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PRODUCTIVITY ESTIMATION OF SERVERLESS COMPUTING 
Abstract. Cloud computing has enabled organizations to focus less on their IT infrastructure and more on their core products 

and services. In fact, Cloud is no longer viewed as an alternative to hosting infrastructure. Serverless computing is a technology, 
also known as function-as-a-service, that gives the cloud provider complete management over the container function run on as nec-
essary to serve requests. As a result, the architectures remove the need for continuously running systems and serve as event driven 
computing. Serverless computing presents new opportunities to architects and developers of Cloud-oriented solutions. Primarily, it 
provides a simplified programming model for distributed Cloud-based systems development, with the infrastructure abstracted away. 
It is no longer the concern of the developer to manage load balancers, provisioning and resource allocation (although system im-
plementers need to be aware of such things). This reduced focus on operational concerns should allow greater attention to be paid to 
delivering value, functionality and an ability to adapt rapidly to changes. Such issues as deployment, monitoring, quality of service 
and fault tolerance are moved into the hands of the Cloud provider and still need to be actively considered and managed. Serverless 
computing is still in its infancy and while the model matures further, tools will be created to allow developers and architects to cre-
ate patterns and processes to fully exploit the advantages of the Serverless model. This paper explores the performance profile of a 
Serverless ecosystem under low latency and high availability. The results of application and performance tests for image recognition 
by using neural networks are presented. The proposed implementation uses open source libraries and tools: TensorFlow for the 
study of machine learning and LabelImg for data preparation. A correlation between the amount of experimental training data and 
recognition accuracy is studied and shown. For experiments, the software package was developed using the Python scripting pro-
gramming language and .Net technology. The developed software showed excellent accuracy of recognition using regular computer 
with low-cost hardware. Interaction of the client side with the “server” is carried out using HTTP-requests in any browser with low-
speed network connection. 

Keywords: Serverless; cloud computing; FaaS; Amazon Web Services Lambda; Microsoft Azure Cloud Function; Google 
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Introduction 
Serverless is a leading technology, since it 

working physically on a server, but it does not need 
to configure infrastructure. Serverless can be distin-
guished among such an event-oriented architecture 
and function as a service (Function-as-a-Service) 
[1]. We can see that the Serverless architecture of-
fers application computing for the microservices in 
which the event is caused by other systems and re-
sources, and the micro-services are described as 
formal syntax written in program functions. A new 
entry in the database, repository allocation, or Inter-
net notifications is a variety of examples of events 
that may simply be messages or will be processed. 
Sometimes an event is created with a certain amount 
of time with a subscription, but in many cases, a sig-
nificant amount of event messages must be proc-
essed immediately. Horizontal scaling for processing 
simultaneous queries is one for the characteristics of 
cloud computing [2].  

New event message handled in an instance of 
the isolation function and few examiners are needed 
when several event messages are created simultane-
ously. The event created by mobile application, 
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processed with light weights, but the amount of in-
coming traffic is usually unpredictable, so such pro-
grams must be deployed on a specific platform, 
build with using dynamic redundancy and resource 
management, such as Serverless computing [3]. 

On the one hand, it provides developers with a 
simplified programming model for creating cloud 
applications, which eliminates most, if not all, op-
erational problems; it reduces the cost of deploying 
cloud code by charging for execution time, rather 
than for resource allocation; and this is a platform 
for rapid deployment of small pieces of cloudy code. 

Serverless model provides new capabilities that 
make writing more scalable microservices easier and 
cost effective as the next step in evolution of cloud 
computing architectures that can be used for differ-
ent technology tasks. There is a series of tasks de-
voted to development of easy and effective solutions 
with use of modern cloud functions. However, most 
of them cannot be tested using regular low-cost 
equipment. 

The aim of the work is to estimate the produc-
tivity of Serverless computing for image recognition 
tasks. To attain the aim, it is needed to solve the next 
tasks: perform a review of the modern cloud com-
puting technologies and develop corresponding 
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software tools, that can be used both on regular PC 
and cloud platform. 

