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PRODUCTIVITY ESTIMATION OF SERVERLESS COMPUTING

Abstract. Cloud computing has enabled organizations to focus less on their IT infrastructure and more on their core products
and services. In fact, Cloud is no longer viewed as an alternative to hosting infrastructure. Serverless computing is a technology,
also known as function-as-a-service, that gives the cloud provider complete management over the container function run on as nec-
essary to serve requests. As a result, the architectures remove the need for continuously running systems and serve as event driven
computing. Serverless computing presents new opportunities to architects and developers of Cloud-oriented solutions. Primarily, it
provides a simplified programming model for distributed Cloud-based systems development, with the infrastructure abstracted away.
1t is no longer the concern of the developer to manage load balancers, provisioning and resource allocation (although system im-
plementers need to be aware of such things). This reduced focus on operational concerns should allow greater attention to be paid to
delivering value, functionality and an ability to adapt rapidly to changes. Such issues as deployment, monitoring, quality of service
and fault tolerance are moved into the hands of the Cloud provider and still need to be actively considered and managed. Serverless
computing is still in its infancy and while the model matures further, tools will be created to allow developers and architects to cre-
ate patterns and processes to fully exploit the advantages of the Serverless model. This paper explores the performance profile of a
Serverless ecosystem under low latency and high availability. The results of application and performance tests for image recognition
by using neural networks are presented. The proposed implementation uses open source libraries and tools: TensorFlow for the
study of machine learning and Labellmg for data preparation. A correlation between the amount of experimental training data and
recognition accuracy is studied and shown. For experiments, the software package was developed using the Python scripting pro-
gramming language and .Net technology. The developed software showed excellent accuracy of recognition using regular computer
with low-cost hardware. Interaction of the client side with the “server” is carried out using HTTP-requests in any browser with low-

speed network connection.
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Cloud Platform Functions

Introduction

Serverless is a leading technology, since it
working physically on a server, but it does not need
to configure infrastructure. Serverless can be distin-
guished among such an event-oriented architecture
and function as a service (Function-as-a-Service)
[1]. We can see that the Serverless architecture of-
fers application computing for the microservices in
which the event is caused by other systems and re-
sources, and the micro-services are described as
formal syntax written in program functions. A new
entry in the database, repository allocation, or Inter-
net notifications is a variety of examples of events
that may simply be messages or will be processed.
Sometimes an event is created with a certain amount
of time with a subscription, but in many cases, a sig-
nificant amount of event messages must be proc-
essed immediately. Horizontal scaling for processing
simultaneous queries is one for the characteristics of
cloud computing [2].

New event message handled in an instance of
the isolation function and few examiners are needed
when several event messages are created simultane-
ously. The event created by mobile application,
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processed with light weights, but the amount of in-
coming traffic is usually unpredictable, so such pro-
grams must be deployed on a specific platform,
build with using dynamic redundancy and resource
management, such as Serverless computing [3].

On the one hand, it provides developers with a
simplified programming model for creating cloud
applications, which eliminates most, if not all, op-
erational problems; it reduces the cost of deploying
cloud code by charging for execution time, rather
than for resource allocation; and this is a platform
for rapid deployment of small pieces of cloudy code.

Serverless model provides new capabilities that
make writing more scalable microservices easier and
cost effective as the next step in evolution of cloud
computing architectures that can be used for differ-
ent technology tasks. There is a series of tasks de-
voted to development of easy and effective solutions
with use of modern cloud functions. However, most
of them cannot be tested using regular low-cost
equipment.

The aim of the work is to estimate the produc-
tivity of Serverless computing for image recognition
tasks. To attain the aim, it is needed to solve the next
tasks: perform a review of the modern cloud com-
puting technologies and develop corresponding

ISSN 2617-4316



Applied Aspects of Information Technology

No. 02(02),2019

20-28

Models and Methods of Information Technology

software tools, that can be used both on regular PC
and cloud platform.

