impacted by
measurement error which narrows its application in
real experiments. To improve the computational
stability of the algorithms identification the method
of A. N. Tikhonov regularization of ill-posed
problems [30-31], is used and demising procedures
in the estimates of multidimensional Volterra
kernels based on the wavelet transform [32-34].

The main goal is to examine errors, which
appear while determined identification is applied to
the NDS with unknown structure in the real life
experiment, comparison analysis of its preciseness,
and noise proof efficiency.
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1. Volterra Models

In the general case the “input-output”
relationship for a nonlinear dynamical system can be
represented in terms of the Volterra series as

wa=inm=
M
Hx(t -1, )dri ,

where x t) and y[x(t)] are the input and output
signals, respectively, w"(‘l,'l,...,‘cn) is the Volterra
kernel of the n-th order and y () stands for the n-th
partial component of the system response.
Commonly, the Volterra series are replaced by
a polynomial, with only taking several first terms of
series (1) into consideration. Then the identification

procedure consists in extracting the partial
components with subsequent determination of
Volterra  kernels  w, (rl yens T, ) . They are a

nonparametric model of the input-output system
under study. The output function of the model £7)
approximately  describes the system
y[x(t)] =y(¢) for a given input signal x(t).

The block diagram of the Volterra model in the
time domain is shown in Fig. 1.

output
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Fig. 1. Volterra model in the time domain

For descriptions of NDS with multiple input
and multiple output a multivariate Volterra series is
used:

y, (0= Zv:jwl’l (Dx, (t—1)dt +

*2 j‘jw’{"z (1,7,)x, (t=1)x, (t—1,)dv,dr, + (2)

=10 0
v ttt
* z Jjjwi{iziz (11,75, T3) X, (= 1))x, (F—T,) %
i:3=10 0 0

Xx, (t—ty)dvdryde,..., j=1lp,

where y(t) — responses of the NDS on j-th output in
case zero start values; x,(f),...,.x(f) — input signals;
w/, , (t,,...,7,) — Volterra kernel of n-th order based

on iy,...,i, input and j-th output, function is

12

symmetric for real arguments 1i,...,T,; v, L — amount
of input and output NDS outlets correspondingly.

In real live Volterra serie changed to
polynomial so only, few first elements are being
taken. The model creation of NDS as Volterra serie
lies in choice of test signals x(#) and algorithm
development which allows to show partial
component y, [x(t)] based on measured results y(7)

and estimation Volterra kernels where w,(t1,...,7,),
n=1,2,...,0.

Wide usage of models as Volterra series for
identification and modeling of NDS, usage of
modeling results in a huge variety of appliances, is
explained by its major preferences such as
invariativity to input signal type, which means that a
problem could be solved for both determined and
random input signal; explicit dependency for input
and output variables; versatility — a possibility to
examine nonlinear continuous in time and nonlinear
impulse systems, steady-state and rheo nomic
systems, with lumped and distributed parameters,
stochastic systems as well as systems with multiple
input and multiple output outlets. Grants a
possibility of examination in analytic and
computable applications; simultaneous and compact
use of nonlinear and inertial NDS properties;
interpolation of linear systems as subclass of
nonlinear systems, which allows to use time-based
and spectral-based methods designed for linear
systems for nonlinear systems as well.

2. Identification Methods

2.1. Compensation Method. The modified
compensation method for identification NDS in the
form Volterra kernels in time domain is based on
testing the system under study with using irregular
impulse sequences with varying parameters:
amplitude, duration of test pulses and intervals
between them [21-22].

The model of the test signal in the form of an
irregular sequence containing no more than n
rectangular pulses of duration At with different
amplitudes a, acting at the time 7, (k=1, 2, ..., n), has
the form

X0 =Y0,8580-5), T e0d. ()

=
where S;=a;At — the area of the k-th pulse in the test
sequence; §(t—t,) — the Dirac delta function; # — the
current time; ¢ L the parameters that determines the

number of pulses in the sequence and the intervals
between them; if ¢, =1, then at the time 7; in the

sequence of the pulse is; if §, = 0 — none.
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Let the amplitude of the test pulses ay,..., a,. For
sufficiently small values of the duration At and
amplitude a; (k=1,...,n) pulses, the following
statements are true. Their proof using the method of
mathematical induction is given in the Appendix.

The following statements that define the
computational algorithm of the compensation
identification method are valid.

Statement 1. Let the test signals be irregular
pulse sequences of various lengths, each of which
consists of no more than n pulses acting at times
Ty,..,T,. Then for the NDS with one input and one
output, the estimate of the cross section of the
Volterra kernel of the n-th order is:

®(—1,.,t-T,)= [n !ﬁSkj_ X
)

1 n+zn:ek
x 2D 7 ox(9,,....8,),
0,=

0,,...9,=0

where y(1,6,,...,0,) — is response of NDS, which is

measured at ¢ moment, under the operation of
modulated delta-impulses with S; square in
proportion to time point of t,...,7,. If 6, =1, then
there is impulse in NDS input at 1, time point, but if
6, = 0, there is none.

Statement 2. There occur such proportion for
the definition Volterra kernel of #» order NDS with v
input and M output:

-1
€ (=Tt —T,) = (n !HskJ X
k=1

1 n+"eik . .
X DD Ty (00000,

l,...01 =0

)

j=Lu,

(t—1,,...,t —1,) — Is estimation of n

-------

where w’/
order Volterra kernels, which is the result of data
processing of experiment; y (z,0),..,07) — Is

response of the object, which is measured at j-output
at ¢t point time under the operation of iy,...,i,
modulated delta-impulses with § square in

proportion to time point of #y,...t,,. If 6 =1, then
there is impulse in i; input NDS at 1, time point, but
if 8f =0, there is none.

For example, to determine the of Volterra
kernel of the NDS second order is tested by
single pulses, which are fed at the moments of
time t; and 7»:

x(1)=88(t—1,) and x,()=8,3(t-1,).  (6)

ISSN 2617-4316

The corresponding responses and are measured.
Then, two pulses are fed to the NDS input

x(t):S16(t_T1)+S26(t_Tz) (7)

and from the resulting response is subtracted
responses to single pulses

y(t,1,1) = »(2,1,0) — (2,0,1) =

_ (®)
=218,8,,(t —1,,t —1,).
From (4), after normalization, it follows:
_ 1
1'62(1‘_Tlat_’l:2) - 2'S1S2 [y(talal)_ (9)

- y(t,1,0) — y(¢,0,1)].

