
Applied Aspects of Information Technology No. 01(02), 2019 20 – 28
Models and Methods of Information Technology

20 DOI://10.15276/aait.02.2019.2 ISSN 2617-4316

UDK 004.42: 004.8: 004.93

1Kalnauz Dmitry, Department of Computerized Control Systems, E-mail: dmitrysavchyk@gmail.com,
ORCID: 0000-0002-8042-1790, Odessa, Ukraine
1Speranskiy Viktor, Candidate of Technical Sciences, Associate Professor, Associate Professor at the De-
partment of Computerized Control Systems, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-1790,
Odessa, Ukraine
1Odessa National Polytechnic University, Shevchenko Avenue, 1, Odessa, 65044, Ukraine

PRODUCTIVITY ESTIMATION OF SERVERLESS COMPUTING
Abstract. Cloud computing has enabled organizations to focus less on their IT infrastructure and more on their core products

and services. In fact, Cloud is no longer viewed as an alternative to hosting infrastructure. Serverless computing is a technology,
also known as function-as-a-service, that gives the cloud provider complete management over the container function run on as nec-
essary to serve requests. As a result, the architectures remove the need for continuously running systems and serve as event driven
computing. Serverless computing presents new opportunities to architects and developers of Cloud-oriented solutions. Primarily, it
provides a simplified programming model for distributed Cloud-based systems development, with the infrastructure abstracted away.
It is no longer the concern of the developer to manage load balancers, provisioning and resource allocation (although system im-
plementers need to be aware of such things). This reduced focus on operational concerns should allow greater attention to be paid to
delivering value, functionality and an ability to adapt rapidly to changes. Such issues as deployment, monitoring, quality of service
and fault tolerance are moved into the hands of the Cloud provider and still need to be actively considered and managed. Serverless
computing is still in its infancy and while the model matures further, tools will be created to allow developers and architects to cre-
ate patterns and processes to fully exploit the advantages of the Serverless model. This paper explores the performance profile of a
Serverless ecosystem under low latency and high availability. The results of application and performance tests for image recognition
by using neural networks are presented. The proposed implementation uses open source libraries and tools: TensorFlow for the
study of machine learning and LabelImg for data preparation. A correlation between the amount of experimental training data and
recognition accuracy is studied and shown. For experiments, the software package was developed using the Python scripting pro-
gramming language and .Net technology. The developed software showed excellent accuracy of recognition using regular computer
with low-cost hardware. Interaction of the client side with the “server” is carried out using HTTP-requests in any browser with low-
speed network connection.

Keywords: Serverless; cloud computing; FaaS; Amazon Web Services Lambda; Microsoft Azure Cloud Function; Google
Cloud Platform Functions

Introduction
Serverless is a leading technology, since it

working physically on a server, but it does not need
to configure infrastructure. Serverless can be distin-
guished among such an event-oriented architecture
and function as a service (Function-as-a-Service)
[1]. We can see that the Serverless architecture of-
fers application computing for the microservices in
which the event is caused by other systems and re-
sources, and the micro-services are described as
formal syntax written in program functions. A new
entry in the database, repository allocation, or Inter-
net notifications is a variety of examples of events
that may simply be messages or will be processed.
Sometimes an event is created with a certain amount
of time with a subscription, but in many cases, a sig-
nificant amount of event messages must be proc-
essed immediately. Horizontal scaling for processing
simultaneous queries is one for the characteristics of
cloud computing [2].

New event message handled in an instance of
the isolation function and few examiners are needed
when several event messages are created simultane-
ously. The event created by mobile application,

© Kalnauz D., Speranskyy V., 2019

processed with light weights, but the amount of in-
coming traffic is usually unpredictable, so such pro-
grams must be deployed on a specific platform,
build with using dynamic redundancy and resource
management, such as Serverless computing [3].

On the one hand, it provides developers with a
simplified programming model for creating cloud
applications, which eliminates most, if not all, op-
erational problems; it reduces the cost of deploying
cloud code by charging for execution time, rather
than for resource allocation; and this is a platform
for rapid deployment of small pieces of cloudy code.

Serverless model provides new capabilities that
make writing more scalable microservices easier and
cost effective as the next step in evolution of cloud
computing architectures that can be used for differ-
ent technology tasks. There is a series of tasks de-
voted to development of easy and effective solutions
with use of modern cloud functions. However, most
of them cannot be tested using regular low-cost
equipment.