1. Technology introduction
1.1. State of art of Serverless computing

Someone thinks that servers are not needed for
Serverless computing [4]. This is actually not true.
Serverless functions still use physical servers. To
explain this, we use an example of a traditional n-
tier application with server logic and show how it
will differ using Serverless architecture (Fig. 1).

In a Serverless architecture, several things can
change including the server and the database. An
example of this change would be creating a cloud-
provisioned API and mapping specific method re-
quests to different functions.
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Fig. 1. Traditional architecture in which server
provide and managed by developer

Instead of having one server, our application
now has functions for each piece of functionality
and cloud-provisioned servers that are created based
on demand. We could have a function for searching
for a book, and a function for purchasing a book. We
also might choose to split our database into two
separate databases that correspond to the two func-
tions (Fig. 2).
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Fig. 2. Serverless architecture where servers are
scale up and down based on demand

There are a couple of differences between the
two architecture diagrams. One is that in the on-
premises example, you have one server that needs to
be load-balanced and auto-scaled by the developer.
In the cloud solution, the application is run in state-
less compute containers that are brought up and
down by triggered functions. Another difference is
the separation of services in the Serverless example
[5].

Triggers are simply events. They are services
and HTTP requests that create events to start up
functions for response. Triggers are usually set
within the function console or the command-line
interface and are typically created within the same
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cloud provider’s environment. A function must have
exactly one trigger. There are three types of triggers:
HTTP trigger, Database trigger and Object Storage
trigger.

1) HTTP Trigger is a simple but provide rich
format for call function with various content type,
such as a files, text, JSON, and PUT, POST and
DELETE HTTP methods.

2) Database Trigger call function when there is an
insertion, modification or deletion of any record in a
table, which behaves like a stack collection. Google
provide pub/sub trigger in Serverless platform and it
would be exchangeable by database trigger because
Google Function does not have database trigger.

3) Storage Object Trigger.

In AWS, a trigger can be an HTTP request or a
call to another AWS service. Azure functions also
use service triggers, but they also capture the idea of
bindings. Input and output bindings offer a declara-
tive way to connect to the data of your code. Bind-
ings are not similar to triggers, as you, as a devel-
oper, specify connection strings and other properties
in your configuration functions. Unlike launching,
bindings are optional, and a function can have mul-
tiple bindings.

An example of a program with a trigger is the
record in the API Query Tab. We have a table in
Azure storing information about employees and
whenever a POST request comes with new informa-
tion about employee and we want add another row in
the table. We can do this by running the HTTP Trig-
ger, the Azure function, and the Tabbed output bind-
ings.

By using the trigger and bindings, we can write
more general code, which does not make the func-
tion of relying on the details of the services with
which it interacts. Information about incoming
events from services is introduced into our function.
Data output to another service, for example, adding
a row to a table in the Azure tables’ repository, may
be the execution of using the value that returns to
our Function. The Trigger and HTTP bindings have
the name of the authority, Please Act as an Identifier
that will be used in the Functions Code to access the
trigger and accessory. The trigger and bindings can
be configured on the Azure Functions portal integra-
tion tab. This configuration is displayed in the func-
tion JSON file in the function directory. This file can
also be manually configured in Extension Editor.

Serverless computing calls can support distrib-
uted data processing with bandwidth, latency, and
distributed computing performance. There are cer-
tain limitations that we need to know before using
the function, for example, there are several event
handlers:
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1) HTTP, Object Storage and Database;
2) Not large amount of memory — from 512
MB to 3 GB of memory per container;
Maximum time allowed for the function
is allowed from 5 minutes to 10 min-
utes;

4) 500 MB cache.

Platforms comparison could be helpful for
new users of Serverless and may to understand the
base information of the Serverless platform
(Table 1) [6].

Amazon Lambda was the first Serverless plat-
form that was presented in 2014 [7]. It defined few
key aspects like a cost, programming model, deploy,
security and monitoring. That supports many lan-
guages, ¢.g., Node.JS, Python, Java, GoLang, .NET.
Platform use advantage of AWS’s ecosystem [8].