At fixed values 1, and 7, estimation Volterra
kernel of the second order W(t—1,t-1,) @ function

of the variable ¢ — section of the surface by a plane
passing at an angle of 45° to the axes ¢, and £, and
shifted along the axis #, by a value 7, =1, —1,. By

changing  the  value 715, get  various
sectionswz(z,t_q;o), which can restore the entire

surface, (¢,,¢,) -

A schematic representation of the procedure for
identification Volterra kernel second order of the
NDS with one input and one output and with two
inputs and one output show in Fig. 3 and 4
respectively.

A schematic representation of the procedure for
identification Volterra kernel third order of the NDS
with two inputs and one output
W, (t,t —1,,t —1,)show in Fig. 3. As a result of

such operations, we have:
y(t=11711712) - (y(t=117070) + +y(t70=11=0) +
+ y(t,0,0,lz)) + y(tall ’11’0) + y(t’ll’oalz ) +
+y(t,0,1,,1,) =318, (¢,t — 1., — 1,).

(10)

Mps [

TS

Fig. 2. Procedure identification of the
Volterra kernel second order
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Fig. 3. Procedure identification of the
Volterra kernel second order at different inputs
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Fig. 4. Procedure identification of the
Volterra kernel third order at different inputs

As a result of processing the responses
y(taen---:em) and yj(taezlamaeiﬂ) Of the NDS in

accordance with (4) and (5), the approximate values
of the cross sections of the Volterra kernels are
obtained. The accuracy of identification depends on
the choice of the area of the test pulses Sy, i.e. the
duration and amplitude of the pulses.

With decreasing the pulse amplitude of the test
sequence, its optimal value corresponding to the
minimum error of the experimental determination of
the Volterra kernels based on the compensation
method of identification is found. Since in the
conditions of the real experiment the measurements
of the NDS responses are carried out with some
instrumental error, the relative measurement error (a
random error) will increase when the amplitude of
the test pulses decreases. The instability of the
computational  algorithms  of  deterministic
identification (4) and (5) to the errors of the initial
data — measurements of pulse responses, especially
strongly affects the determination of high order
Volterra kernels. Practical implementation of the
algorithms is possible only in conditions of
relatively small noise levels in the measurement of

14

NDS responses. To improve the accuracy of the
identification method, procedures can also be used
to suppress the response components of all even and
all odd orders.

If it is known that NDS is described by a
functional polynomial of power N, then when
determining the n-th order by the compensation
method, the methodical error will be zero. The
determination of Volterra kernels below the N-th
order is made by sequentially lowering the order of
the NDS model. In this case, the components of the
response from the Volterra kernel of the higher
orders model are subtracted from the output signal
of the system.

2.2. Approximation Method. The approxima-
tion method identification in domain time it is based
on the allocation of the n-th partial component in the
NDS response by constructing linear combinations
of responses to test signals with different amplitudes
[23-24].

The amplitudes of test signals which were
proposed for usage of approximated method of
identification are not optimal and do not provide
with  minimum error of multidimensional
identification =~ Volterra kernels system. The
following affirmations are correct.

Statement 3. Let at system input test signals are
given successively ax(f), ax(f),...,apx(f) (N — is
approximation model order, a;, a,,...,ay — different
real numbers, which satisfy the term 0< | a; | <1 for
vj=1,2,...,N; x(t) — arbitrary function). Then linear
NDS combination of responses with coefficient ¢;
amount to n partial component of NDS response in
case input signal x(#) with error due to higher orders
partial components, #>N:

N N 0
2 eafapO=y 0 e, Ylard): (D
J= = n=N+
where ¢; — real coefficients such that
a a, .. ayl|l|qa b,
2 2 2
ai ay ... oay| |6 |_|b (12)
a’ a) ay | ey by
and p =1 at k=n and p =0 at k#n,

k=1,N; Vnel{l2,.. N}

Let input test signals x(f) present themselves in
irregular sequences impulses of different length.
Each sequences consists of not more than of n delta
impulses with area of S=AtAx (At — duration, Ax —
the amplitude of the rectangular impulses), which
function at #,....t, time point. Then for NDS with
one input and output the estimation of diagonal
section of Volterra kernel n-th order is:

ISSN 2617-4316
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€ (t—T,,.,1—T,) =
(13)

_ (= 1 ~ Z‘ek
Tl (ar)” eze:(o D= £.(1,6,....,0,),

where £ (1,6,,...,.9,)
component of the NDS response at ¢ time point,
which was obtained in the result of data processing
of experiments on bases of (11).

The estimation of the diagonal section Volterra
kernel n-th order

— is estimation of n-th partial

€, (¢,..., 1) :M (14)
(AT)"

where j (¢) —is estimation of n-th partial component

of the NDS response at single impulse at 7 time
point, which was obtained as the result of data
processing of experiments on bases of (11).
Statement 4. To minimize the influence of the
Volterra serie balance on the error in the allocation
of the partial component NDS response (12), it is
necessary to provide a minimum of the sum of the
modules of the coefficients ¢; (j=1,2,...,N), which are
determined from a system of equations (12)

N N
- —_ -1 .
&= Z‘cj‘_ Z‘aﬂc‘_’ min, (15)
j=1 j=1
where a;.,! 1s elements of the inverse matrix
a a, ... ay
2
A = a, a, ay (16)
N N N
a,  a, ... ay

According to (15) the task of providing
methodical minimum error reduces to discovering of
local functional minimum of ensemble variables by
means of usage the approximated identification
method. In other words, it is sum of rate modulus in
lincar combination of responses. By means of
complete searching procedures of different
amplitude value, appropriate rate is discovered and
each time the system of linear algebraic equations
(12) is solved.

After calculating the form, there should be got
optimal amplitude value. In [25] it is illustrated that
the decreasing of methodical error of identification
method could be reached by two means; by selection
of rather low amplitude of test signals with pre-
assigned approximated order or by fixed amplitude
with increasing of approximated model order.

2.3. Interpolation Method. There was proposed
interpolation method of NDS identification on base of
PB in [26-28], where for splitting of NDS response at
PS j (1) 1s used and it is multiple differencing of output

signal according to parameter of amplitude test signals.
The following affirmations are proved.