The aim of the work is to estimate the produc-
tivity of Serverless computing for image recognition
tasks. To attain the aim, it is needed to solve the next
tasks: perform a review of the modern cloud com-
puting technologies and develop corresponding

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

ISSN 2617-4316 21

software tools, that can be used both on regular PC
and cloud platform.

1. Technology introduction

1.1. State of art of Serverless computing

Someone thinks that servers are not needed for
Serverless computing [4]. This is actually not true.
Serverless functions still use physical servers. To
explain this, we use an example of a traditional n-
tier application with server logic and show how it
will differ using Serverless architecture (Fig. 1).
 In a Serverless architecture, several things can
change including the server and the database. An
example of this change would be creating a cloud-
provisioned API and mapping specific method re-
quests to different functions.

Fig. 1. Traditional architecture in which server
 provide and managed by developer

Instead of having one server, our application

now has functions for each piece of functionality
and cloud-provisioned servers that are created based
on demand. We could have a function for searching
for a book, and a function for purchasing a book. We
also might choose to split our database into two
separate databases that correspond to the two func-
tions (Fig. 2).

Fig. 2. Serverless architecture where servers are
 scale up and down based on demand

There are a couple of differences between the

two architecture diagrams. One is that in the on-
premises example, you have one server that needs to
be load-balanced and auto-scaled by the developer.
In the cloud solution, the application is run in state-
less compute containers that are brought up and
down by triggered functions. Another difference is
the separation of services in the Serverless example
[5].
 Triggers are simply events. They are services
and HTTP requests that create events to start up
functions for response. Triggers are usually set
within the function console or the command-line
interface and are typically created within the same

cloud provider’s environment. A function must have
exactly one trigger. There are three types of triggers:
HTTP trigger, Database trigger and Object Storage
trigger.
 1) HTTP Trigger is a simple but provide rich
format for call function with various content type,
such as a files, text, JSON, and PUT, POST and
DELETE HTTP methods.

2) Database Trigger call function when there is an
insertion, modification or deletion of any record in a
table, which behaves like a stack collection. Google
provide pub/sub trigger in Serverless platform and it
would be exchangeable by database trigger because
Google Function does not have database trigger.

3) Storage Object Trigger.
 In AWS, a trigger can be an HTTP request or a
call to another AWS service. Azure functions also
use service triggers, but they also capture the idea of
bindings. Input and output bindings offer a declara-
tive way to connect to the data of your code. Bind-
ings are not similar to triggers, as you, as a devel-
oper, specify connection strings and other properties
in your configuration functions. Unlike launching,
bindings are optional, and a function can have mul-
tiple bindings.
 An example of a program with a trigger is the
record in the API Query Tab. We have a table in
Azure storing information about employees and
whenever a POST request comes with new informa-
tion about employee and we want add another row in
the table. We can do this by running the HTTP Trig-
ger, the Azure function, and the Tabbed output bind-
ings.
 By using the trigger and bindings, we can write
more general code, which does not make the func-
tion of relying on the details of the services with
which it interacts. Information about incoming
events from services is introduced into our function.
Data output to another service, for example, adding
a row to a table in the Azure tables’ repository, may
be the execution of using the value that returns to
our Function. The Trigger and HTTP bindings have
the name of the authority, Please Act as an Identifier
that will be used in the Functions Code to access the
trigger and accessory. The trigger and bindings can
be configured on the Azure Functions portal integra-
tion tab. This configuration is displayed in the func-
tion JSON file in the function directory. This file can
also be manually configured in Extension Editor.
 Serverless computing calls can support distrib-
uted data processing with bandwidth, latency, and
distributed computing performance. There are cer-
tain limitations that we need to know before using
the function, for example, there are several event
handlers:

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

22 ISSN 2617-4316

1) HTTP, Object Storage and Database;
2) Not large amount of memory – from 512

MB to 3 GB of memory per container;
3) Maximum time allowed for the function

is allowed from 5 minutes to 10 min-
utes;

4) 500 MB cache.
 Platforms comparison could be helpful for
new users of Serverless and may to understand the
base information of the Serverless platform
(Table 1) [6].
 Amazon Lambda was the first Serverless plat-
form that was presented in 2014 [7]. It defined few
key aspects like a cost, programming model, deploy,
security and monitoring. That supports many lan-
guages, e.g., Node.JS, Python, Java, GoLang, .NET.
Platform use advantage of AWS’s ecosystem [8].
 Microsoft Azure Functions provide HTTP web-
hooks and integration with Microsoft Azure web
services. The platform supports C#, F#, Node.JS,
TypeScript, Batch, Bash, PowerShell and Java. The
runtime code is open-sourced and available on
GitHub repository under MIT license [9; 14].
 Google Cloud Functions provides basic func-
tions to run Serverless functions that wat written in
Node.JS for HTTP calls or events from another
Google Cloud services. The functionality currently
is limited but expected grow in future [10].