 
1. Technology introduction 

1.1. State of art of Serverless computing 

Someone thinks that servers are not needed for 
Serverless computing [4]. This is actually not true. 
Serverless functions still use physical servers. To 
explain this, we use an example of a traditional n-
tier application with server logic and show how it 
will differ using Serverless architecture (Fig. 1). 
 In a Serverless architecture, several things can 
change including the server and the database. An 
example of this change would be creating a cloud-
provisioned API and mapping specific method re-
quests to different functions. 

Fig. 1. Traditional architecture in which server  
 provide and managed by developer 

 
Instead of having one server, our application 

now has functions for each piece of functionality 
and cloud-provisioned servers that are created based 
on demand. We could have a function for searching 
for a book, and a function for purchasing a book. We 
also might choose to split our database into two 
separate databases that correspond to the two func-
tions (Fig. 2). 

Fig. 2. Serverless architecture where servers are 
 scale up and down based on demand 

 
There are a couple of differences between the 

two architecture diagrams. One is that in the on-
premises example, you have one server that needs to 
be load-balanced and auto-scaled by the developer. 
In the cloud solution, the application is run in state-
less compute containers that are brought up and 
down by triggered functions. Another difference is 
the separation of services in the Serverless example 
[5]. 
 Triggers are simply events. They are services 
and HTTP requests that create events to start up 
functions for response. Triggers are usually set 
within the function console or the command-line 
interface and are typically created within the same 

cloud provider’s environment. A function must have 
exactly one trigger. There are three types of triggers: 
HTTP trigger, Database trigger and Object Storage 
trigger. 
 1) HTTP Trigger is a simple but provide rich 
format for call function with various content type, 
such as a files, text, JSON, and PUT, POST and 
DELETE HTTP methods. 

2) Database Trigger call function when there is an 
insertion, modification or deletion of any record in a 
table, which behaves like a stack collection. Google 
provide pub/sub trigger in Serverless platform and it 
would be exchangeable by database trigger because 
Google Function does not have database trigger. 

3) Storage Object Trigger. 
 In AWS, a trigger can be an HTTP request or a 
call to another AWS service. Azure functions also 
use service triggers, but they also capture the idea of 
bindings. Input and output bindings offer a declara-
tive way to connect to the data of your code. Bind-
ings are not similar to triggers, as you, as a devel-
oper, specify connection strings and other properties 
in your configuration functions. Unlike launching, 
bindings are optional, and a function can have mul-
tiple bindings. 
 An example of a program with a trigger is the 
record in the API Query Tab. We have a table in 
Azure storing information about employees and 
whenever a POST request comes with new informa-
tion about employee and we want add another row in 
the table. We can do this by running the HTTP Trig-
ger, the Azure function, and the Tabbed output bind-
ings. 
 By using the trigger and bindings, we can write 
more general code, which does not make the func-
tion of relying on the details of the services with 
which it interacts. Information about incoming 
events from services is introduced into our function. 
Data output to another service, for example, adding 
a row to a table in the Azure tables’ repository, may 
be the execution of using the value that returns to 
our Function. The Trigger and HTTP bindings have 
the name of the authority, Please Act as an Identifier 
that will be used in the Functions Code to access the 
trigger and accessory. The trigger and bindings can 
be configured on the Azure Functions portal integra-
tion tab. This configuration is displayed in the func-
tion JSON file in the function directory. This file can 
also be manually configured in Extension Editor. 
 Serverless computing calls can support distrib-
uted data processing with bandwidth, latency, and 
distributed computing performance. There are cer-
tain limitations that we need to know before using 
the function, for example, there are several event 
handlers: 
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1) HTTP, Object Storage and Database; 
2) Not large amount of memory – from 512 

MB to 3 GB of memory per container;  
3) Maximum time allowed for the function 

is allowed from 5 minutes to 10 min-
utes; 

4) 500 MB cache. 
 Platforms comparison could be helpful for 
new users of Serverless and may to understand the 
base information of the Serverless platform  
(Table 1) [6]. 
 Amazon Lambda was the first Serverless plat-
form that was presented in 2014 [7]. It defined few 
key aspects like a cost, programming model, deploy, 
security and monitoring. That supports many lan-
guages, e.g., Node.JS, Python, Java, GoLang, .NET. 
Platform use advantage of AWS’s ecosystem [8].  
 Microsoft Azure Functions provide HTTP web-
hooks and integration with Microsoft Azure web 
services. The platform supports C#, F#, Node.JS, 
TypeScript, Batch, Bash, PowerShell and Java. The 
runtime code is open-sourced and available on 
GitHub repository under MIT license [9; 14]. 
 Google Cloud Functions provides basic func-
tions to run Serverless functions that wat written in 
Node.JS for HTTP calls or events from another 
Google Cloud services. The functionality currently 
is limited but expected grow in future [10]. 

