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COMPOSITIONAL METHOD OF FPGA PROGRAM CODE INTEGRITY MONITORING
BASED ON THE USAGE OF DIGITAL WATERMARKS

Abstract. The paper considers a problem of provision of the programmable component integrity of computer systems. First the
basic stages of the programmable components life cycle are presented. The authors note that the program code modification gives
the opportunity to maliciously violate its (program code) integrity. The traditional methods of integrity modification are based on the
usage of monitoring hash sums. However the main disadvantage of the traditional methods is that they are not able to hide the fact of
integrity monitoring execution itself. This fact cannot be hidden and becomes obvious. Even under the conditions of extra encrypting
of monitoring hash sum the very existence of it demonstrates that the integrity monitoring is carried out. The paper presents a class
of methods which offer the hash sum embedding into program code in the form of digital watermark. This class of methods is consid-
ered with reference to monitoring the chip FPGA (Field Programmable Gate Array) program code integrity. For embedding the
features of LUT-oriented FPGA architecture are used. The monitoring digital watermark embedding is performed due to the usage of
equivalent program codes conversions in a set of LUT-units included in FPGA. The peculiarities of the digital watermark embedding
are as follows — such kind of embedding does not change the program code size and does not modify the chip FPGA operation. As a
result of embedding it is impossible to distinguish the monitoring hash sum in the program code in an evident way. The extraction of
digital watermark including hash sum can be carried out only in the presence of special steganographic key, which sets the rules of
watermark location in the FPGA program code space. In the given paper a compositional method of embedding the monitoring digi-
tal watermark into the FPGA program code is offered. The method combines the features of ones providing the recovery of initial
program code state and the ones (methods), which implement the embedding on the basis of syndrome decoding. The proposed meth-
od incorporates the useful features of two classes of methods mentioned above and serves to reduce the amount of equivalent conver-
sions applied to the program code in the course of the digital watermark embedding. This demonstrates the advantage of the pro-
posed method as compared to the base ones of the digital watermark embedding in the FPGA program code. The description and
results of experimental research of the proposed method are also presented.

Keywords: integrity monitoring of the program code; programmable hardware components; FPGA; LUT-oriented architec-
ture; monitoring hash sum; digital watermark, steganographic approach to integrity monitoring

Introduction

Among the hardware components used to build
digital computer systems, two large classes can be
separate: a) integrated circuits with hard logic of
functioning; b) program-controlled (programmable)
integrated circuits.

The first of these classes is formed by so-called
ASIC (Application Specific Integrated Circuit) chips
[1]. These integrated circuits are focused on solving
one specific computational or control task. Their
functioning does not change during the life cycle of
the system in which they are included.
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Integrated circuits belonging to the class of
program-controlled [2], on the contrary, allow to
customize (program) them to solve an arbitrary
range of tasks. The operation of the integral circuits
of this class can potentially be changed at any stage
of their life cycle.

Programmable hardware components are not in-
itially configured to solve any particular task. In the
process of designing a computer system, a program
(program code) is created for such components,
which custom them to solve the required task. This
program is placed in the memory of the programma-
ble component, thereby setting it up for a given
functioning.

The functioning of programmable components
can be modified at all stages of their life cycle. This
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modification is carried out by changing the program
code of the components.

A typical (but not exhaustive) set of reasons
leading to the need to change the functioning of pro-
grammable components is:

a) detection of errors in the initial version of the
program code;

b) the need to optimize the system at a certain
stage of its operation;

¢) planned upgrade of the program code;

d) the need to adapt the system to changes in con-
ditions determined by the environment external to it.

The ability to modify the program code of pro-
grammable components creates vulnerability in en-
suring the integrity of the system. For components
with hard logic (ASIC), potential integrity violations
are possible mainly through physical intervention in
their structure. For programmable components, the
possibility of integrity violations at the level of pro-
gram code arises. Integrity is further understood as
the ability of the system to exclude unforeseen chang-
es to the system and the services it provides [3].

The prerequisites for the occurrence of this vul-
nerability are that:

a) there is (can be used each of legitimately and
not illegitimate) the technical possibility of modify-
ing the program code, which leads to a change in the
operation of the components;

b) provided for legitimate (made by the devel-
oper or the person operating the system) changes in
the program code.

Integrity violation of the program code, caused
by both the action of natural forces and malicious
acts of humans is an extremely dangerous phenome-
non that can lead to technological disasters and fi-
nancial losses [4].