ISSN 2617-4316

Statement 5. Let at input of system test signal
of ax(f) kind is given, where x(f) — is arbitrary
function and @ — is the coefficients of scale
(amplitude of signal), where 0<|al<l. Then for
marking out partial component of 7 order y, (r) from

measured NDS response y[ax(¢)] it is necessary to

find »n partial component of response according to
the amplitude ¢ where a=0:

n!j Iwn(rl,...,In)Hx(t—Ik)dIk =
0 simes 0 k=i
=" lax0),.,

While using test irregular impulse series with
At duration, could be discovered diagonal and sub-
diagonal Volterra kernel section on the basis of (15)
and (14) forms accordingly. It is taken into
consideration that calculation of j (1) and

£,(2,6,, ... ,0,) is made by means of (17) procedure.

(17)

Partial component should be substituted by
form of finite difference for calculation of (17).
Differentiation of function, which was set in discrete
spots, could be accomplished by means of numerical
computing after preliminary smoothing of measured
results.

Various formulas for the numerical differen-
tiation known. They vary from each other by means
of error.

Let's use universal reception which allows to
substitute a derivative of any n order for differential
ratio so that the error from such replacement for
function y(a¢) was any beforehand set order of p
approximation concerning a step of A=Aa of
computational mesh on amplitude [35]. Method of

undetermined coefficients for the equality:
d'y@) _ 1 2
ai " B oun,

let's pick up coefficients ¢, not depending on #,

(18)

r=-r,—r, +1,..,r,, so that equality (18) was fair.
Limit of sum >0 u r, >0 could be arbitrary, but
so that the differential relation h’"zcr y(a+rh) of
1, +r, order satisfies to inequality », +7, >n+ p—1.
For definition of ¢, it is necessary to solve the
following set of equations

1 1 e 1 ] _0 )
-, —7; +1 . 7 0
C7r1 e ( 1 9)
I G0 A S PN O [V
(_}'i)n (_},i +1)” e rzn e - n
(—7i )n+l (_’1 +l)n+l . rznﬂ C’z O
| (_’i )[ﬁ'p—l (_r] + 1)r1+p—1 . r2n+p—1_ _0 |
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When 7, +7, =n+p-1 then inscribed in 5+ p
equality forms linear system concerning the same
number of ¢ unknown. The determiner of this

system is Vandermond's determiner and differs from
zero. Thus, there is the only one set of n coefficients,
satisfying the system (19). When 7 +7, >k+p then

obviously quite a number of such ¢, coefficients

systems exist.

On the basis of (18) in [28] the formulas of
derivative calculation of the first, second, third and
fourth orders are received at a=0 with use of the
central and right differences for equidistant
assembly.

In paper, formulas for numerical differentiation
with use of the central differences for equidistant
assembly are used. For definition of first Volterra
kernels order the first derivative is calculated at

r, =r, =1 or r, =r, =2 respectively on formulas
1
=25 Tyt n),
1 1 (20)
Yo = 12h(y » =8y +8y, - ).

For definition of second Volterra kernels order
the second derivative is calculated at 7 =r, =1 or

1, =r, =2 respectively on formulas

" 1
Yo :T(y—l + ),

ey

yg_thz( Yy, t16y, +16y, — »,).

For definition of third Volterra, kernels order
the third derivative is calculated at r =7, =1 or

n=r =2 respectively on formulas

[/

Vo=, +2y =2y, +y,),

2h3 (22)

8/’!3 — (v =8y, +13y_ —13y, +8y, — ;).
In formulas (20) — (22) the notation is entered:
V' (©0).5 =y"(0);, =3(rh),r =021, £243,

The corresponding partial component is found
by the formula (18). Sections of Volterra kernels by
the diagonal and the sub diagonal are calculated on
the basis of expressions (14) and (13).

2.4. Robust Method. Proposed robust method
of deterministic identification of the NDS based on
Volterra model in the time domain [36-39]. Irregular
pulse sequences are used as test signals. The stability
of the computational process of the identification
procedure is ensured by using the method of A. N.
Tikhonov regularization of ill-posed problems [30].

The problem of finding the derivative of n-th

" —

Yo =

% =y(0),35 =

16

order z(a) from the function y(a), for which
P(0)='(0)=..=y" D(0)=0, reduces to solving the
Volterra integral equation of the first kind [30] with
respect to z(§):

[——(@-&)"2(0)de = y(a) (23)
o (m=1!

This problem is characterized by the lack of
stability of the solution to small changes in the right
side of the equation y(a). To find the approximate
solution z(&) of equation (23), which is resistant to
the errors of the initial data, the method of
regularization of ill-posed problems is applied [7;
15].

The problem of estimation diagonal section of
Volterra kernel n-th order is the solution of the
integrated equation Volterra of the first sort (23). For
realization of an algorithm of identification (13) and
(14) we will pass to a discrete analog of a problem
of finding of regularized approximate solutions of
the equation (17). Let us measure NDS responses
on a set of trial impulse signals with amplitude of

impulses change discretely on 0 <a <a_, with Aa
step. Then each data set for the specified point-in-
time value ¢ from of the received set of responses
Na,1,6,,...0,)=ira), wherea, =iMa,i=1,2 .., L (L
—  the number of levels of sampling on amplitude
a) subjected to the operation of n-fold numerical
differentiation by a. Such a procedure comes down
to the solution of the system of linear algebraic
equations:

; Aa n—1 _
;m(af =&,)" 2(&,) =ula,),

where & =jAa, Ma=a,, /L ua)=0a)Na); oa) —
some function for which conditions are satisfied:

24)

0(0) = G'(O) =. (")(0) =0,
O(@ /2)—1/2 o(a,, ) =1, (25)
()= =0 (@) =0,

As function, o(a) it is possible to choose, for
example, sigmoid function
o(a)= ! .
l+expM—a+a_,/2)
The system of the equations (24) can be written
down in a vector-matrix form
AZ=T,

(26)

max

(27)
where

[ (n)

i=1,L; j=0,(L-1)’
a, =k,@—)"", for j=1,(-1);
n-1

o _kl
10

, for j=0;
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a, =0, for j>i;
_(Aay
" (n=1)!
z,)» z, = z(iAa);
=u(jAa) =o(jAa)y(jAa).