Table 1.  Platform comparison 
 AWS Lambda Google Func-

tions 
Azure Func-
tions 

Program-
ming lan-
guage 

Node.js, Py-
thon, Java, 
NET, Golang 

Node.js C#, F#, 
Node.js, PHP, 
TypeScript, 
Batch, Bash, 
PowerShell, 
Java 

Triggers 18 triggers 
(with S3, Dy-
namoDB) 

3 triggers 6 triggers 
(with  Blob, 
Cosmos DB) 

Memory 
price 

$0.0000166/GB
-s 

$0.00000165/GB
-s 

$0.000016/GB
-s 

Execution 
price 

$0.2 per 1M $0.4 per 1M $0.2 per 1M 

Free Tier First 1М First 2М First 1М
Maximum 
memory  

3008MB 2048MB 1536MB 

Operation 
system(OS) 

Linux Debian 
GNU/Linux 8 
(jessie) 

Windows NT 

CPU per 
container 

2900 MHz,1 
core 

1.4GHZ 2200 MHz, 2 
Processors 

Maximum 
code size 

50/250MB 
(compressed/ 
uncompressed) 

100/500MB 
(compressed/ 
uncompressed) 

100/500MB 
(compressed/ 
uncompressed)

According to the table, AWS Lambda offers a 
widest range of programming language [11]. We 
also could see that cost price based on metrics, first 
– the number of invocations by function. Second, the 
time that is taken by a function to execute. Invoca-
tion to the Serverless function is cost-effective in all 
Serverless providers. All providers have similar 
price policy. 
 Each Serverless platform provide different pro-
gramming language support, which developers can 
use for creating function with their own a language 
preference [12]. As interpreted language, we can 
find Node.js for JavaScript and Python runtime envi-
ronment, as most supported. Compiled languages 
such as Java and .NET are also supported, although 
there is no built-in web editor for their languages. 
The Table 2 shows the languages supported by each 
platform. 

Table 2. Language support comparison 

Programming 
Language 

AWS Google Azure 

Python 2.7, 3.6 2.7 - 
Java 8 - 8 

NodeJs 4.3, 6.10, 
8.10 

6.11, 
5

6

.NET Core 1, 2 - 1, 2 
Other Golang 

1.x 
- F# 4.6, Experimen-

tal(Python, PHP, 
Batch, Bash, Power-

Shell) 

1.2 Evaluation of Serverless v.s. Virtual  
Machine 
 Serverless does not offer high performance 
computing or a cheap pricing model compared to 
Amazon EC2. Virtual machines in cloud computing 
offers several options for scaling computing re-
sources, through network bandwidth and perform-
ance, which requires optimal planning, and man-
agement. Serverless provide resource processing for 
lightweight functions without management objec-
tives and offer cost-effective solutions.   
 Amazon, for example, offer a wide range of 
EC2 machines optimized for various task and 
reaches 128 CPU and 3.8TB of memory. AWS 
Lambda provide to launch function thousandth time 
with small amount of memory (up to 3008MB or 
2.8GB), which can reach to 2.8TB. 
 Serverless is powered by containers, which have 
near zero start-up and run without latency during a 
function life cycle. 
 For this comparison we should use function that 
requested allocate CPU resources to an instance of a 
function with simultaneous calls [13]. Multiplying 
for two-dimension array (matrix) is suitable for this. 
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Fig. 1 shows the function execution time with multi-
plying 50, 100, 250, 500 and 1000 elements in each 
array. 
 For each case, several dozens of launches were 
carried out to avoid different nature delays and other 
actions that could lead to errors in the results. The 
Fig. 3 shows the averaged results. It can be noticed 
that the AWS lambda has a slight performance ad-
vantage in compare to Google Cloud and Microsoft 
Azure Functions.  