So programmable components are part of the
systems for managing high-risk technical objects [5]
(in safety-critical systems) [6]: energy facilities, chem-
ical industry, aviation objects and high-speed ground
transportation. Disruption of the functioning of these
objects can lead to unacceptable consequences.

An important area of application of program-
mable components, for which functional safety re-
quirements are one of the main development factors,
is medical equipment (including wearable and im-
plantable in the human body) [7]. Violation of the
integrity of the software code for components of
such equipment at the very least degrades the quality
of life of its users, and, at most, can affect the vital
functions of the body of users.

Also, programmable components are part of
systems that are not characterized by a critical area
of application, but are used massively [8]. The im-
proper functioning of such systems can lead to fi-
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nancial and reputational losses, both for companies
producing systems and for end users.

The presence these factors makes ensuring the
integrity of the program code for programmable
components of one the priorities in the process of
creating safe systems.

One of the types of programmable components
of modern computer systems is FPGA (Field Pro-
grammable Gate Array) chips [9], [10]. These inte-
grated circuits differ from microprocessors and mi-
crocontrollers in the way they change functioning.
FPGA chips have a variable (programmable) struc-
ture that can be modified by a program code to solve
a specific task.

FPGAs are a matrix of programmable elemen-
tary units of both universal and specialized purposes.
Each of these units is configured by the FPGA pro-
gram code to implement a specific function. The
connections of the units between themselves and
with the external outputs of the chip are also deter-
mined by the program code. Thus, unlike micro-
processors and microcontrollers, FPGAs can change
their functioning by changing the internal structure
and functions of the elements of this structure. This
makes it possible to ensure the distribution (parallel-
ing) of the problem solving process in the FPGA
chip space.

Due to the above features, FPGA chips have
greater performance, as compared to the other, fre-
quently used the type of programmable components
— microprocessors and microcontrollers.

Typically, FPGA chips are used in cases:

a) the specificity of the computing tasks that
need to be solved is that microprocessors cannot be
used for performance reasons;

b) this requires the implementation of the solu-
tion of the problem on programmable components (it
is assumed that at further stages of the life cycle of
the system, modification of its functioning will be
required).

The problem of ensuring and monitoring the in-
tegrity of the software code for such programmable
components of computer systems as microprocessors
and microcontrollers is worked out much deeper
than for FPGAs. This is due to the earlier occurrence
of microprocessors and microcontrollers and, ac-
cordingly, a longer stage of studying the problem of
the integrity of their program code. Significant dif-
ferences in the principles of operation and program-
ming of these two classes of programmable compo-
nents (microprocessors and FPGA) do not allow ex-
tending the methods used to monitoring integrity in
one class to another class. Therefore, the problem of
ensuring the integrity of the FPGA software code is
currently significant.
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Analysis of recent research and publications

Currently, the most effective and frequently
used mechanism underlying integrity monitoring is
the use of hash sums [11]. In contrast to the check-
sums used in online-testing of computer systems [12],
hash sums have a number of additional properties.

So, the hash functions that help to calculate
monitoring hash sums provide the properties used in
the integrity monitoring process, among which we
can highlight:

a) non-invertibility — the extreme computational
complexity of obtaining an argument of a hash func-
tion by its value;

b) a significant change in the hash sum with a
slight change in the data block for which this hash
sum was calculated;

c) the impossibility, knowing the argument and
the corresponding hash sum, to find another argu-
ment that gives the same hash sum.

The main approach to the monitoring of pro-
gram code is to double calculation of the hash sum

Preparing an information object

in the framework of following base procedure [13]
(Fig. 1).

1) At the stage of preparing the program code
for integrity monitoring, the hash sum A of the pro-
gram code is calculated. This hash sum is further
considered to be a standard. The standard hash sum
H should be available at the time of integrity moni-
toring of the program code. To ensure the availabil-
ity of the hash sum, H is attached to the information
object of the program code or is in some way associ-
ated with it.

2) Immediately at the moment of performing
the integrity check, the hash sum H* is again calcu-
lated for the information object of the program code.
The calculated hash sum H* is compared with the
standard hash sum H. Based on the comparison of
the specified hash sums, it is decided whether the
integrity of the program code is violation. Any
change to the information object of the program
code or / and the standard hash sum leads to a mis-
match between the hash sums A* and H.