Microsoft Azure Functions provide HTTP web-
hooks and integration with Microsoft Azure web
services. The platform supports C#, F#, Node.JS,
TypeScript, Batch, Bash, PowerShell and Java. The
runtime code is open-sourced and available on
GitHub repository under MIT license [9; 14].

Google Cloud Functions provides basic func-
tions to run Serverless functions that wat written in
Node.JS for HTTP calls or events from another
Google Cloud services. The functionality currently
is limited but expected grow in future [10].

3)

Table 1. Platform comparison

According to the table, AWS Lambda offers a
widest range of programming language [11]. We
also could see that cost price based on metrics, first
— the number of invocations by function. Second, the
time that is taken by a function to execute. Invoca-
tion to the Serverless function is cost-effective in all
Serverless providers. All providers have similar
price policy.

Each Serverless platform provide different pro-
gramming language support, which developers can
use for creating function with their own a language
preference [12]. As interpreted language, we can
find Node.js for JavaScript and Python runtime envi-
ronment, as most supported. Compiled languages
such as Java and .NET are also supported, although
there is no built-in web editor for their languages.
The Table 2 shows the languages supported by each
platform.

Table 2. Language support comparison

Programming AWS Google Azure
Language
Python 2.7,3.6 2.7 -
Java 8 - 8
NodelJs 43,6.10, | 6.11, 6
8.10 5
.NET Core 1,2 - 1,2
Other Golang - F# 4.6, Experimen-
1.x tal(Python, PHP,
Batch, Bash, Power
Shell)

AWS Lambda |Google  Func-|Azure Func-
tions tions
Program- Node.js, Py-|Node.js CH#, F#,
ming lan-|thon, Java, Node.js, PHP,
guage NET, Golang TypeScript,
Batch, Bash,
PowerShell,
Java
Triggers 18 triggers|3 triggers 6 triggers
(with S3, Dy- (with  Blob,
namoDB) Cosmos DB)
Memory $0.0000166/GB [$0.00000165/GB |$0.000016/GB
price - - -
Execution  [$0.2 per IM $0.4 per IM $0.2 per IM
price
Free Tier First 1M First 2M First 1M
Maximum |3008MB 2048MB 1536MB
memory
Operation  |Linux Debian Windows NT
system(OS) GNU/Linux 8
(jessie)
CPU per|2900  MHz,1|1.4GHZ 2200 MHz, 2
container core Processors
Maximum |50/250MB 100/500MB 100/500MB
code size (compressed/  |(compressed/ (compressed/
uncompressed) [uncompressed) juncompressed)
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1.2 Evaluation of Serverless v.s. Virtual
Machine

Serverless does not offer high performance
computing or a cheap pricing model compared to
Amazon EC2. Virtual machines in cloud computing
offers several options for scaling computing re-
sources, through network bandwidth and perform-
ance, which requires optimal planning, and man-
agement. Serverless provide resource processing for
lightweight functions without management objec-
tives and offer cost-effective solutions.

Amazon, for example, offer a wide range of
EC2 machines optimized for various task and
reaches 128 CPU and 3.8TB of memory. AWS
Lambda provide to launch function thousandth time
with small amount of memory (up to 3008MB or
2.8GB), which can reach to 2.8TB.

Serverless is powered by containers, which have
near zero start-up and run without latency during a
function life cycle.

For this comparison we should use function that
requested allocate CPU resources to an instance of a
function with simultaneous calls [13]. Multiplying
for two-dimension array (matrix) is suitable for this.
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Fig. 1 shows the function execution time with multi-
plying 50, 100, 250, 500 and 1000 elements in each
array.