Fig. 3. Dependency of execution time on array  
 length for different cloud computing providers:  

 1 – Amazon; 2 – Microsoft; 3 – Google 
 

Multiplication of multidimensional arrays re-
quires considerable resources. The performance re-
sult of multiplying of two 500 elements arrays fol-
lowed by function calls is presented in Fig. 4.  
 

Fig. 4. Function bandwidth with concurrent calls:  
 1 – Amazon; 2 – Microsoft; 3 – Google 

The measurements were carried out with differ-
ent numbers of simultaneous calls, from 25 to 500. 
AWS showed an almost linear relationship during 
the call and the worst result with scalability from all 
platforms. Measurements were carried out from all 
platforms. The performance of Azure features is 
very different on other platforms with fewer calls. 
Interestingly, it persists throughout the iterations of 

the test. At the same time, it showed almost lazy de-
pendence with such calls and better results with 
small numbers of calls. 
 

2. Practical use of technology 
 
There are several areas where Serverless can 

play an important role as in research as well as in a 
commercial using. Image or document processing 
for CDN is applicable for Serverless. Internet of 
Things (IoT) is also one of the use cases for Server-
less, because IoT devices typically have a small 
computing power to process information and they 
need to user remote processing resources. For exam-
ple, there is cooling and another similar process that 
requires constant temperature control. When cooling 
is not working or there are problems with work, 
function can execute live migration of workload 
and/or send signal about problem. 

Advantages: 
 1) Cost: Serverless can be more cost-effective 
than renting or purchasing a fixed quantity of servers 
which generally involves significant periods of un-
derutilization or idle time. It can even be more cost-
efficient than provision. 
 2) Elasticity: in addition, a Serverless means 
that developers and operator do not need to spend 
time for setting up auto scaling or systems. The 
cloud provider is responsible for seamlessly scaling 
the capacity to the demand. 

3) Small teams of developers are able to run 
code themselves without the dependence upon teams 
of infrastructure and support engineers; more devel-
opers are becoming DevOps skilled and distinctions 
between being a software developer or hardware 
engineer are blurring. 
 4) Productivity: one of the greater benefits in 
implementing a Serverless solution in its ease of use. 
There is little ramp-up time need to begin program-
ming for a Serverless application. Most of this sim-
plicity is thanks to services, provided by cloud pro-
viders that make it easier to implement solutions. 
The programmer does not need to implement or 
work with multithreading or handling HTTP re-
quests in their code.  

 
Disadvantages: 

 1) Performance: Serverless may suffer greater 
response latency than code that is continuously run-
ning on a dedicated server, virtual machine. This is 
because cloud providers typically “pull down” the 
Serverless code completely when not in use. This 
means that if the runtime (such as Java and .Net run-
times) requires amount of time to start up – it create 
additional latency.  
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2) Resource limits: Serverless computing is not 
suited to some computing workloads, such as high-
performance computing, because of the resource 
limits imposed by cloud providers, and because it 
would likely be cheaper to bulk-provision the num-
ber of servers believed to be required at any given 
point in time. 

3) Monitoring and debugging: diagnosing per-
formance or excessive resource usage problems with 
Serverless code may be more difficult than with tra-
ditional server code, because although entire func-
tions can be timed, there is typically no ability to dig 
into more detail by attaching profilers, debuggers or 
APM tools. Furthermore, the environment in which 
the code runs is typically not open source, so its per-
formance characteristics cannot be precisely repli-
cated in a local environment. 

4) Standards: Serverless computing is very new 
and not currently bounded by standards so that port-
ability can be an issue when moving business logic 
from one public cloud to another. Cloud Native 
Computing Foundation (CNCF) is working on de-
veloping a specification with Oracle. 