The calculated hash sum
is declared as standard

Jfor integrity monitoring f or ob]ect A ,,,,,,,,,,
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Fig. 1. Basic integrity monitoring procedure

Possible options in the case of the mismatch of
H* and H hash sums (not an exhaustive list): stop-
ping the system; overwriting the initial program
code from a reliable source; switch to backup system.

Depending on the cause of the integrity viola-
tion, the specificity of individual details for the in-
tegrity ensuring process arises.

So for integrity monitoring, aimed at countering
the expected violation caused by malicious interfer-
ence in the program code, the essential aspects are:

a) the storage location of the standard hash sum;

b) the method of storing the standard hash sum
and the technique for accessing it;
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c) the extent of openness for fact of the integrity
monitoring.

A known approach to integrity monitoring,
which involves storing the monitoring hash sum in
open form in a separate information object from the
program code [14]. This approach is acceptable
when processing the expected integrity violation as a
result of natural phenomena. However, for the case
of malicious interference in program code, the
appropriateness of using this approach is question-
able. The reason for this is the openness of the stor-
age of the standard hash sum, which creates a poten-
tial for falsification.
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The traditional integrity monitoring approach
described above (based on the double calculation of
the hash sum and its storage in open form) is used to
monitoring the integrity of the program code, both
microprocessors and FPGA chips. However, this
approach has a significant disadvantage. This disad-
vantage is due to two interrelated factors:

Factor 1: the standard hash sum is stored in
such a way that it is available for reading, analysis,
and possible falsification.

Factor 2: the fact of performing integrity moni-
toring is open to an outside observer.

Despite the fact that hash functions have the
property of non-invertibility, access to the value of
the standard hash sum creates the possibility of ma-
nipulating the integrity monitoring process. A whole
range of methods has been developed to accelerate
the search for the preimage for the hash sum: search
by rainbow tables [15]; dictionary methods [16];
methods focused on frequency analysis [17] and var-
ious compositions of these methods. However, the
main problem generated by the availability of a hash
sum is the ability to use insider manipulation meth-
ods [18]. Within these methods, the capabilities of
persons who have access to the processes of moni-
toring the integrity or legal modification of program
code are used. These persons can potentially per-
form falsification of the standard hash sum: replace
it with the hash sum calculated for the object of the
program code that has been illegitimate changes.

There are known approaches to minimizing the
influence of the first factor mentioned above. In par-
ticular, it is proposed to store the standard hash sum
not in the clear, but to pre-encrypt it using the agreed
cryptographic method [19], [20]. In this case, to ac-
cess the value of this hash sum, it is necessary to
decrypt it (Fig. 2). This requires information on the
encryption method used and the encryption key.
When using this approach, hash sum falsification
requires an additional procedure — obtaining the
initial hash sum value. In the absence of a encryp-
tion key, this procedure is extremely computation-
ally complex. However, this approach inherits the
disadvantages of the basic approach. In the case of
using such an approach, the fact that integrity moni-
toring is performed remains open, which makes it
possible to apply cipher-hacking techniques to fal-
sify the standard hash sum. Also, this approach does
not eliminate the possibility of insider manipulation
of monitoring information. It only narrows the circle
of persons capable of performing such a manipula-
tion.

Another approach [21] is known to eliminate
the influence of the first of the above factors. The
standard hash sums for the information objects of
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the program code are not distributed together with
the information objects themselves (they are not at-
tached to them), but are stored in a certain central-
ized database of the subject of control. The main
disadvantage of this approach is the difficulty of
protecting this database from information leaks.
Mass information leaks from such databases are very
frequent [22]. Such leaks put at threat all integrity
monitoring systems that store standard hash sums in
compromised databases. Similar to the previous ap-
proach, this approach does not eliminate the possi-
bility of insider manipulation of standard hash sums.

The approach based on the application of the
theory of digital steganography [23] eliminates the
indicated disadvantages of traditional approaches.
Steganography is a field in the theory of information
security, based on information hiding. The main
mechanism of steganography is the hidden embed-
ding of information objects of one type into informa-
tion objects of another type. Digital steganography
has various practical applications, the main of which
are: hidden data transmission, hidden data marking,
and hidden tracking of data distribution paths. To
solve the problem of integrity monitoring, one of the
steganographic-oriented technologies is used — the
technology of digital watermarks [24].