For each case, several dozens of launches were
carried out to avoid different nature delays and other
actions that could lead to errors in the results. The
Fig. 3 shows the averaged results. It can be noticed
that the AWS lambda has a slight performance ad-
vantage in compare to Google Cloud and Microsoft

Azure Functions.
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Fig. 3. Dependency of execution time on array
length for different cloud computing providers:
1 — Amazon; 2 — Microsoft; 3 — Google

Multiplication of multidimensional arrays re-
quires considerable resources. The performance re-
sult of multiplying of two 500 elements arrays fol-
lowed by function calls is presented in Fig. 4.
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Fig. 4. Function bandwidth with concurrent calls:
1 — Amazon; 2 — Microsoft; 3 — Google

The measurements were carried out with differ-
ent numbers of simultaneous calls, from 25 to 500.
AWS showed an almost linear relationship during
the call and the worst result with scalability from all
platforms. Measurements were carried out from all
platforms. The performance of Azure features is
very different on other platforms with fewer calls.
Interestingly, it persists throughout the iterations of
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the test. At the same time, it showed almost lazy de-
pendence with such calls and better results with
small numbers of calls.

2. Practical use of technology

There are several areas where Serverless can
play an important role as in research as well as in a
commercial using. Image or document processing
for CDN is applicable for Serverless. Internet of
Things (IoT) is also one of the use cases for Server-
less, because loT devices typically have a small
computing power to process information and they
need to user remote processing resources. For exam-
ple, there is cooling and another similar process that
requires constant temperature control. When cooling
is not working or there are problems with work,
function can execute live migration of workload
and/or send signal about problem.

Advantages:

1) Cost: Serverless can be more cost-effective
than renting or purchasing a fixed quantity of servers
which generally involves significant periods of un-
derutilization or idle time. It can even be more cost-
efficient than provision.

2) FElasticity: in addition, a Serverless means
that developers and operator do not need to spend
time for setting up auto scaling or systems. The
cloud provider is responsible for seamlessly scaling
the capacity to the demand.

3) Small teams of developers are able to run
code themselves without the dependence upon teams
of infrastructure and support engineers; more devel-
opers are becoming DevOps skilled and distinctions
between being a software developer or hardware
engineer are blurring.

4) Productivity: one of the greater benefits in
implementing a Serverless solution in its ease of use.
There is little ramp-up time need to begin program-
ming for a Serverless application. Most of this sim-
plicity is thanks to services, provided by cloud pro-
viders that make it easier to implement solutions.
The programmer does not need to implement or
work with multithreading or handling HTTP re-
quests in their code.

Disadvantages:

1) Performance: Serverless may suffer greater
response latency than code that is continuously run-
ning on a dedicated server, virtual machine. This is
because cloud providers typically “pull down” the
Serverless code completely when not in use. This
means that if the runtime (such as Java and .Net run-
times) requires amount of time to start up — it create
additional latency.
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2) Resource limits: Serverless computing is not
suited to some computing workloads, such as high-
performance computing, because of the resource
limits imposed by cloud providers, and because it
would likely be cheaper to bulk-provision the num-
ber of servers believed to be required at any given
point in time.

3) Monitoring and debugging: diagnosing per-
formance or excessive resource usage problems with
Serverless code may be more difficult than with tra-
ditional server code, because although entire func-
tions can be timed, there is typically no ability to dig
into more detail by attaching profilers, debuggers or
APM tools. Furthermore, the environment in which
the code runs is typically not open source, so its per-
formance characteristics cannot be precisely repli-
cated in a local environment.

4) Standards: Serverless computing is very new
and not currently bounded by standards so that port-
ability can be an issue when moving business logic
from one public cloud to another. Cloud Native
Computing Foundation (CNCF) is working on de-
veloping a specification with Oracle.

2.1. Optimization

Circuit Breaker Pattern allows a call to an unre-
sponsive system component to be aborted without
needlessly consuming resources trying to repeatedly
connect and retry. There will be occasions when
components are unresponsive and the system should
be able to handle this without cascading failure. It is
in situations like this that retry is not beneficial and
may well have harmful effects if it ends up spinning
up many cold Lambdas. A circuit breaker is required
that will identify when a system is in stress and will
back off. If this is linked with the front-end it would
become possible for the server to issue a 503 HTTP
response and the front-end to silently retry after a
predetermined back-off.