 

2.1. Optimization  

 Circuit Breaker Pattern allows a call to an unre-
sponsive system component to be aborted without 
needlessly consuming resources trying to repeatedly 
connect and retry. There will be occasions when 
components are unresponsive and the system should 
be able to handle this without cascading failure. It is 
in situations like this that retry is not beneficial and 
may well have harmful effects if it ends up spinning 
up many cold Lambdas. A circuit breaker is required 
that will identify when a system is in stress and will 
back off. If this is linked with the front-end it would 
become possible for the server to issue a 503 HTTP 
response and the front-end to silently retry after a 
predetermined back-off.  
 Bulkhead pattern effectively isolate components 
of the system that display inconsistent latency. 
These may be Lambdas, which take a variable 
amount of time to complete based on the workload 
or which interact with external systems with an in-
consistent performance profile. 
 As an example, the case study project initially 
had a single function, which handled customer user 
data. The architecture was such, that customer data 
was refreshed and cached from an external system 
during the initial authentication process. However, 
other functions, which needed access to the cus-
tomer data frequently, would call the customer re-
questing the cached data. The asymmetrical nature 
of the performance profile between the refresh and 

request calls, with the refresh operation suffering 
significantly higher latency than the request call, 
could cause refresh calls to unnecessarily divert re-
quests to cold Lambdas.  
 Implementing bulkheads separating high la-
tency operations from low latency application re-
quest flows significantly reduced the probability of a 
given request being impacted by cold functions. In 
real terms this required separating the request and 
refresh functionality into separate functions to pre-
vent high latency in one part of the system adversely 
affecting another.  

Appropriate language to Serverless develop-
ment significantly improves latency within some 
parts of the system.  
 Teams responsible for Lambda development 
should use the language best suited to the particular 
service. Whilst this may reduce code reusability, it 
allows for a reduction in latency in system compo-
nents that are highly sensitive to AWS Lambda ini-
tialization timings. Using either Node.js or Python 
Lambdas on front-end facing Lambdas reduces la-
tencies since these languages are less susceptible to 
problems with cold starts and can then offload to 
Lambdas implemented in other languages in a man-
ner, which would not negatively affect the user ex-
perience.  
 As stated as part of the AWS Lambda best prac-
tice documentation “the compiled languages (Java 
and .NET) incur the largest initial start-up cost for a 
container’s first invocation, but show the best per-
formance for subsequent invocations [14]. The in-
terpreted languages (Node.js and Python) have very 
fast initial invocation times compared to the com-
piled languages, but can’t reach the same level of 
maximum performance”. The implication is that la-
tency sensitive applications or those expecting spiky 
traffic should use interpreted runtimes where possi-
ble. It can be further extrapolated that Lambdas 
forming part of the same application can use differ-
ent runtimes depending on the predicted workload 
for a specific component.  
 The warming strategy using functions – is a fi-
nal way to increase productivity that can be used 
with the approaches outlined above. It is used to en-
sure that the appropriate amount of function is al-
ways warm. This approach protects a scheduled 
function implementation that makes bogus calls to 
other function s in the system so that they are forced 
to keep warm. This approach imposes some optimi-
zation requirements, since it must be predetermined, 
which and how much function should be kept warm. 
Although this approach somewhat weakens the goal 
of the system, which should dynamically scale in 
response to demand, it is nevertheless a viable strat-
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egy to mitigate the effects of cold function on over-
all latency. It should be noted, that this approach will 
not lead to a significant increase in deployment 
costs, since calls to test communication with the cor-
responding functions should be rarely performed, 
but at some point, it is difficult to predict the re-
quirements for using functions. In this regard, there 
may be a problem associated with large bursts of 
demand, but it can reduce problems when used in 
combination with other methods described in this 
section. 

2.2. Experimental steps 
 TensorFlow is an open library for machine 
learning research and product development, built by 
Google for learning neural networks [15]. Tensor-
Flow offers an API for development for personal 
computers, mobile devices, the web and cloud com-
puting. TensorFlow neural networks are expressed 
as a state of data flow graphs. Each node in the 
graph represents operations performed using neural 
networks on multidimensional arrays. TensorFlow 
architecture allows deploying at multiple processors 
or graphics processors within the desktop, server or 
mobile device. 
 Before sending data for network training, they 
are pre-processed using “training with a teacher” 
[16]. This process consists of labeling images. This 
is one of the most time-consuming tasks in data 
preparation. For th  freely distributed Labelimg 
tool (graphical im notation tool) w d [17], 
which automatica
coordinates of th
(Fig. 5).  