The matrix A, for n=1, 2 and 3 are the form,
respectively

Z=(z,.-.s

U= (U tty)s U

[1/2 0 0...
1/2 10...0
A, =Aa|1/2 11...0 (28)
11/2 1 1. 1]
A, =(da)y’ x
o }
1 1 0 .0 (29)
x| 3/2 2
L2 (L-1) (L-2) ...1]
A, = (Aa)®
2
1/2 0 0 0|
30
2 1 0 0)
x| 9/2 4 1 0

)2 (L-1)* (L-2)

The required solution of z(iAa) is found at i=0
(20). Then, we receive
zo=u1(0) = y[0(0)c(0) = y1(0)/2,
(31)

(32)

where
y(0) =2ul1(0) = 2z,
In general

M) (O u(n)(o) — A,
y(0) 0) 2u™(0)

Thus, the computing algorithm realizing a
method of identification of multidimensional
Volterra kernels on the basis of ratios (13), (14) and
(17) comes down to the decision of the system of
linear algebraic equations (24) for each fixed time
point of ¢ on an interval [0, 7], where T — is
modeling time.

For construction operator of the estimation
Volterra kernels method of A. N. Tikhonov
regularization is used. He on a variation method of
creation of the regularized operator is based. This
method comes down to finding of an approximate

vector of the decision Z, which minimizes some

(33)

functional of smoothing. The only vector meeting a

ISSN 2617-4316

condition of a minimum of the functional of
smoothing can be defined from the decision of the
system of linear algebraic equations:

(A'A+al)z, =A'T, (33)
where A — the matrix conjugate to A, I — a unit
matrix, o — regularization parameter.

For the choice of value of the a parameter the
residual criterion is used [21]:
e <c.

(34

where & — the set decision error; ||, | — norm in

vector space.

The approximate decision received on the basis
of (33) and (34) corresponds to a O-order of
regularization. For increase in smoothness of
decisions, the regularized matrix of R is used and
solution of the system of linear algebraic equations
at value of the parameter o which provides
performance of a condition (25) is fended:

(A'A+aR)z, =A'T. (35)

The regularized matrix of R has tape structure

which diagonal elements are equal ,, =1-(Aa)™

and elements in the over diagonal and sub diagonal
are equal r, =—(Aa)?,i# j; i,j=1L (the first order
of regularization) [31].

2.5. Constructing of the Approximation
Model. Is developing a method of constructing
approximate Volterra model of the NDS [40].
Method identification is based on the approximation

y(f) at an arbitrary deterministic signal x(¢) in the

form of integral power of the polynomial Volterra
N-th order (N - order approximation model)

N
EMOEDRAGE
" (36)
—ZI Jw (T,5e-- rn)Hx(t—r )dr,.
n=l ( tszs 0
Statement 5. Let the input test signals NDS are
fed alternately a1x(¢), ax(?), ,..., apx(?); ay, as,...,ar -
distinct real numbers satisfying the condition | a; <1
for Vj=1,2,...,L; then

yyla,x(@)] Zf[a x(1)]=

N t [" (37)
:Z 7J. J.W”(’Cl, aT,,)HX(t—T)dT =
=>alg, ().

n=1

The partial components in the approximation
model £,(r) are found using the least square

method (LSM). This makes it possible to obtain such
evaluation in which the sum of squared deviations of
responses identified the nonlinear dynamical system
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Ma;x®] on the model %\/[ajx(t)]

minimal, i.e., NDS provides a minimum criterion

T =3 (a 015 La 50} =

response is

(38)
= Z[y‘/ ® —Za;‘ﬁz (t)j — min,

where V j(t) Zy[ajx(t)l Minimization of the criterion
(6) is reduced to solving the system of normal

equations of Gauss, which in vector-matrix form can
be written as

A'Ag=A"Y, (39)
where
a, ‘112 alN »n(0) £
a, a; - a, Y. (1) £y
From (7) we obtain
g=(A'A)'A'Y (40)
In (8), matrix operations, we obtain
ML L L 7!
a’ al a™
£ Z ' Z ' Z '
L0l S0 Sa - e,
J=l J=l Jj=1
g0l | T @D
j J J
L /=1 Jj=1 j=1 B

X
. Vth .

1N}
<o
<
.

~
=

3. Computer Simulation

Efficiency of the developed methods,
algorithms and tools of NDS identification with use
of irregular sequences of impulses is confirmed by
means of computer simulation in Matlab-Simulink
on test object for which analytical expressions for
Volterra kernels were received. They were used as a
standard at researches of potential accuracy and a
noise stability of the developed methods of
identification.

3.1. Performance Criterion. For error estimate
of experimental determination of Volterra kernels
sections is used criterion mean-square error (MSE)

B2 X (v =) (42)

where k —is number of samples at the time slice of
measurements, w, — etalon values of Volterra

18

kernels, % —

t
received as a result of experimental data (system
responses) processing in discrete ¢ time points.

The criterion of the normalized percentage
mean-squared error (NPMSE) also is used:

estimation value of Volterra kernels

(43)

3.2. Test Object for Identification. There was
chosen an object for the research of identification
method which is described by the nonlinear
differential equation:

dy(t

L oy o)+ by (0 = 500,
where a and B are constant real. Structure chart of
nonparametric model of the object is illustrated by
means of three members of Volterra model in Fig. 5.

(44)

—— 1_.:.!'.1:, ¥
XL) vitl
- w7y, T3 o = -
—  ws(T, T2, Tad *

Fig. 5. Structure chart of nonparametric
model of the object

Then the Volterra kernels are equal

w=e *, (45)
E(e_a(fl +1) _ ¢ %0y, (46)

Wz(T],Tz) = T STz,
a

2
w<>;® (PR g MR (47)
o

T R a CRA T ), T, <1, <1,

It’s considered that t,=t,=T13=f, then diagonal
Volterra kernels bnsection is received

When 1,=1,=t1;=t we get the diagonal sections
of the Volterra kernels

wl(t,t):E(e_zm _e—(xt)
o

) ’ (48)
W (61,1) :[Bj (o730 _pem 208y maty
o

3.3. Wavelet Filtration in Identification
Procedure. Procedure of noise smoothing are
applied to increase the noise stability of determined
identification method to receive estimates of the
multidimensional Volterra kernels, based on wavelet
transformation [22].
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Noise reduction is usually reached by removal
of high-frequency components from a the signal
range representing an additive mix of information
component — received as a result of the Volterra
kernels section processing responses and the noise
caused by an error of measuring equipment. In
relation to wavelet decomposition, it can be realized
directly by removal of detailing coefficients of high-
frequency levels. Setting some line for their level,
and cutting off accordingly detailing coefficients it is
possible to achieve reduction of noise level.