Digital watermark is used as information me-
dium [25] of the standard hash sum within the
framework of a steganographic approach to integrity
monitoring. In such a case a digital watermark is a
data block that contains monitoring hash sum and
optionally additional utility information fields. This
digital watermark is embedded in the information
object of the program code in such a way that the
fact of this embedding becomes hidden from an out-
side observer. The fact that integrity monitoring is
performed is also hidden. In this case, the standard
hash sum is distributed over the information object
of the program code in such a way that it (hash sum)
can be accessed only with a special steganographic
key (stego-key) [26].

Thus, when using the steganographic approach,
the control hash sum is not attached to the informa-
tion object of the program code, but is embedded in
it in the form of a digital watermark.

The advantages of this approach are that:

1) a digital watermark does not increase the
volume of an information object by the size of the
hash sum;

2) there is no possibility for an external ob-
server to identify the fact that the program code is
monitored, as well as to identify parts of the infor-
mation object that contain program code and parts
that contain the hash sum;

3) the embedding of a digital watermark in the pro-
gram code is performed in such a way that the op-
eration of the FPGA chip does not change.
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The monitored object preparation
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Attaching the hash sum £H
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information object S4
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information > information from the ||  Encrypted
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=
Hash sum Comparison
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Result ¢

Fig. 2. Integrity monitoring procedure with encryption of standard hash sum

Methods [27], [28] that implement the concept
of using digital watermarks to integrity monitoring
the program code of FPGA-based components use
the program codes of the LUT (Look Up Table)
units [29], [30] as the information medium in which
the digital watermark is embedding. LUT units
(Fig. 3) are the most mass elementary calculating
units of FPGA. Their number in modern FPGA
chips can vary from tens of thousands to several mil-
lions.

The LUT unit is a programmable module for
calculating an n-arguments (usually from 4 to 8) log-
ical function. Each LUT unit is configured to im-
plement a specific logic function using 2n-bit pro-
gram code. In accordance with the provisions of the
methods [27], [28], the set of program codes of the
LUT units is used as the information medium for
embedding a monitoring digital watermark.
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Fig. 3. Structure of the 4-input LUT unit
of FPGA chip

Embedding within the framework of these
methods is performed using equivalent conversions
[31], [32], which do not change the logic functions
implemented by the LUT units and do not affect the
operation of the FPGA chip. Methods [27], [28] de-
termine that for embedding a digital watermark from
general set of LUT units an ordered set of units is
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formed, each element of which uniquely corresponds
to a bit of a digital watermark and is used to store
this bit. The specified ordered set is called the steg-
anographic path (stego-path) in the space of a LUT-
oriented information object. In this case, the stego-
path formation rule is a part of the stego-key — a set
of secret information that defines the formal rules
for extracting a digital watermark from the program
codes of the LUT units.

In Fig. 4 shows a diagram of the steganographic
procedure for preparing an information object of the
FPGA program code for integrity monitoring. In
accordance with this scheme, the considered meth-

ods [27], [28] are functioning. This diagram de-
scribes the formation and use of a digital watermark
(denoted as a DWM in the diagram). A digital wa-
termark includes a mandatory component — a stan-
dard hash sum H of the code and two optional com-
ponents: the usage monitoring tag (marker) and the
legitimacy monitoring tag of the program code in-
formation object. Optional components of a digital
watermark provide a solution to specific problems for
the protection of FPGA software code. These solu-
tions can be implemented along with integrity moni-
toring by storing special tags in a digital watermark.

-l ____
@ : DWM content,
Tag R ) P Sforming,
contant | \! Forming of the |
—  \ tag for usage !
| itori |
@ : monitoring |
Tag iy o 14 |
w\i_, Forming of the !
] tag for legitimacy ,| DWM forming - DWM
Pro%rlglr)nGche i monitoring _ ! ok o
© ' | embeddin,
g
B : and extraction
| : Hash sum — | 3 3
, calculation W :
: Program code | | | DWM embedding
i of LUT units b |
i ) 2. Y P 2 R
e : i \\j
! Creating the Forming of the ! —_—
oo i | information model D\s{]el\%[o—p agh dfé)'r ! Modified code
i The rest part [ cmbecdine § of units located
i of the p(riogram i : on the
: code |
I ; P
7y i —-——
| The setof unitson | | 4 —
! (_the stego-path_J | Modified code
| ! for units on the
\Preparing the target code for DWM embedding ___| stego-path

Fig. 4. Steganographic procedure for preparing an information object for integrity monitoring

The use monitoring tag is designed to track the
distribution of the program code. This procedure is
necessary to identify the point of leakage and the
illegal distribution of FPGA code. The legitimacy
monitoring tag can be used to confirm the legality or
authenticity of the program code.