Bulkhead pattern effectively isolate components
of the system that display inconsistent latency.
These may be Lambdas, which take a variable
amount of time to complete based on the workload
or which interact with external systems with an in-
consistent performance profile.

As an example, the case study project initially
had a single function, which handled customer user
data. The architecture was such, that customer data
was refreshed and cached from an external system
during the initial authentication process. However,
other functions, which needed access to the cus-
tomer data frequently, would call the customer re-
questing the cached data. The asymmetrical nature
of the performance profile between the refresh and
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request calls, with the refresh operation suffering
significantly higher latency than the request call,
could cause refresh calls to unnecessarily divert re-
quests to cold Lambdas.

Implementing bulkheads separating high Ia-
tency operations from low latency application re-
quest flows significantly reduced the probability of a
given request being impacted by cold functions. In
real terms this required separating the request and
refresh functionality into separate functions to pre-
vent high latency in one part of the system adversely
affecting another.

Appropriate language to Serverless develop-
ment significantly improves latency within some
parts of the system.

Teams responsible for Lambda development
should use the language best suited to the particular
service. Whilst this may reduce code reusability, it
allows for a reduction in latency in system compo-
nents that are highly sensitive to AWS Lambda ini-
tialization timings. Using either Node.js or Python
Lambdas on front-end facing Lambdas reduces la-
tencies since these languages are less susceptible to
problems with cold starts and can then offload to
Lambdas implemented in other languages in a man-
ner, which would not negatively affect the user ex-
perience.

As stated as part of the AWS Lambda best prac-
tice documentation “the compiled languages (Java
and .NET) incur the largest initial start-up cost for a
container’s first invocation, but show the best per-
formance for subsequent invocations [14]. The in-
terpreted languages (Node.js and Python) have very
fast initial invocation times compared to the com-
piled languages, but can’t reach the same level of
maximum performance”. The implication is that la-
tency sensitive applications or those expecting spiky
traffic should use interpreted runtimes where possi-
ble. It can be further extrapolated that Lambdas
forming part of the same application can use differ-
ent runtimes depending on the predicted workload
for a specific component.

The warming strategy using functions — is a fi-
nal way to increase productivity that can be used
with the approaches outlined above. It is used to en-
sure that the appropriate amount of function is al-
ways warm. This approach protects a scheduled
function implementation that makes bogus calls to
other function s in the system so that they are forced
to keep warm. This approach imposes some optimi-
zation requirements, since it must be predetermined,
which and how much function should be kept warm.
Although this approach somewhat weakens the goal
of the system, which should dynamically scale in
response to demand, it is nevertheless a viable strat-
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egy to mitigate the effects of cold function on over-
all latency. It should be noted, that this approach will
not lead to a significant increase in deployment
costs, since calls to test communication with the cor-
responding functions should be rarely performed,
but at some point, it is difficult to predict the re-
quirements for using functions. In this regard, there
may be a problem associated with large bursts of
demand, but it can reduce problems when used in
combination with other methods described in this
section.

2.2. Experimental steps

TensorFlow is an open library for machine
learning research and product development, built by
Google for learning neural networks [15]. Tensor-
Flow offers an API for development for personal
computers, mobile devices, the web and cloud com-
puting. TensorFlow neural networks are expressed
as a state of data flow graphs. Each node in the
graph represents operations performed using neural
networks on multidimensional arrays. TensorFlow
architecture allows deploying at multiple processors
or graphics processors within the desktop, server or
mobile device.

Before sending data for network training, they
are pre-processed using “training with a teacher”
[16]. This process consists of labeling images. This
is one of the most time-consuming tasks in data
preparation. For this, the freely distributed Labelimg
tool (graphical image annotation tool) was used [17],
which automatically creates an XML file with the
coordinates of the marked objects in the photo

(Fig. 5).