Table 1. Platform comparison
 AWS Lambda Google Func-

tions
Azure Func-
tions

Program-
ming lan-
guage

Node.js, Py-
thon, Java,
NET, Golang

Node.js C#, F#,
Node.js, PHP,
TypeScript,
Batch, Bash,
PowerShell,
Java

Triggers 18 triggers
(with S3, Dy-
namoDB)

3 triggers 6 triggers
(with Blob,
Cosmos DB)

Memory
price

$0.0000166/GB
-s

$0.00000165/GB
-s

$0.000016/GB
-s

Execution
price

$0.2 per 1M $0.4 per 1M $0.2 per 1M

Free Tier First 1М First 2М First 1М
Maximum
memory

3008MB 2048MB 1536MB

Operation
system(OS)

Linux Debian
GNU/Linux 8
(jessie)

Windows NT

CPU per
container

2900 MHz,1
core

1.4GHZ 2200 MHz, 2
Processors

Maximum
code size

50/250MB
(compressed/
uncompressed)

100/500MB
(compressed/
uncompressed)

100/500MB
(compressed/
uncompressed)

According to the table, AWS Lambda offers a
widest range of programming language [11]. We
also could see that cost price based on metrics, first
– the number of invocations by function. Second, the
time that is taken by a function to execute. Invoca-
tion to the Serverless function is cost-effective in all
Serverless providers. All providers have similar
price policy.
 Each Serverless platform provide different pro-
gramming language support, which developers can
use for creating function with their own a language
preference [12]. As interpreted language, we can
find Node.js for JavaScript and Python runtime envi-
ronment, as most supported. Compiled languages
such as Java and .NET are also supported, although
there is no built-in web editor for their languages.
The Table 2 shows the languages supported by each
platform.

Table 2. Language support comparison

Programming
Language

AWS Google Azure

Python 2.7, 3.6 2.7 -
Java 8 - 8

NodeJs 4.3, 6.10,
8.10

6.11,
5

6

.NET Core 1, 2 - 1, 2
Other Golang

1.x
- F# 4.6, Experimen-

tal(Python, PHP,
Batch, Bash, Power-

Shell)

1.2 Evaluation of Serverless v.s. Virtual
Machine
 Serverless does not offer high performance
computing or a cheap pricing model compared to
Amazon EC2. Virtual machines in cloud computing
offers several options for scaling computing re-
sources, through network bandwidth and perform-
ance, which requires optimal planning, and man-
agement. Serverless provide resource processing for
lightweight functions without management objec-
tives and offer cost-effective solutions.
 Amazon, for example, offer a wide range of
EC2 machines optimized for various task and
reaches 128 CPU and 3.8TB of memory. AWS
Lambda provide to launch function thousandth time
with small amount of memory (up to 3008MB or
2.8GB), which can reach to 2.8TB.
 Serverless is powered by containers, which have
near zero start-up and run without latency during a
function life cycle.
 For this comparison we should use function that
requested allocate CPU resources to an instance of a
function with simultaneous calls [13]. Multiplying
for two-dimension array (matrix) is suitable for this.

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

ISSN 2617-4316 23

Fig. 1 shows the function execution time with multi-
plying 50, 100, 250, 500 and 1000 elements in each
array.
 For each case, several dozens of launches were
carried out to avoid different nature delays and other
actions that could lead to errors in the results. The
Fig. 3 shows the averaged results. It can be noticed
that the AWS lambda has a slight performance ad-
vantage in compare to Google Cloud and Microsoft
Azure Functions.

Fig. 3. Dependency of execution time on array
 length for different cloud computing providers:

 1 – Amazon; 2 – Microsoft; 3 – Google

Multiplication of multidimensional arrays re-
quires considerable resources. The performance re-
sult of multiplying of two 500 elements arrays fol-
lowed by function calls is presented in Fig. 4.