Programmable LUT units are the most mass in
the FPGA structure. Because of this, the program
code of these units makes up the largest part of the
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entire program code FPGA. It is for the program
code of LUT units that the equivalent conversions
[31], [32] are proposed, which are used in the meth-
ods [27], [28] as the basis for the embedding of a
digital watermark. In addition to LUT units, FPGA
contains specialized programmable units: lumped
memory units, multiplication units, I/O units, etc.
The program code of these units is not used in the
process of embedding a digital watermark. In accor-

143



Applied Aspects of Information Technology

2019; Vol.2 No.2:138-152

Information Security and Cybersecurity

dance with the considered diagram (Fig. 4), the
standard hash sum is calculated for the entire FPGA
program code, and the destination place of the moni-
toring digital watermark is the program code of the
LUT units.

However, the use of the steganographic ap-
proach imposes an additional requirement on the
integrity monitoring method. This requirement is the
need to restore the initial state of the information
object of the program code. Indeed, if a standard
hash sum is calculated for the program code, then
any change in the program code will be manifested
at the time the integrity monitoring is performed.
When embedding (even performed by equivalent
conversions) monitoring watermark in the program
code, its (code) integrity is violated. Thus, there is a
contradiction between the method of storing the
standard hash sum and the main method of integrity
monitoring.

To resolve this contradiction, the following
procedure is usually used:

1) the standard hash sum for the information
object of the program code is calculated;

2) the digital watermark is formed, which in-
cludes the standard hash sum,;

3) the state that the information object had at
the time of calculating the standard hash sum (the
initial state of the information object) is in some way
stored. Moreover, the storing is done in such a way
that only an information object and a stego-key are
required for monitoring. Based on this, the initial
state can be stored as part of the same digital water-
mark in which the standard hash sum is placed;

4) the monitoring digital watermark is embed-
ded in the information object of the program code;

5) at the time of performing the integrity moni-
toring, the digital watermark is extracted and at the
same time the initial state of the information object
is recovered (the state for which the standard hash
sum was calculated).

It is a pair of actions “storing - recovering” of
the initial state of the information object that elimi-
nates this contradiction.

There is a method [33] that provides this recov-
ery procedure in order to monitoring the integrity of
the FPGA program code. This method is based on
the Friedrich method [34], [35] proposed for embed-
ding digital watermarks in multimedia information
objects. The disadvantage of the Friedrich method is
that it requires a relatively large number of changes
made in the program codes. These changes are per-
formed using equivalent conversions; do not change
the size of the program code and the operation of the
device. However, any massive code changes (even
equivalent ones) could potentially be used in the fu-
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ture to compromise the method and search for vul-
nerabilities in it. Therefore, the task of minimizing
the changes in the program code resulting from the
embedding is very important and significant.

The steganographic method F5 [36], [37] is
known, which is characterized by a small value of
the ratio of information object bits number changed
during the embedding to the total number of bits.
The F5 method is based on the joint use of the the-
ory of steganography and the theory of error check
coding [38]. This method is intended only for use in
relation to multimedia information objects: raster
images, digital video and sound. There is an adapta-
tion of this method to the environment of LUT-
oriented information objects (to embedding digital
watermarks in the FPGA program code) [39]. How-
ever, neither the basic nor the FPGA-oriented meth-
ods have the ability to ensure the recovery of the
initial state of an information object in the process of
extracting a digital watermark.

Thus, the method [33] and the methods derived
from it have a property that is useful for the task of
monitoring integrity — they provide the ability to
recovery the initial state of an information object in
the process of extracting a digital watermark. How-
ever, the method [33] in its practical applications
shows a relatively large value of the ratio of the
number of modified bits of the program code to their
total number.

On the other hand, the method [39] and meth-
ods derived from it, on average, gives fewer modi-
fied code bits, but does not support the ability to re-
covery the initial state of an information object.

Under these conditions, we consider significant
the task of obtaining a method that combines the
useful properties of the methods [33] and [39] in
solving the problem of monitoring the integrity for
the FPGA program code.

The goal and objectives of the work

The goal of this work is to reduce the number of
modifiable bits of the FPGA program code in the
process of monitoring integrity by combining digital
watermark embedding methods that:

a) have the property of recovering the initial
state for the program code of information object;

b) generate a small (relative to other similar
methods) number of changes for bits of the program
code.