For smoothing of identification results when
utility from a package of the Wavelet Toolbox
expansion of Matlab system with maternal wavelet
coif let — coif4 was used at the following values of
parameters. Parameter of the rule calculation unit of
threshold valuation for restriction of
TPTR="minimaxi' coefficients decomposition (by
minimax estimation). Parameter of the unit like a
threshold of SORH ='s' (flexible) cleaning; the
parameter defining a way of SCAL ='one'
recalculation threshold (us of a threshold, integrated
decomposition for all levels, without rescaling).
Depth of data decomposition — 3.

In researches the model of a received noisy
assessment of Volterra kernels section is accepted by
the additive: #,(z,...,r) +&(r) with an even pitch on

argument of 7, where® (¢,....) — is a useful

information component, §(f) — a hindrance (white
Gaussian noise with D dispersion and average zero
value).

In Matlab-Simulink MSE assessment were
received by means of compensation method of
Volterra kernels sections identification diagonal of
the second and third orders for NDS test (Fig. 5) at
error measurements of responses 6=1, =3 and 6=5
% without application and with application of
wavelet filtration (Tabl. 1).

Table 1. Mean-square error identification of Volterra
kernels of second and third order

Without application With application of
Volterra | ©f wavelet filtration wavelet filtration
kern(;:ls Error measurements Error measurements
norder of responses 6 = % of responses o, %
1 3 5 1 3 5
2 0,024 | 0,037 | 0,045 | 0,019 | 0,033 | 0,037
3 0,025 | 0,028 | 0,032 | 0,014 | 0,017 | 0,020
The application of Wavelet filtration in

identification procedure on the basis of compensa-
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tion method allows to receive smoothed estimates of
Volterra kernels sections and increase identification
accuracy that is criterion of MSE for 20 — 45 %.

There were received dependences (Fig. 6) of
MSE identification by means of interpolation
method of diagonal Volterra kernels sections of
second (Fig. 6, a) and third (Fig. 6, ) orders from
the area of test S pulse at error of measurement
responses 6 = 1, 6 = 3 and 6 = 5 % without
application of smoothing procedure of received
Volterra kernels sections.

In Fig. 7 and Fig. 8 dependences of the MSE
identification results by means of Volterra kernels
interpolation method of the second order from the
area of test impulses S at error of measurements ¢ =
1 % are presented. Also after wavelet filtration
application to the received estimates of Volterra
kernels sections of by means of wavelet
transformation on the basis of maternal wavelet
coiflet (Fig. 7) with use at various levels of
decomposition of L on basis of wavelet coif4 (Fig.
8) are presented. The minimum of MSE
identification is reached by using maternal wavelet
coiflet — coif4 (Fig. 7) with level of decomposition
depth L=4 (Fig. 8). Thus smoothed solutions turn
out, and the error of identification decreases bin 1,5
— 2 times.

3.4. Comparative Analysis of Identification
Methods. The errors arising at application of
determined identification methods are investigated,
the comparative analysis of their efficiency on the
accuracy and noise stability is carried out. The
choice of amplitude of impulses sequence is possible
to receive optimum estimates on the accuracy of any
Volterra section kernels. The procedures of noise
reduction based on wavelet transformations are
applied to increase the computing stability of
identification algorithms.

The NDS (Fig. 5) received by means of three
methods of determined identification are given in
Tabl. 2 — compensation, approximating and inter-
polation methods by NPMSE of diagonal Volterra
kernels sections assessment of second order for test,
at an error of responsesc=1,c6=3andc=5%
measurements without application and with wavelet
filtration application.

Dependence diagram of MSE Volterra kernels
identification of second order from the area S
(amplitude) trial impulses in the conditions of ideal
experiment (exact measurements) and taking into
account errors of measurement responses
(error 6 = 3 %) are submitted in Fig. 9 and Fig.10
respectively.
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Fig. 6. Mean-square error identification of Volterra kernels of second and third order dependences of
identification by Volterra kernels interpolation method of the second (@) and the third orders(b) from the area
of S test pulses respectively for r1=r2=1, and »1=r2=2 at errors of measurements: / — 1 %; 2-3%; 3-5%
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Fig. 7. Dependences of the MSE identification of Fig. 8. Dependences of the MSE identification of
Volterra kernel second order on the area of test Volterra kernel second order on the area of test
impulses S at error of measurements of 1 %: impulses § at error of measurements of 1%:
1 — without filtration; 2 — at wavelet-filtration 1 — without filtration; 2 — at wavelet-filtration
application with help wavelet coifl; 3 — coif2; application on a basis of wavelet coif4 with levels of
4 — coif3; 5 — coifd; 6 — coif5 decomposition of L=1;3-L=2;4-L=23;

5—-L=4;6-L=5;,7—-L=6

- — s — —
S = i — L —

Fig. 9. Dependence diagrams of MSE assessment of Fig. 10. Dependence diagrams of MSE assessment
diagonal Volterra kernel section of second order of diagonal Volterra kernel section of second order
from the area § trial impulses at identification on  from the area S trial impulses at identification with
exact measurements: error 3 %:

I —for a compensation method; 2 —at r1=r2=1; I — for compensation method; 2 — at N=2; 3 — at N=4

3 —at r1=r2=2 for an interpolation method; 4 — at and N=5 for approximation method; 4 — at r1=r2=1;
N=2 and N=3; 5 —at N=4 and N =5, 6 — at N=6; 5 —at r1=r2=2 for interpolation method
7 —at N=7; 8§ — at N=8 for an approximation method
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The results of the estimated of Volterra kernels
with basis of identification methods on based
compensation (Fig. 11), of approximation (Fig. 12)
and of interpolation (Fig. 13). Estimations of
diagonal Volterra kernels sections of second and
third orders for test NDS at error of measurements
responses by 6 = 1 % without application and with
wavelet filtration application on basis of maternal
wavelet coif4 with decomposition level L=4
received.