Fig. 4. Function bandwidth with concurrent calls:
 1 – Amazon; 2 – Microsoft; 3 – Google

The measurements were carried out with differ-
ent numbers of simultaneous calls, from 25 to 500.
AWS showed an almost linear relationship during
the call and the worst result with scalability from all
platforms. Measurements were carried out from all
platforms. The performance of Azure features is
very different on other platforms with fewer calls.
Interestingly, it persists throughout the iterations of

the test. At the same time, it showed almost lazy de-
pendence with such calls and better results with
small numbers of calls.

2. Practical use of technology

There are several areas where Serverless can

play an important role as in research as well as in a
commercial using. Image or document processing
for CDN is applicable for Serverless. Internet of
Things (IoT) is also one of the use cases for Server-
less, because IoT devices typically have a small
computing power to process information and they
need to user remote processing resources. For exam-
ple, there is cooling and another similar process that
requires constant temperature control. When cooling
is not working or there are problems with work,
function can execute live migration of workload
and/or send signal about problem.

Advantages:
 1) Cost: Serverless can be more cost-effective
than renting or purchasing a fixed quantity of servers
which generally involves significant periods of un-
derutilization or idle time. It can even be more cost-
efficient than provision.
 2) Elasticity: in addition, a Serverless means
that developers and operator do not need to spend
time for setting up auto scaling or systems. The
cloud provider is responsible for seamlessly scaling
the capacity to the demand.

3) Small teams of developers are able to run
code themselves without the dependence upon teams
of infrastructure and support engineers; more devel-
opers are becoming DevOps skilled and distinctions
between being a software developer or hardware
engineer are blurring.
 4) Productivity: one of the greater benefits in
implementing a Serverless solution in its ease of use.
There is little ramp-up time need to begin program-
ming for a Serverless application. Most of this sim-
plicity is thanks to services, provided by cloud pro-
viders that make it easier to implement solutions.
The programmer does not need to implement or
work with multithreading or handling HTTP re-
quests in their code.

Disadvantages:

 1) Performance: Serverless may suffer greater
response latency than code that is continuously run-
ning on a dedicated server, virtual machine. This is
because cloud providers typically “pull down” the
Serverless code completely when not in use. This
means that if the runtime (such as Java and .Net run-
times) requires amount of time to start up – it create
additional latency.

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

24 ISSN 2617-4316

2) Resource limits: Serverless computing is not
suited to some computing workloads, such as high-
performance computing, because of the resource
limits imposed by cloud providers, and because it
would likely be cheaper to bulk-provision the num-
ber of servers believed to be required at any given
point in time.

3) Monitoring and debugging: diagnosing per-
formance or excessive resource usage problems with
Serverless code may be more difficult than with tra-
ditional server code, because although entire func-
tions can be timed, there is typically no ability to dig
into more detail by attaching profilers, debuggers or
APM tools. Furthermore, the environment in which
the code runs is typically not open source, so its per-
formance characteristics cannot be precisely repli-
cated in a local environment.

4) Standards: Serverless computing is very new
and not currently bounded by standards so that port-
ability can be an issue when moving business logic
from one public cloud to another. Cloud Native
Computing Foundation (CNCF) is working on de-
veloping a specification with Oracle.

2.1. Optimization

 Circuit Breaker Pattern allows a call to an unre-
sponsive system component to be aborted without
needlessly consuming resources trying to repeatedly
connect and retry. There will be occasions when
components are unresponsive and the system should
be able to handle this without cascading failure. It is
in situations like this that retry is not beneficial and
may well have harmful effects if it ends up spinning
up many cold Lambdas. A circuit breaker is required
that will identify when a system is in stress and will
back off. If this is linked with the front-end it would
become possible for the server to issue a 503 HTTP
response and the front-end to silently retry after a
predetermined back-off.
 Bulkhead pattern effectively isolate components
of the system that display inconsistent latency.
These may be Lambdas, which take a variable
amount of time to complete based on the workload
or which interact with external systems with an in-
consistent performance profile.
 As an example, the case study project initially
had a single function, which handled customer user
data. The architecture was such, that customer data
was refreshed and cached from an external system
during the initial authentication process. However,
other functions, which needed access to the cus-
tomer data frequently, would call the customer re-
questing the cached data. The asymmetrical nature
of the performance profile between the refresh and

request calls, with the refresh operation suffering
significantly higher latency than the request call,
could cause refresh calls to unnecessarily divert re-
quests to cold Lambdas.
 Implementing bulkheads separating high la-
tency operations from low latency application re-
quest flows significantly reduced the probability of a
given request being impacted by cold functions. In
real terms this required separating the request and
refresh functionality into separate functions to pre-
vent high latency in one part of the system adversely
affecting another.