Fig. 5. Objects markup — light rectangles with bold
points in the corners showing selected images

After completing the marking of images, we
proceed to the next task, which separates the test
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data. It is common practice to divide the indicated
data into a training and test set.

The model is trained in the training set, and its
performance is checked for how well it summarizes
the data that have never been seen before in the test
set. The performance of the model on the test suite
gives an idea of how the model works, and allows
you to solve problems such as compromises of lead
and deviations. The general rule is to deploy 90% of
the data on the training set, and the remaining 10%
on testing randomly.

The TensorFlow Object Detection API was
used. To continue, it is needed to select the model to
be trained. The ssdlite movilenet v2 coco was cho-
sen for high performance required for work with
streaming video.

The training procedure lasted about 6 hours on a
regular computer. For more convenience, the data
were divided into two categories: photos and videos.
At some point, the process was stopped to check the
results with TensorBoard.

The most important and most valuable is the
metric of total spending: the smaller the loss, the
better the module is executed. Losses are calculated
both on the training kit and on the test kit (Fig. 6), as
well as on the interpretation of how well the model
performs on the two sets.

E]2
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0 40k Bk 120k 160k 200k

Operations

Fig. 6. Total losses:
1 — errors in training over training steps;
2 — after some smoothing

Losses are estimated not in percentages (unlike
precision), but as the sum of errors made for each
example in sets for training or testing. When data is
smoothed (regularization), there is an increase in
losses depending on the number of training steps
(Fig. 7).

In the case of neural networks, the loss is usu-
ally negative likelihood (mainly cross-entropy) or
residual sum of squares (or the sum of squares of
prediction errors) for classification and regression,
respectively. Then, the main goal in the training
model is to reduce (minimize) the values of the loss
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function with respect to the model parameters by
changing the values of the weight vectors using
various optimization methods.

0.375

o085 value
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Fig. 7. Losses after data regularization

For example, back distribution in neural net-
works. The loss value means how well or poorly
defined a model behaves after each iteration of the
optimization. Ideally, one would expect a decrease
in losses after each or several iterations.

The accuracy of the model, as a rule, is deter-
mined after studying and fixing the parameters of
the model and the absence of training. Then, test
cases are served on the model and the number of
errors (zero loss) that the model allows is fixed after
comparing with the real goals (Fig. 8). Then the per-
centage of misclassification is calculated.

i
§ 0,9686
.E ! > -_._-'" | |
1.0 .
0.3 .
0.0
200k Chperations

Fig. 8. The identification accuracy of
developed software tools

For the equipment of our experiment (without
using a graphics processor), 1000 training events
took about 3 hours, and 2000 training stages took
about 6 hours. Most of the training procedure ends
after 3 hours, and in the last hour of the experiment,
there was no real improvement, so it was decided to
stop the learning process.

3. Conclusions
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Function based on Serverless computing can
process distributed data applications and provide
quick access to additional compute resources.
Serverless computing is an event-driven FaaS tech-
nology that utilizes third-party technology and serv-
ers to remove the problem of having to build and
maintain infrastructure to create an application.

Overall, Serverless computing can be used for
distributed date computing, if divided task is small
to perform with 1.5-3 GB memory restriction and
execution time up to 15 minutes. From this we can
conclude that Serverless computing is more cost-
effective than processing with traditional virtual ma-
chines because almost zero delay on boot up new
instances and a charging model only for the execu-
tion time of function instead of paying for an idle
time of machines.

Nowadays, Serverless computing uses contain-
ers with small amount of computing resources. We
can conclude that in the future there will be more
functional features with fewer configurations. They
will be used for solving complex and resource-
intensive computing.

The developed software toolkit showed very
high accuracy of recognition (0.9686) after continu-
ous 3 hour training using regular PC based on low-
cost hardware equipment.

Current experiments showed that growing of
data quantity and time needed for experiment does
not leads the increasing of recognition accuracy us-
ing TensorFlow library in Serverless implementa-
tion.