The analysis of identification results of three
methods by means of pulse sequences (Fig. 11, Fig.
12 and Fig. 13) on test object (Fig. 5) shows that
the highest precision and noise stability possesses
the interpolation method of identification,
consisting in responses differentiation on parameter
amplitude of trial impulses (17). Least exact of
considered methods of determined identification is
compensatory method (4), (5).

Researches of a robust method were
implement by means of computer modeling in the
environment of Matlab—Simulink at the following
values of parameters of test impulses signals:
A1=0,01, @,,,=100.

On the Fig. 14 results of identification of a test
object (Fig. 5) on basis with accurate response
measurements of responses and without application
of regularization — estimates of Volterra kernels of
the first order of w,(¢) (Fig. 14, a) and the diagonal
section of Volterra kernels of the second order of
wa(t,f) (Fig. 14, b) are presented.

Experiments were carried out with a step on

a

amplitude of test impulses Aa, successively taking
values from a set {8, 10, 16, 20 and 40}. The
number of experiments L is 8, 10, 16, 20, and 40,
respectively. The best results of identification are
received at Aa=5 (L=40).

Estimates of diagonal section of Volterra
kernels of the second order of wy(z,¢) at an error of
measurements of 1 % on the basis of the decision
of SLAE (35) for Aa=4 (L=50) without
regularization are presented in Fig. 15, a. The big
mistakes received at the same time are not
acceptable in practice, NPMSE makes 244,2 %. In
Fig. 15, b estimates are given ws(t,f), received by
means of a method of regularization and
smoothings with use of Wavelet-transformation
[22, 34]. At this NPMSE of identification makes
2,95 %, respectively accuracy increased by 82,8
times.

For test NDS (Fig. 5) are received the results
of identification by means of four of the
computational methods — compensation method,
approximation method, interpolation method and
robust method are given in Tabl. 2. Here are values
of the criterion NPMSE obtained with using the
methods deterministic identification, at estimation
of the diagonal section of a second order Volterra
kernel from measurements of responses with an
error 0=1, 0=3 and 0=5 % without application and
with Wavelet-filtration application.

Fig. 11. Result of diagonal identification Volterra kernel sections of the second (a) and the third () NDS
orders by means of compensation method at measurement error of 1 %:
1 — etalon of the Volterra kernel; 2 — identified kernel; 3 —identified kernel at wavelet-filtration application
on wavelet basis coif4 with level of decomposition L=4
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Fig. 12. Result of diagonal identification Volterra kernel sections of the second (a) and the third () NDS
orders by means of approximation method (N=4) at measurement error of 1 %:
1 — etalon of the Volterra kernel; 2 — identified kernel; 3 — identified kernel at wavelet filtration application
on wavelet basis coif4 with level of decomposition L=4
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Fig. 13. Result of diagonal identification Volterra kernel sections of the second (@) and the third () NDS
orders by means of interpolation method (r,+r,=4) at measurement error of 1 %:
1 — etalon of the Volterra kernel; 2 — identified kernel; 3 — identified kernel at wavelet filtration application
on wavelet basis coif4 with level of decomposition L=4
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Fig. 14. Results of identification of a test object without regularization at exact measurements of responses:
estimates of Volterra kernel of the first order (a) and diagonal section of Volterra kernel of the second order (b). A
dotted line — etalon
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Fig. 15. Estimates of diagonal section of NDS of the second order of a test object of wy(z,7), at errors of
measurements of 1 % on the basis of the decision of SLAE (24) without regularization (@) and the regularizations
received by means of a method and smoothing with wavelet-filtration use (a robust method) at Aa=4, L=50 (b):
1 —result of identification; 2 — etalon

Table 2. Normal Percentage Mean-square error identification of the Volterra kernel second order

S @ " Minimum NPMSE (%) at an error of measurements ¢ (%)
25 | 25 25
*é _g § g § '«é Without application With application
= - . - !
g e 5 § 5 % Wavelet — filtrations Wavelet — filtrations
= i o=1% | 0=3% | o=5% | o=1% | o=3% | o0=5%
Compensation method
2 4 44,0 66,5 77,1 30,1 43,7 53,7
N Approximation method
2 2 4 12,6 25,9 37,0 10,8 15,0 18,3
3 3 6 11,9 24,5 33,5 9,08 13,3 16,9
4 4 8 15,7 40,3 63,3 11,2 18,1 24,5
5 5 10 15,2 38,0 58,7 11,1 17,0 22,7
6 6 12 18,7 50,4 80,5 11,9 20,5 29,3
r=r Interpolation method
1 2 5 13,0 26,3 37,5 10,9 15,5 19,2
2 4 9 14,7 36,5 58,1 11,2 16,8 23,6
3 6 11 19,6 54,1 88,1 11,6 20,8 31,5
4 8 12 25,6 77,3 126,0 13,1 25,1 44,0
Aa Robust method
4 50 - 6,8 18,4 — 3,0 5,8 —

Results of comparison of a regularized method
of identification on the basis of the decision of
SLAE (35) and an interpolation method where for
numerical  differentiation formulas in final
differences are used and natural regularization —
optimization of a step on amplitude of test impulses
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is applied, for a kernel of the second order are
provided in Tab. 3.

4. Identification Technique of the “Black
Box”

The technique of Volterra kernels identification
is developed for systems of unknown structure (like
“Black Box™).
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1. The greatest possible amplitude of test
impulses at which identified NDS is still steady (on
limit of stability) is set. Duration of impulses At gets
out of a condition:

At < 0,05 min | (49)

n
where: Tmi, — the minimum constant of time of linear
system part, n — an order of defined Volterra kernels.

2. Procedure of NDS identification is
consistently applied at various values of a test
impulses amplitude and

a, =Ha, 0<p<I, i=0l12,.... (50)

For each pilot study of identified system and
processing of received responses according to one of
algorithms of identification (4), (5) or (11), (13),
(14), or (17), since the second identification
experiment, there is a mean square deviation of &
between the next results of n order Volterra kernels
estimates.