Fig. 5. Objects m
points in the co

 
After comple

proceed to the ne

data. It is common practice to divide the indicated 
data into a training and test set. 
 The model is trained in the training set, and its 
performance is checked for how well it summarizes 
the data that have never been seen before in the test 
set. The performance of the model on the test suite 
gives an idea of how the model works, and allows 
you to solve problems such as compromises of lead 
and deviations. The general rule is to deploy 90% of 
the data on the training set, and the remaining 10% 
on testing randomly. 
 The TensorFlow Object Detection API was 
used. To continue, it is needed to select the model to 
be trained. The ssdlite_movilenet_v2_coco was cho-
sen for high performance required for work with 
streaming video. 
 The training procedure lasted about 6 hours on a 
regular computer. For more convenience, the data 
were divided into two categories: photos and videos. 
At some point, the process was stopped to check the 
results with TensorBoard. 
 The most important and most valuable is the 
metric of total spending: the smaller the loss, the 
better the module is executed. Losses are calculated 
both on the training kit and on the test kit (Fig. 6), as 
well as on the interpretation of how well the model 
performs on the two sets.  
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Fig. 6. Total losses:  
1 – errors in training over training steps;  

2 – after some smoothing 
 

Losses are estimated not in percentages (unlike 
precision), but as the sum of errors made for each 
example in sets for training or testing. When data is 
smoothed (regularization), there is an increase in 
losses depending on the number of training steps 
(Fig. 7). 
 In the case of neural networks, the loss is usu-
ally negative likelihood (mainly cross-entropy) or 
residual sum of squares (or the sum of squares of 
prediction errors) for classification and regression, 
respectively. Then, the main goal in the training 
model is to reduce (minimize) the values of the loss 
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function with respect to the model parameters by 
changing the values of the weight vectors using 
various optimization methods. 
 

Fig. 7. Losses after data regularization 
 

For example, back distribution in neural net-
works. The loss value means how well or poorly 
defined a model behaves after each iteration of the 
optimization. Ideally, one would expect a decrease 
in losses after each or several iterations. 
 The accuracy of the model, as a rule, is deter-
mined after studying and fixing the parameters of 
the model and the absence of training. Then, test 
cases are served on the model and the number of 
errors (zero loss) that the model allows is fixed after 
comparing with the real goals (Fig. 8). Then the per-
centage of misclassification is calculated. 
 

Fig. 8. The identification accuracy of  
 developed software tools 

 For the equipment of our experiment (without 
using a graphics processor), 1000 training events 
took about 3 hours, and 2000 training stages took 
about 6 hours. Most of the training procedure ends 
after 3 hours, and in the last hour of the experiment, 
there was no real improvement, so it was decided to 
stop the learning process. 

 

3. Conclusions 

 Function based on Serverless computing can 
process distributed data applications and provide 
quick access to additional compute resources. 
Serverless computing is an event-driven FaaS tech-
nology that utilizes third-party technology and serv-
ers to remove the problem of having to build and 
maintain infrastructure to create an application. 
 Overall, Serverless computing can be used for 
distributed date computing, if divided task is small 
to perform with 1.5-3 GB memory restriction and 
execution time up to 15 minutes.  From this we can 
conclude that Serverless computing is more cost-
effective than processing with traditional virtual ma-
chines because almost zero delay on boot up new 
instances and a charging model only for the execu-
tion time of function instead of paying for an idle 
time of machines. 
 Nowadays, Serverless computing uses contain-
ers with small amount of computing resources. We 
can conclude that in the future there will be more 
functional features with fewer configurations. They 
will be used for solving complex and resource-
intensive computing. 
 The developed software toolkit showed very 
high accuracy of recognition (0.9686) after continu-
ous 3 hour training using regular PC based on low-
cost hardware equipment. 
 Current experiments showed that growing of 
data quantity and time needed for experiment does 
not leads the increasing of recognition accuracy us-
ing TensorFlow library in Serverless implementa-
tion. 
 Experimenting with training of other network 
models to reduce the time and improve the accuracy 
of recognition is the subject of further research. 
�
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ОЦІНКА ПРОДУКТИВНОСТІ БЕЗСЕРВЕРНІХ ОБЧИСЛЕНЬ 