Appropriate language to Serverless develop-
ment significantly improves latency within some
parts of the system.
 Teams responsible for Lambda development
should use the language best suited to the particular
service. Whilst this may reduce code reusability, it
allows for a reduction in latency in system compo-
nents that are highly sensitive to AWS Lambda ini-
tialization timings. Using either Node.js or Python
Lambdas on front-end facing Lambdas reduces la-
tencies since these languages are less susceptible to
problems with cold starts and can then offload to
Lambdas implemented in other languages in a man-
ner, which would not negatively affect the user ex-
perience.
 As stated as part of the AWS Lambda best prac-
tice documentation “the compiled languages (Java
and .NET) incur the largest initial start-up cost for a
container’s first invocation, but show the best per-
formance for subsequent invocations [14]. The in-
terpreted languages (Node.js and Python) have very
fast initial invocation times compared to the com-
piled languages, but can’t reach the same level of
maximum performance”. The implication is that la-
tency sensitive applications or those expecting spiky
traffic should use interpreted runtimes where possi-
ble. It can be further extrapolated that Lambdas
forming part of the same application can use differ-
ent runtimes depending on the predicted workload
for a specific component.
 The warming strategy using functions – is a fi-
nal way to increase productivity that can be used
with the approaches outlined above. It is used to en-
sure that the appropriate amount of function is al-
ways warm. This approach protects a scheduled
function implementation that makes bogus calls to
other function s in the system so that they are forced
to keep warm. This approach imposes some optimi-
zation requirements, since it must be predetermined,
which and how much function should be kept warm.
Although this approach somewhat weakens the goal
of the system, which should dynamically scale in
response to demand, it is nevertheless a viable strat-

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

ISSN 2617-4316

egy to mitigate the effects of cold function on over-
all latency. It should be noted, that this approach will
not lead to a significant increase in deployment
costs, since calls to test communication with the cor-
responding functions should be rarely performed,
but at some point, it is difficult to predict the re-
quirements for using functions. In this regard, there
may be a problem associated with large bursts of
demand, but it can reduce problems when used in
combination with other methods described in this
section.

2.2. Experimental steps
 TensorFlow is an open library for machine
learning research and product development, built by
Google for learning neural networks [15]. Tensor-
Flow offers an API for development for personal
computers, mobile devices, the web and cloud com-
puting. TensorFlow neural networks are expressed
as a state of data flow graphs. Each node in the
graph represents operations performed using neural
networks on multidimensional arrays. TensorFlow
architecture allows deploying at multiple processors
or graphics processors within the desktop, server or
mobile device.
 Before sending data for network training, they
are pre-processed using “training with a teacher”
[16]. This process consists of labeling images. This
is one of the most time-consuming tasks in data
preparation. For th freely distributed Labelimg
tool (graphical im notation tool) w d [17],
which automatica
coordinates of th
(Fig. 5).

Fig. 5. Objects m
points in the co

After comple

proceed to the ne

data. It is common practice to divide the indicated
data into a training and test set.
 The model is trained in the training set, and its
performance is checked for how well it summarizes
the data that have never been seen before in the test
set. The performance of the model on the test suite
gives an idea of how the model works, and allows
you to solve problems such as compromises of lead
and deviations. The general rule is to deploy 90% of
the data on the training set, and the remaining 10%
on testing randomly.
 The TensorFlow Object Detection API was
used. To continue, it is needed to select the model to
be trained. The ssdlite_movilenet_v2_coco was cho-
sen for high performance required for work with
streaming video.
 The training procedure lasted about 6 hours on a
regular computer. For more convenience, the data
were divided into two categories: photos and videos.
At some point, the process was stopped to check the
results with TensorBoard.
 The most important and most valuable is the
metric of total spending: the smaller the loss, the
better the module is executed. Losses are calculated
both on the training kit and on the test kit (Fig. 6), as
well as on the interpretation of how well the model
performs on the two sets.