3. On basis of these results there is quasi-
optimal amplitude of test pulse signals with which
next results of n order Volterra kernels

~
w
[

criterion of a mean square deviation. The decision
(estimated value is +, ) gets out at value of the

w, identification will be the closest that is

amplitude a; under condition

16 +1 —‘ﬁa’

al

D

— min-
a;

The technique is approved on a problem of test
object identification (Fig. 5) considered as NDS with
unknown structure. The received results are
presented in Fig. 16. The dependence diagram of
MSE identification is given in (Fig. 16, a) from the
amplitude of test impulses on which values of
amplitude are marked a=90 (5=1,8) and a=14
(5=0,28) at which the mean square deviation of
identification results accept identical values
(e=0,024) are noted. Results of Volterra kernels
identification of second order corresponding to
them, received by interpolation method at r=r,=2,
are given in (Fig. 16, b) and (Fig. 16, ¢). The result
of identification corresponding to the minimum
value of a mean square deviation at €=0,004 is given
in (Fig. 16, d). Thus optimum amplitude of impulses
of is a=76 (5=1,52).

Table 3. Comparative analysis of identification methods on the example of
estimation Volterra kernel a second order of NDS

Minimum NPMSE, ¢, %
at an error of measurements o, %
Identification method Regularization Application Wavelet-
application filtration
o=1 c=3 o=1 6=3
ILd:eél(‘;lﬁcatlon on the basis of the decision of SLAE (35), 6.7 18,4 2.83 5.85
Identification on the basis of an interpolation method 13,0 26,3 10,9 15,5
w (L) ! T
_|:|'::' E - E.-.. -
R : - - -
.'1
A ||I= i i ;-'\. 3 : i
a b
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Fig. 16. Result of diagonal identification Volterra kernel sections of the second order NDS with unknown
structure with using interpolation method at »;=r,=2: MSE identification (a) and with various means of
amplitude test impulses:

S=1,8 (b), 0,28 (c) and 1,52 (d) respectively; /- result of identification; 2 — etalon

Conclusion

Methodological and algorithmic bases of
creation of information models of continuous
subjects to control in the form of Volterra kernels on
the basis of data of an experiment an entrance exit
are developed.

The statements proving methods of the
determined identification of nonlinear dynamic
systems with one entrance and an exit and also for
systems with many entrances and many exits on the
basis of Volterra models in a time domain — with use
as test signals of the irregular sequences of impulses
are proved. Advantage of the considered methods of
the determined identification — compensation,
approximation, interpolation and robust in
comparison  with  methods  of  statistical
identification, are comparative simplicity of
generation of test signals and simplicity of
processing of empirical data.

It is shown that estimates, optimum on
accuracy, any diagonal and on diagonal sections of
Volterra kernels are the choice of parameters of the
sequence of impulses — duration, amplitude and an
interval between impulses.

The analysis of errors of a compensation
method of identification — the methodical, caused
uncompensated processing by a contribution in a
response of a system of members of Volterra serie
whose order is higher than an order of the estimated
Volterra kernels measurements of responses is made.
It is shown that at reduction of amplitude of trial
impulses the methodical error decreases, but at the
same time the relative error of measurements
increases.

The new interpolation method of identification
of the NDS in the form of Volterra series based on
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allocation of a partial component of Volterra series —
the whole uniform regular functionality of Volterra
n-th is offered degree, by means of n-fold
differentiation of responses of the NDS in the
parameter amplitude of test influences, the
corresponding computing algorithms realizing an
identification method are developed. The method
allows to mi NDS caused by influence of partial
components of a response above n-th. However,
implementation of a method of identification leads
to errors of assessment of the Volterra kernels,
which level depends on amplitude of test signals and
the accuracy of measurements of responses.

It is shown that the known amplitudes of test
signals for use in an approximating method of
identification which is based on drawing up linear
combinations of responses of the NDS for test
influences with different amplitude are not optimum
and the choice of amplitudes of test influences and
the corresponding weight coefficients providing the
minimum error of assessment of multidimensional
Volterra kernels of the identified system is proved.

A new robust method of deterministic
identification of non-linear dynamic systems on the
basis of model Volterra in time domain, for the
numerical realization of which can be wused
unlimited top number of experiments with the
“input-output”, and the application of the method
of regularization, the processing of noisy
experimental data allows to increase the accuracy
and noise immunity of the procedure for
identification. Set the effectiveness of the
developed methods and appropriate tools for their
introduction in the practice of diagnostic studies of
technical and biological objects in the industry and
scientific research organizations.
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The methods of deterministic identification )" d m
90n51dered here were the basis for the creation of c, =7 Z(—l)“ x Z HGM X (A.6)
intellectual information technology for diagnosing T 08,50 =l k=1

complex continuous objects of different physical
nature [41-46]. This the model-based information
technology of diagnosis was effectively used to
construct a classifier of the states of the Switched-
Reluctance Electric Motors [42]. This methods of
the nonlinear dynamical systems identification using
the Volterra model in the frequency domain are
developed [47-54]. Identification methods apply for
simulation of wireless communication channels
using Volterra model in frequency domain [55 — 61].
Also, identification methods for building of
nonlinear dynamic model oculo-motor system
human based on Volterra kernels apply [62 — 69].
The information model of the photosynthetic
reaction center in the form of Volterra kernels of the
first, second and third orders was constructed on the
basis of deterministic identification methods [70].

Appendix A. Prove of the Statement 1 u 2

The model of the test signal, which is an
irregular sequence consisting of no more than m
pulses of the same amplitude S;=...=S,=S acting at
times T; can be written as

x()=310,558(-1,)° (A.1)

where 6,— parameter representing amount of

impulses and time delays between them within the
test impulse sequence — in case 6, =1, impulse is
present in sequence at time moment T;, in case
6, = 0 —impulse is not present.

After substituting (1) into (A1), we get the NDS
response as

¥(2,9,,..9,) =ZS” Z HQ/./{ W,(f=T; 5.

R e

s _T_/” ) . (A2)

After substituting expression (A.2) to (4)

fnsm) =D S 3 S

' 01,..8,70 Jjisenfy=l

XHGjAWn(t_Tj, gk =T, )
=

Sum of n elements in expression (A.3) might be
represented as

(A.3)

ZG =ZGn+Gm+ icn, (A.4)
n=l n=m+1
where
1 m ie‘
o, =5"" (-7 x
0, Ze:=0 j\z; =1 (AS)

XHE) w, (t—

-1, ), where n # m;
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xw, (t =Tt =T, ), wheren =m.
In (A.6) amount by ; .., j might be presented
as

(A.7)

where p and ¢q take values from a subset 1, , p#q.
At (A.6) as the result of sum based on ¢,,....0, ,

applied to the first operand of sum ; . ; where

ji#.#j, (A7), taking into account that Volterra

kernels are symmetric functions, which means

w (t—1,,....t —1,), so differed by the arguments
order are identically even
ey
= o mw, (t=1,,.,t=1,)= (A.8)
=w, (t=T,pnt—T,).