To achieve this goal in the work the following
objectives are set:

—to formalize the method that allows to per-
form the recovering of the initial state for the infor-
mation object and at the same time provides the
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number of changes for program code bits at the
method [39] level;

—develop a procedure for applying the pro-
posed method in the process of the FPGA program
code integrity monitoring;

— perform an experimental comparison of the
proposed method with known methods and draw
conclusions about the appropriateness of its use.

Main part of the work

A compositional integrity monitoring method is
proposed that combines the property of ensuring the
recovering of the initial state for an information ob-
ject with the property (characteristic for methods
based on the use of syndrome decoding) of the min-
imal change for bits of the FPGA program code. The
proposed method is based on the following six key
principles.

The first principle of the method. The informa-
tion medium of a digital watermark is the stego-key-
specified bits of the LUT units, which are along the
stego-path (target bits for embedding). In the follow-
ing, the ordered sequence of such bits will be de-
noted by Msp, = <my, my, ..., m,>. Each of the m; €
Mgp,, bits can be inverted by equivalent conversions
[31], [32] used in the methods [27], [28].

The second principle of the method. To embed
the bits of a digital watermark, a change is made to
the syndromes that are associated with n-bit frag-
ments (parameter n is set by the description of the
error-correcting code used in the embedding proc-
ess) of the Msp,, sequence, using the error-
correcting coding method specified by the steg-
anographic key.

The third principle of the method. Storing of
the initial state of the information object of the pro-
gram code is achieved by lossless compression and
embedding the compression results as part of a digi-
tal watermark (similarly to how this is implemented
in the Friedrich method [34], [35] and the FPGA-
oriented method [33]).

The procedure for embedding a digital water-
mark involves changing the values of the bits in the
Msp,s, sequence. Because of this, within the frame-
work of this provision, it is ensured that the initial
state of this part of the FPGA program code is main-
tained.

The fourth principle of the method is that the
digital watermark being embedded into the program
code is formed as a set:

a) compressed initial state of the Mgp,, binary
sequence;
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b) the monitoring part containing the standard
hash sum,;
¢) optional additional information fields.

The fifth principle is that the initial state of the
Msp,, bit sequence is stored by changing the Msp,,
bits, which (changing) leads to the replacement of
the original n-bit Mgp,,; fragment syndromes by the
n-bit fragments obtained after compression.

The sixth principle of the method is that the
modification of the syndromes is performed by
equivalent conversions [31], [32], used in the meth-
ods [27], [28].

Based on the presented basic theoretical princi-
ples, the following sequence of actions is proposed,
which leads to the embedding of the monitoring dig-
ital watermark in the FPGA program code.

Stage 1. Stego-path is formed in the space of
the program code of LUT units. To perform this
stage, we use the stego-path formation procedure
proposed in [40]. The result of this stage is an or-
dered sequence Msp,y, = <my, my, ... , m,> bits of the
program codes of LUT units located on the stego-
path. The Mgp,;, sequence bits are information medi-
ums of the monitoring digital watermark being im-
plemented in the program code.

Stage 2. The Mgp,y;, sequence is divided into n-
bit fragments.

Let the stego-key Skey as one of the compo-
nents contain the description of the error-correcting
code ECode € Skey given by three parameters: n, k,
H, where n, k are the parameters of the (n, k)-code, n
is the length of the code word, k is the number in-
formation bits in the code word; H — some rule for
performing syndrome decoding. Further, for simplic-
ity, the rule H will be specified by the check matrix
of the block code. However, in the general case, this
rule can be specified in any other way of describe
the procedure for obtaining the error syndrome for
error-correcting coding.

The sequence of Msp,, binary bits is repre-
sented as a sequence of concatenated fragments:

MSPath:Ml |M2 | |Mqa (1)

where, M; is a fragment of the Mp,,, sequence, with
a length of # bits (the » parameter is specified by the
description of the wused error-correcting code
Ecode € Skey);

«|» — designation for the operation of concate-
nation of the binary sequences.

If the length of the binary sequence Mg, is not
a multiple of the parameter 7, then the sequence is
supplemented to the nearest multiple of the length of
the M., by the specified placeholder.
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Stage 3. Each fragment M; with the help of the
check matrix H € Ecode is assigned the n - k bit S;
syndrome.