1 2

is, the

age an

lly creates an XML
e marked objects

arkup – light rectangl
rners showing select

ting the marking of
xt task, which sepa
as use
25

file with the
in the photo

es with bold
ed images

 images, we
rates the test

Fig. 6. Total losses:
1 – errors in training over training steps;

2 – after some smoothing

Losses are estimated not in percentages (unlike
precision), but as the sum of errors made for each
example in sets for training or testing. When data is
smoothed (regularization), there is an increase in
losses depending on the number of training steps
(Fig. 7).
 In the case of neural networks, the loss is usu-
ally negative likelihood (mainly cross-entropy) or
residual sum of squares (or the sum of squares of
prediction errors) for classification and regression,
respectively. Then, the main goal in the training
model is to reduce (minimize) the values of the loss

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

26 ISSN 2617-4316

function with respect to the model parameters by
changing the values of the weight vectors using
various optimization methods.

Fig. 7. Losses after data regularization

For example, back distribution in neural net-
works. The loss value means how well or poorly
defined a model behaves after each iteration of the
optimization. Ideally, one would expect a decrease
in losses after each or several iterations.
 The accuracy of the model, as a rule, is deter-
mined after studying and fixing the parameters of
the model and the absence of training. Then, test
cases are served on the model and the number of
errors (zero loss) that the model allows is fixed after
comparing with the real goals (Fig. 8). Then the per-
centage of misclassification is calculated.

Fig. 8. The identification accuracy of
 developed software tools

 For the equipment of our experiment (without
using a graphics processor), 1000 training events
took about 3 hours, and 2000 training stages took
about 6 hours. Most of the training procedure ends
after 3 hours, and in the last hour of the experiment,
there was no real improvement, so it was decided to
stop the learning process.

3. Conclusions

 Function based on Serverless computing can
process distributed data applications and provide
quick access to additional compute resources.
Serverless computing is an event-driven FaaS tech-
nology that utilizes third-party technology and serv-
ers to remove the problem of having to build and
maintain infrastructure to create an application.
 Overall, Serverless computing can be used for
distributed date computing, if divided task is small
to perform with 1.5-3 GB memory restriction and
execution time up to 15 minutes. From this we can
conclude that Serverless computing is more cost-
effective than processing with traditional virtual ma-
chines because almost zero delay on boot up new
instances and a charging model only for the execu-
tion time of function instead of paying for an idle
time of machines.
 Nowadays, Serverless computing uses contain-
ers with small amount of computing resources. We
can conclude that in the future there will be more
functional features with fewer configurations. They
will be used for solving complex and resource-
intensive computing.
 The developed software toolkit showed very
high accuracy of recognition (0.9686) after continu-
ous 3 hour training using regular PC based on low-
cost hardware equipment.
 Current experiments showed that growing of
data quantity and time needed for experiment does
not leads the increasing of recognition accuracy us-
ing TensorFlow library in Serverless implementa-
tion.
 Experimenting with training of other network
models to reduce the time and improve the accuracy
of recognition is the subject of further research.
�

References

1. Wang, L., Li, M., Zhang, Y., Ristenpart, T.,
& Swift, M. (2018). “Peeking behind the curtains of
Serverless platforms”. (2018, June) Proceedings of
USENIX Annual Technical Conference (USENIX
ATC’18) (pp. 133-146).

2. Baldini, I., Castro, P., Chang, K., Cheng, P.,
Fink, S., Ishakian, V. & Suter, P. (2017). “Serverless
computing: Current trends and open problems.” In
Research Advances in Cloud Computing (pp. 1-20).
Springer, Singapore.

3. Jonas, E., Schleier-Smith, J., Sreekanti, V.,
Tsai, C. C., Khandelwal, A., Pu, Q. & Gonzalez, J.
E. (2019). “Cloud Programming Simplified: A
Berkeley View on Serverless Computing”. arXiv
preprint arXiv:1902.03383.

4. Frazer Jamieson, Losing the server? [Elec-
tronic Resource]. – Access Mode

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

ISSN 2617-4316 27

https://www.bcs.org/content/conWebDoc/58491.
Retrieved – March 1. 2019.