At (A.6) as the sum result based on 6,,...,0,,

applied to the second operand of summarization
Jise-esj, Where j, =

1)’"

Z I1e, *

q
'—lkl

Z(l)

t—t,)=0.
For equality proving (A.9) sum on 6,,..0,

(A.9)

XW, (=T, s

might be represented as

Z (= 1)“ H9

elements from set {0,,..

1 O,

(A.10)

SCMS

m

which are not members of product ﬁe,;
h=1 h

r+s=mk #..#k =l #... £l €l,m-

As far as

1 0,
Q=D =0,
0,,....0,=0

which can be proven with the mathematical
induction method, 70 6" =0 ¥ 5, =0’ .
Then from (A. 8) it appears that
c =w ({t—T,..,t—1 ).

m m m

(A.11)

(A.12)

It can be shown that first member in a sum
(A.4)

(A.13)

Foralln<m
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1

PR )
sz $ T s
015::50,,=0 i pernfiy =1

(A.14)
<[]0, w.(t-7, ,...t—=1, ) =0.
k=1
Since ﬁe‘ consists of elements, which are a subset
Jk
k=1

from a set {0,..0} which means that equality

(A.14) might be proven in the same manner as (A.9).
Third member in (A.4) is not equal to zero so in
its place adds the error for Volterra kernels
definition. In case square S of impulses in a test
sequence will be taken small enough, then error A(S)
while Volterra kernels identification for m-th
member based on g where n>m  (A4) is
proportional to $™', and appears to be (m-1)-th
order.
Which means
®(—1,...0-T,)=
=W, (E =Tyl = T,,) T O(S™™).
Statement 1 is proven. Statement 2 can be
proven in the same manner.

(A.15)
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METOJU JETEPMIHOBAHOI IIEHTU®IKALIT HEJTTHIHHUX JUHAMIYHHUX
CHCTEM HA OCHOBI MOJEJI BOJIbTEPPA

Anomauia. JJocnioxcyromsvcs memoou 0emepmiHo8anoi i0eHmuikayii HeniHilHUX OUHAMIYHUX CUCEM HA OCHO8I Mooleinell
Bonvmeppa y uacosiii obnacmi: komneHcayiinuil, anpoxcumayitinuil, iHmepnonayiunuil i podacmuuil. B axocmi mecmosux eniugie
BUKOPUCTNOBYIOMbCS HeNnepioOuyHi iMnynbcHi nocuiooenocmi. OOTPYHMOBYIOMbCs 00UUCTIO8ANbHI Memoou i0enmu@ikayii y euensioi
s0ep Bonemeppa onsi 00no— i b6acamoumipHux cucmem. 3anponoHO8aHo Memoouxky LOeHmugikayii cucmem 3 HeGI0OMOIO
CMPYKMYPOIO 8 YMOBAX PeanvHO20 eKcnepumenmy. JJocnioxncyiomscs NOXUOKU, WO SUHUKAIOMb NPU 3ACMOCYBAHHI PO3LTAHYMUX
Memoodie idenmuixayii. Hasedeno nopisHanvhull ananiz ix epexkmusnocmi no mounocmi i 06uucmo6anvHoi cmitikocmi. Ilokasaro,
wo npu 6ubopi 8iONOBIOHUX NAPAMEMPIE IMNYIbCHOT NOCIIO06HOCTI, MAKUX K MPUBALICMb, aMIIimyoa ma iHmepea 4acy Mixc
IMAIYIbCAMU, MOJICHA 3 MAKCUMATLHO OOCAICHOIO MOYHICMIO 3HAUMYU nepemunu s0ep Bonemeppa. [ns niosuwenns oduuciioganbHoi
cmitikocmi aneopummie i0eHmugikayii 3acmocogyomvbcs npoyedypu WymMo3a2ayiuleHHs, Wo 3ACHO8AHI Ha 8eliGIem-Nepen8opPeHHI.
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Annomauus. Hccredyiomea memoovl 0emepMuHupo8antotl UOeHmMUGUKayuy HeUHeHbIX OUHAMUYECKUX CUCEM HA OCHO8e
Modeneii Bonemeppa 60 epemennoll obracmu: KOMREHCAYUOHHBIN, ANNPOKCUMAYUOHHDLL, UHMEPNOIAYUOHHBIL U pobacmHublil. B
Kawecmee mecmosblx B030€UCmBUll UCNONL3VIOMCA Henepuoouyeckue UMNHYabCHble nociedogamenvhocmu. (O60CHO8LIBAIOMCS
8bIYUCTUMETbHbIE MENOObl UOeHmupurayuu 6 ude adep Borvmeppa 0na 00Ho— u MHo2OMepHbIX cucmem. IIpednoscena memoouxa
udenmuurayuy cucmem ¢ Heu3BeCMHOU CMPYKMYpou 6 YCI08UsiX peanbhozo skcnepumenma. Hccnedyromes noepeuwinocmu,
B03HUKAIOWUE NPU  NPUMEHEHUU PACCMOMPEHHbIX Memo008 udenmuurayuu. I[lpuseden cpagHumenbHvlll AHATU3  UX
spdexmusHocmu N0 MoOYHOCMU U 8bIYUCIUMENbHOU yemotyusocmu. Tlokazano, umo npu ebibope cOOMEEMCMBYIOUUX NAPAMEMPOE
UMNYTILCHOU NOCIE0068AMENbHOCHU, MAKUX KAK ONUMENbHOCMb, aMIIUMYOA U UHMEPBAl BDEMEHU MENCOY UMNYIbCAMU, MOMHCHO C
MAKCUMATILHO OOCMUNCUMOU MOYHOCMBIO HAlMU cevenus aoep Boavmeppa. Jna nosviuenus bi4uciumensHoll ycmouuugocmu
aneopumMo8 uoeHMUGUKAYUU NPUMEHAIOMCI RPOYeOyPbl WYMON00ABIeHUs, OCHOBANHbIE HA Beliglem-NPpeoOpa308anHUlL.
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