Stage 4. From the resulting syndromes, a binary
sequence is formed by concatenation:

Sspan =S | $2] ... | 8. 2

Stage 5. Ssp,n, binary sequence compression is
performed. In this case, the loss base compression
method specified by the stego-key is used. In the
process of compression, the syndromes that make up
the Sgp., sequence are considered as symbols of the
primary alphabet, and the sequence itself, as a mes-
sage consisting of these symbols. As a result, a com-
pressed sequence of syndromes Sspamcom 15 formed.

Stage 6. A digital watermark is formed:
DWM = Sspuncom | HashSum | ExtraFields, (3)

where,

HashSum — monitoring hash sum;

ExtraFields — optional additional information
fields;

«» — designation for the operation of concate-
nation of the binary sequences.

The length of a digital watermark DWM must
not exceed the length of the Sgp,; sequence. Since
Sspamcom 18 @ compressed version of the Sgp,; se-
quence, the valid size of the control hash sum and
additional fields cannot exceed the difference be-
tween the lengths of the Ssp,, and Sspamncon S€qUeEnces.

Stage 7. The resulting digital watermark DWM
is divided into fragments of S;* by n — & bits, i.e. the
same length as the length of the S; syndromes in ex-
pression (2):

DWM=S*| Sy*| ... | S,* )

Stage 8. The bit values of the Mgp,; sequence
are modified in such a way as to ensure that for M;
fragments replace S; syndromes with S;* syndromes.
To perform such a replacement, the current S; and
the required S;* syndromes are summed modulo two:
b; = S@®S;*. The obtained value b; sets the position
of the bit that needs to be inverted in the M; fragment
to replace S; syndrome with S;* syndrome. Frag-
ments of M;*, resulting from changes in syndromes
concatenate in form a binary sequence M *gp,;, which
coincides in length with the initial Mgp,,;, sequence.

Thus, the resulting sequence M *sp,,;, contains:

a) information about the original state of the se-
quence MSPath;

b) monitoring hash sum;

c) optional additional information fields.
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Stage 9. The target bit values are modified in the
program codes of the LUT units. Modifications are
made in such a way as to change the source sequence
of the target Msp,,, bits to the M*gp,, sequence ob-
tained in the previous step. Modification is performed
by applying equivalent conversions [31], [32].

In Fig. 5 shows an example of the implementa-
tion of the proposed stages of the integrity control
method in part of embedding a digital watermark.
The figure shows an Mgp,, sequence consisting of
42 target bits. This sequence is obtained at the first
stage of the method from the program codes of the
LUT units that are on the stego-path.

Let for this example, an error-correcting code
with the parameters (n, k) = (7, 4) and the check ma-
trix of the following form is used:

s
I
o o~
=)

1
0
1

—_— = O

1
1.
1

o = O
O = =

At the second stage of the method execution,
the Msp,, sequence is divided into six fragments of
n =7 bits each.

At the third stage of the method, for each of the
obtained fragments, n — k = 3 bit S; error syndrome is
calculated using the check matrix H.

In the fourth stage, the resulting syndromes
concatenate, forming a binary sequence.

At the fifth stage, the resulting sequence is
compressed. In this example, the Huffman method
[41] is used for compression. This method is used in
the example for clarity. In real applications, it is ad-
visable to use more efficient lossless compression
methods. A compressible sequence is considered as
a set of symbols of the primary alphabet, which is
formed by the values of S; syndromes. As a result of
the compression, a code table is formed that assigns
a code combination to each syndrome. The length of
code combination is proportional to the frequency of
occurrence of the syndrome in binary sequence.
Codes resulting from replacing the primary alphabet
symbols form the binary sequence Ss,uicom-

At the sixth stage, a digital watermark is formed
to be embedded. Let, for the considered example, the
monitoring hash sum 1is a binary sequence
“0000011”. At this stage, hash sum (in the figure,
the bits of the hash sum are shown by accentuation)
is concatenated with the sequence Ss,uncom- The re-
sult is an 18-bit binary sequence of digital water-
mark DWM.
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Fig. 5. Example of the proposed method: the steps of embedding a digital
watermark in the FPGA program code

At the seventh stage of the method, the result-
ing digital watermark DWM is divided into frag-
ments of n - k = 3 bits each: 6 fragments S;* are
formed.

At the eighth stage, the current S; syndromes for
M; fragments are replaced with newly calculated S;*
syndromes. If the syndromes S; and S;/* coincide,
then there is no need to replace them and no addi-
tional actions are taken with respect to the M; frag-
ment. In this example, the equality holds for
S4 = S4* =010.