Experimenting with training of other network
models to reduce the time and improve the accuracy
of recognition is the subject of further research.
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OIIHKA IMPOAYKTUBHOCTI BE3CEPBEPHIX OBYUCJIEHb

Anomauia. Xmapui 06uucienHs 003601UlU Opeanizayiam menue 30cepedumucs Ha ceoii IT-inghpacmpykmypi i 6invuie Ha c6o-

ix ocHo8HUX npodyKkmax i nociyeax. Serverless — ye mexHonozis, maxkoic 8iooma AK QYHKYisA-aK-nOCLyea, AKa 3a HeobXiOHocmi Hadae
NOCMAYANbHUKY HOCTYE XMAPHUX 00YUCTIeHb NOGHULL KOHMPOb HAO KOHmMelHepoM i 00CIy208Y68aAHHS 3aNUmMis, HaA AKOMY 6UKOHY-
emvca QyHKyis. Ak Hacniook, apXimekmypu SUKIIOYAMb HeOOXIOHICHb NOCMIUHO NPAYIIOYUX CUCTeM | CY2YIomb 00YUCTIO8ATb-
HUM NpoYyecom, Keposarum nodiimu. Serverless-obuucienns 6i0KpuUaiomsv HO8I MONCIUBOCII Ol APXIMEKMOopie ma po3poOHUKIS,
opienmosanux Ha xmapmi obyucienns. Bouna 3abesneuye cnpoweny mooens npozpamysanus 0as po3pooxu posnodinenux Cloud-
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cucmem, 3 8iocmoponenoro ingpacmpykmypoio. Serverless obuucienns éce we nepedysaions y 3apooK08OMy CMAHi ma 3 NOOAlb-
WUM PO36UMKOM MOOeni OYOymb CIMEOPEHi IHCMPYMeRmu, Wo 003601AMb PO3POOHUKAM | apXimeKmopam cmeoprosamu Mooeii ma
npoyecu, w06 Oinbut NOBHO 8uUKOpUCMosysamu nepesazu mooeni Serverless. Y oaniii pobomi posenanymo npo@ine npooyKmueHocmi
Serverless exocucmemu 6 yMo8ax HU3bKUX 3ampumox i eucoxoi docmynnocmi. Ilpedcmasneno pesyrbmamu 3acmocy8ans i mecmu
nPOOYKMUHOCMi O PO3NIZHABAHHSA 00pA3i6 3 GUKOPUCMAHHAM HEeUpOHHUX Mepedc. Y peanizayii 6ukopucmosyomscsa eiOKpumi
oioniomexu ma incmpymenmu: TensorFlow 0ns euguenns mawunnoeo Hasuauua i Labellmg onsa niocomosxu oanux. Iloxaszana xope-
JAYIA MIXHC KITLKICMIO eKCHepUMEHMATbHUX HABUANbHUX OAHUX 1 MOYHICIIO PO3NI3HAGAHHA. /{1 eKcnepumenmie 0V8 po3poOieHuil
NpoSpaAMHULl NAKem 3 UKOPUCMAHHAM CKpUNmogoi mosu npoepamysants Python i mexnonoeii .Net. Po3poOiene npoepamue 3a0e3-
neueHHs NOKA3an0 GIOMIHHY MOYHICIb PO3NIZHABAHHS BUKOPUCOBYIOUU 36UHATIHULL KOMN'Tomep 3 Hedopocum obaaonanuam. Bzaec-
MOOISL KIEHMCLKOL CIMOPOHU 3 «cepeepomy 30ilicHioembcs 3a 0onomozoio HTTP-3anumis.