5. McGrath, G., & Brenner, P. R. (2017, June).
“Serverless computing: Design, implementation, and
performance”. In 2017 IEEE 37-th International
Conference on Distributed Computing Systems
Workshops (ICDCSW) (pp. 405-410). IEEE.

6. H. Lee, K. Satyam & G. Fox, “Evaluation of
Production Serverless Computing Environments”, in
2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), San Francisco, CA, USA,
2018 (pp. 442-450). DOI:
10.1109/CLOUD.2018.00062.

7. Introducing AWS Lambda [Electronic Re-
source]. – Access Mode
https://aws.amazon.com/ru/about-aws/whats-
new/2014/11/13/introducing-aws-lambda� –
Retrieved March 1. 2019.

8. Hegde, M., Petrenko, M., Smit, C., Zhang,
H., Pilone, P., Zasorin, A. A., & Pham, L. (2017,
December). “Giovanni in the Cloud: Earth Science
Data Exploration in Amazon Web Services” (pp.17-
24) In AGU Fall Meeting Abstracts.

9. Ron Miller, Microsoft answers AWS
Lambda’s event-triggered Serverless apps with Az-
ure Functions [Electronic Resource]. – Access Mode
https://techcrunch.com/2016/ 03/31/microsoft-
answers-aws-lambdas-event-triggered-serverless-
apps-with-azure-functions/. – Retrieved March 1.
2019.

10. Malawski, M., Gajek, A., Zima, A., Balis,
B., & Figiela, K. (2017). “Serverless execution of
scientific workflows: Experiments with Hyper-
Flow”, AWS lambda and Google cloud functions
(pp.1-15). Future Generation Computer Systems.
DOI: 10.1016/j.future. 2017.10.029.

11. Hendrickson, S., Sturdevant, S., Harter, T.,
Venkataramani, V., Arpaci-Dusseau, A. C., & Ar-
paci-Dusseau, R. H. (2016). “Serverless computation
with openlambda”. In 8-th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 16),
(pp. 1-7).

12. Ghodsi, A., Shankar, S., Paranjpye, S., Xin,
S., & Zaharia, M. (2018). “Serverless execution of
code using cluster resources”. U.S. Patent Applica-
tion No. 15/581,987.

13. Geng, X., Ma, O., Pei, Y., Xu, Z., Zeng, W.,
& Zou, J. (2018, October). “Research on Early
Warning System of Power Network Overloading
Under Serverless Architecture”. In 2018 2-nd IEEE
Conference on Energy Internet and Energy System
Integration (EI2) (pp. 1-6). IEEE.

14. Rosenbaum, S. (2017). “Serverless comput-
ing in Azure with. NET”. 468 p. Packt Publishing.

15. Géron, Aurélien. “Hands-on machine learn-
ing with Scikit-Learn and TensorFlow: concepts,
tools, and techniques to build intelligent systems”.
O'Reilly Media, Inc.

16. Ao, L., Izhikevich, L., Voelker, G. M., &
Porter, G. (2018, October). “Sprocket: A Serverless
Video Processing Framework”. In Proceedings of
the ACM Symposium on Cloud Computing (pp.
263-274). ACM.

17. Prentice, C., & Karakonstantis, G. (2018,
October). “Smart Office System with Face Detection
at the Edge”. In 2018 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of
People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDC om/IOP/SCI)
(pp. 88-93). IEEE.

1Калнауз Дмитро Валерійович, кафедра комп’ютеризованих систем управління, E-mail:
dmitrysavchyk@gmail.com, ORCID: 0000-0002-9970-6833, м. Одеса, Україна
1Сперанський Віктор Олександрович, кандидат технічних наук, доцент, доцент кафедри
комп’ютеризованих систем управління, E-mail: speranskiyva@ukr.net, ORCID: 0000-0002-8042-1790,
м. Одеса, Україна
1Oдеський національный політехнічний університет, пр-т Шевченка, 1, м. Одеса, 65044, Україна

ОЦІНКА ПРОДУКТИВНОСТІ БЕЗСЕРВЕРНІХ ОБЧИСЛЕНЬ

Анотація. Хмарні обчислення дозволили організаціям менше зосередитися на своїй ІТ-інфраструктурі і більше на сво-
їх основних продуктах і послугах. Serverless – це технологія, також відома як функція-як-послуга, яка за необхідності надає
постачальнику послуг хмарних обчислень повний контроль над контейнером для обслуговування запитів, на якому викону-
ється функція. Як наслідок, архітектури виключають необхідність постійно працюючих систем і слугують обчислюваль-
ним процесом, керованим подіями. Serverless-обчислення відкривають нові можливості для архітекторів та розробників,
орієнтованих на хмарні обчислення. Вона забезпечує спрощену модель програмування для розробки розподілених Cloud-