Анотація. Хмарні обчислення дозволили організаціям менше зосередитися на своїй ІТ-інфраструктурі і більше на сво-
їх основних продуктах і послугах. Serverless – це технологія, також відома як функція-як-послуга, яка за необхідності надає 
постачальнику послуг хмарних обчислень повний контроль над контейнером для обслуговування запитів, на якому викону-
ється функція. Як наслідок, архітектури виключають необхідність постійно працюючих систем і слугують обчислюваль-
ним процесом, керованим подіями. Serverless-обчислення відкривають нові можливості для архітекторів та розробників,
орієнтованих на хмарні обчислення. Вона забезпечує спрощену модель програмування для розробки розподілених Cloud-
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систем, з відстороненою інфраструктурою. Serverless обчислення все ще перебувають у зародковому стані та з подаль-
шим розвитком моделі будуть створені інструменти, що дозволять розробникам і архітекторам створювати моделі та 
процеси, щоб більш повно використовувати переваги моделі Serverless. У даній роботі розглянуто профіль продуктивності 
Serverless екосистеми в умовах низьких затримок і високої доступності. Представлено результати застосування і тести 
продуктивності для розпізнавання образів з використанням нейронних мереж. У реалізації використовуються відкриті 
бібліотеки та інструменти: TensorFlow для вивчення машинного навчання і LabelImg для підготовки даних. Показана коре-
ляція між кількістю експериментальних навчальних даних і точністю розпізнавання. Для експериментів був розроблений 
програмний пакет з використанням скриптової мови програмування Python і технології .Net. Розроблене програмне забез-
печення показало відмінну точність розпізнавання використовуючи звичайний комп'ютер з недорогим обладнанням. Взає-
модія клієнтської сторони з «сервером» здійснюється за допомогою HTTP-запитів.

Ключові слова: Serverless; хмарні обчислення; функція-як-послуга; Amazon Web Services Lambda; Microsoft Azure Cloud 
Function; Google Cloud Platform Functions 
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ОЦЕНКА ПРОДУКТИВНОСТИ БЕССЕРВЕРНЫХ ВЫЧИСЛЕНИЙ 

Аннотация. Облачные вычисления позволили организациям меньше сосредоточиться на своей ИТ-инфраструктуре и
более на своих основных продуктах и услугах. Serverless - это технология, также известная как функция-как услуга, при 
необходимости предоставляет поставщику услуг облачных вычислений полный контроль над контейнером для обслужива-
ния запросов, на котором выполняется функция. Как следствие, архитектуры исключают необходимость постоянно ра-
ботающих систем и служат вычислительным процессом, управляемым событиями. Serverless-вычисления открывают 
новые возможности для архитекторов и разработчиков, ориентированных на облачные вычисления. Она обеспечивает 
упрощенную модель программирования для разработки распределенных Cloud-систем, с отстраненной инфраструктурой.
Serverless вычисления все еще находятся в зачаточном состоянии и с дальнейшим развитием модели будут созданы инст-
рументы, которые позволят разработчикам и архитекторам создавать модели и процессы, более полно использовать 
преимущества модели Serverless. В данной работе рассмотрен профиль производительности Serverless экосистемы в усло-
виях низких задержек и высокой доступности. Представлены результаты применения и тесты производительности для 
распознавания изображений с использованием нейронных сетей. В реализации используются открытые библиотеки и ин-
струменты: TensorFlow для изучения машинного обучения и LabelImg для подготовки данных. Показана корреляция между 
количеством экспериментальных обучающих данных и точностью распознавания. Для экспериментов был разработан 
программный пакет с использованием скриптового языка программирования Python и технологии .Net. Разработанное про-
граммное обеспечение показало отличную точность распознавания используя обычный компьютер с недорогим оборудова-
нием. Взаимодействие клиентской стороны с «сервером» осуществляется с помощью HTTP-запросов.

Ключевые слова: Serverless; облачные вычисления; функция-как-услуга; Amazon Web Services Lambda; Microsoft Azure 
Cloud Function; Google Cloud Platform Functions 
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