Knrwowuoei cnosa: Serverless; xmapni oouucnenns; ¢ynxyis-ax-nociyea; Amazon Web Services Lambda; Microsoft Azure Cloud
Function; Google Cloud Platform Functions
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OIIEHKA IMTPOJYKTUBHOCTH BECCEPBEPHBIX BEIUMCJIEHUI

Annomayusn. Obnaunvle 8bl4UCIeHUs NO3GONUNU OPLAHUAYUAM MeHbUEe coOcpedomouumocs na ceéoeil UT-ungppacmpykmype u
6onee Ha cBOUX OCHOBHBIX NPOOYKMax u yciyeax. Serverless - amo mexunonozus, makdice U36eCmMHAsL KaK QYHKYUsA-Kax yciyed, npu
Heob6xX00uUMoCmu npedocmasisiem NOCMAGWUKY YCiye 0OIAUHbIX BbIYUCTEHUL NOJHbLI KOHMPOLb HAO KOHMEUHEPOM OJisl 06CIYHCUBA-
HUSL 3anpocos, Ha KOMOPOM 6binoaHaemcs ynxyus. Kax credcmeue, apxumexkmypuvl UCKIIOUAION HEOOX0OUMOCHb NOCMOSIHHO PA-
6omalowux cucmem U Ciylcam GolMUCTUMENbHBIM NPOYECCOM, YNPAasiieMblM cobvimusamu. Serverless-bluucienuss OmKpbieaom
HOGblEe 803MOJICHOCU OISl APXUMEKMOPO8 U paA3paboOmMUUK08, OPUEHMUPOBAHHbIX HA ob1auHble eviuucienus. Ona obecneuugaem
VIPOWEHHYI0 MOOeNb NPOSpAMMUPOsanus 0a paspadbomxu pacnpedenennvix Cloud-cucmem, ¢ omcmpaneHHOU UHOPACMPYKIMYPOLL.
Serverless eviuucnenus 6ce euje HAXO0AMCA 8 3AUAMOYHOM COCMOAHUY U C OATbHEUWUM pa3eumuem mooeau 6yoym co30aHbl UHCHI-
PYMEHMbl, KOMopble NO360I5AM paspabomyukam u apxumexmopam co30aeams MoOeiu U npoyeccyl, 6onee NOIHO UCHONb308ANIb
npeumywecmea mooenu Serverless. B 0annoii pabome paccmompen npoguib npouzsooumenvrocmu Serverless skocucmemvl 8 ycio-
BUSX HU3KUX 3A0epiiceK U 8blcOKOU docmynnocmu. IIpedcmasienst pe3yiomamol RPUMEHeHUs. U mecmbl NPOU3800UMeNIbHOCIU OISl
PACNO3HABAHUS U00PANCEHULl C UCNONb308AHUEM HEUPOHHBIX cemell. B peanuzayuu ucnonvzyromcs omxpuimole OUOIUOMEKU U UH-
cmpymenmut: TensorFlow ona usyuenus mawunnozo o0yyenus u Labellmg ons nodzomoeku danuvix. Ilokazana Koppensiyus mMexcoy
KOMUYECMBOM IKCNEPUMEHMANbHBIX 00YHAIOWUX OAHHbIX U MOYHOCMbIO PACNO3HAGAHUS. [l dKCnepumMeHmos Obll paspaboman
NPOSPAMMHBIL NAKEM C UCHOIb308AHUEM CKPUNMOBO20 A3bIKA npoepammuposanusi Python u mexnonoeuu .Net. Paspabomannoe npo-
2pammuoe obecneuenue NOKA3aI0 OMAUYHYIO MOYHOCMb PACNO3HABAHUSL UCTIONb3YSI OObIYHBLIL KOMIbIOMeED ¢ Hedopo2um 060py006a-
Huem. Bzaumooelicmaue KIUeHmMCKOU CIMOPOHbL ¢ «cepeepomy ocyujecmensemcs ¢ nomougvio HTTP-3anpocos.

Knrwuesvie cnosa: Serverless; obnaunvie eviuucienuss;, Qynxyus-kak-yeayea, Amazon Web Services Lambda; Microsoft Azure
Cloud Function; Google Cloud Platform Functions
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