Applied Aspects of Information Technology No. 02(02), 2019 20 – 28
Models and Methods of Information Technology

28 ISSN 2617-4316

систем, з відстороненою інфраструктурою. Serverless обчислення все ще перебувають у зародковому стані та з подаль-
шим розвитком моделі будуть створені інструменти, що дозволять розробникам і архітекторам створювати моделі та
процеси, щоб більш повно використовувати переваги моделі Serverless. У даній роботі розглянуто профіль продуктивності
Serverless екосистеми в умовах низьких затримок і високої доступності. Представлено результати застосування і тести
продуктивності для розпізнавання образів з використанням нейронних мереж. У реалізації використовуються відкриті
бібліотеки та інструменти: TensorFlow для вивчення машинного навчання і LabelImg для підготовки даних. Показана коре-
ляція між кількістю експериментальних навчальних даних і точністю розпізнавання. Для експериментів був розроблений
програмний пакет з використанням скриптової мови програмування Python і технології .Net. Розроблене програмне забез-
печення показало відмінну точність розпізнавання використовуючи звичайний комп'ютер з недорогим обладнанням. Взає-
модія клієнтської сторони з «сервером» здійснюється за допомогою HTTP-запитів.

Ключові слова: Serverless; хмарні обчислення; функція-як-послуга; Amazon Web Services Lambda; Microsoft Azure Cloud
Function; Google Cloud Platform Functions

1Калнауз Дмитрий Валерьевич, кафедра компьютеризированных систем управления, E-mail: dmitry-
savchyk@gmail.com, ORCID: 0000-0002-9970-6833
1Сперанский Виктор Александрович, кандидат технических наук, доцент, доцент кафедры
компьютеризированных систем управления, E-mail: speranskiyva@ukr.net,
ORCID: 0000-0002-8042-1790, г.Одесса,Украина
1Одесский национальний политехнический университет, пр-тШевченко, 1, г. Одесса, 65044, Украина

ОЦЕНКА ПРОДУКТИВНОСТИ БЕССЕРВЕРНЫХ ВЫЧИСЛЕНИЙ

Аннотация. Облачные вычисления позволили организациям меньше сосредоточиться на своей ИТ-инфраструктуре и
более на своих основных продуктах и услугах. Serverless - это технология, также известная как функция-как услуга, при
необходимости предоставляет поставщику услуг облачных вычислений полный контроль над контейнером для обслужива-
ния запросов, на котором выполняется функция. Как следствие, архитектуры исключают необходимость постоянно ра-
ботающих систем и служат вычислительным процессом, управляемым событиями. Serverless-вычисления открывают
новые возможности для архитекторов и разработчиков, ориентированных на облачные вычисления. Она обеспечивает
упрощенную модель программирования для разработки распределенных Cloud-систем, с отстраненной инфраструктурой.
Serverless вычисления все еще находятся в зачаточном состоянии и с дальнейшим развитием модели будут созданы инст-
рументы, которые позволят разработчикам и архитекторам создавать модели и процессы, более полно использовать
преимущества модели Serverless. В данной работе рассмотрен профиль производительности Serverless экосистемы в усло-
виях низких задержек и высокой доступности. Представлены результаты применения и тесты производительности для
распознавания изображений с использованием нейронных сетей. В реализации используются открытые библиотеки и ин-
струменты: TensorFlow для изучения машинного обучения и LabelImg для подготовки данных. Показана корреляция между
количеством экспериментальных обучающих данных и точностью распознавания. Для экспериментов был разработан
программный пакет с использованием скриптового языка программирования Python и технологии .Net. Разработанное про-
граммное обеспечение показало отличную точность распознавания используя обычный компьютер с недорогим оборудова-
нием. Взаимодействие клиентской стороны с «сервером» осуществляется с помощью HTTP-запросов.

Ключевые слова: Serverless; облачные вычисления; функция-как-услуга; Amazon Web Services Lambda; Microsoft Azure
Cloud Function; Google Cloud Platform Functions

	UDK 004.42: 004.8: 004.93