In the case of differences between S; and S/*,
one bit of the fragment M; is modified, which leads
to a change in the syndrome. The position of this bit
is equal to the sum modulo-two syndromes S; and S;*.

At the ninth stage, the bits are inverted for each
of the fragments M;. As a result, the binary sequence
M*p,y, 1s obtained from the Mgp,,, binary sequence.
Further, in the target bits of the program code of the
LUT units, equivalent conversions are performed,
resulting in values corresponding to the sequence
M*spy. As a result of these actions, the digital wa-
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termark is embedded in the program code of the
LUT units.

In the considered example, to save the initial
42-bit state of the target bits and the 7-bit monitoring
hash sum, we needed an equivalent inversion of the
five target bits (one bit each in the program code of
five LUT units).

The following procedure is proposed for ex-
tracting a digital watermark from the FPGA program
code in the integrity monitoring process.

Stage 1. Similar to the first stage of a method of
embedding the set of the LUT units which are on the
stego-path is formed. From the program codes of
this units set, an ordered sequence Msp,, of target
bits is selected.

Stage 2. The sequence M*gp,,; is divided into n-
bit fragments M*;.

Stage 3. For each of the fragments M*;, the n —
k bit syndrome S*; is calculated using the check ma-
trix H € Ecode.
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Stage 4. By concatenating syndromes S*;, a bi-
nary sequence is formed.

Stage 5. The monitoring hash sum is separated
from the sequence obtained in the previous step. The
rest of the sequence is subjected to a decompression
procedure. To do this, use the decompression meth-
od, the inverse of the compression method used in
the process of embedding a digital watermark. As a
result of decompression, a set of S; syndromes is ob-
tained, the number of which coincides with the
number of M*; fragments.

Stage 6. The procedure is similar to the one that
was performed in step 8 in the process of embedding
a digital watermark. The values of S*; syndromes are
converted to S; values by modifying one of the bits
in each of the M*; fragments. In the case of equality
of the syndromes S*; and S;, the modification of the
bits of the corresponding M*; fragments is not per-
formed.

Stage 7. The initial state for the target bits of
the program code is restored from the modified val-
ues of the fragments M*; by equivalent conversions.

To test the effectiveness of the proposed meth-
od, an experiment was performed. An experimental
comparison of the proposed method with a well-
known integrity monitoring method [33] (which per-
forms the recovering of an information object, but
does not use syndrome decoding during embedding)
was performed.

The experiment involved five FPGA projects of
various volumes and design mission. Synthesis of
projects was carried out with the help of the CAD
system Intel (Altera) Quartus Prime [42]. FPGA In-
tel Cyclone IV was used as target synthesis chips
[43]. The aim of the experiment was to determine
the number of bits modified in the process of em-
bedding a digital watermark.

The experiment procedure consisted in the fact
that a digital watermark was embedded in each of
the five experimental projects. This watermark con-
tained a monitoring hash sum and a compressed ini-
tial state for the target bits of program code of the
LUT units. Embedding was performed twice: using
the known and proposed methods. After each em-
bedding, the number of target bits of the LUT units
that were modified during the embedding process
was counted.

The results of the experiment are shown in the
table. FPGA-projects (which were used in the ex-
periment) in the table are ordered by increasing their
volume (total number of LUT units). For each of the
projects, it is shown by how much, due to the appli-
cation of the proposed method, the number of LUT
units whose program code has been modified has
decreased.
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Table. Experimental results

Project | Total number of | Reducing the number of
No LUT units modified LUT units
1 3280 6,1 %
2 3837 7,6 %
3 4589 12,9 %
4 7403 15,1 %
5 8265 19,4 %

From the results of the experiment it can be
seen that the proposed method allows reducing the
number of modified bits of program codes in LUT
units. It can also be seen that a greater decrease in
this number is achieved on projects that have a lar-
ger volume. This reduction in the number of modifi-
cations to the program code confirms the validity
and effectiveness of the proposed method.

Conclusions and directions for future research

The proposed method is an integrated part of
the technology for the integrity monitoring of FPGA
chips program code. The method is based on em-
bedding a standard hash sum in a program code in
the form of a digital watermark. Integrity monitoring
in the framework of the proposed method is possible
due to the property of recovering the initial state for
an information object of a program code in the proc-
ess of extracting a digital watermark from it.

The proposed method of integrity monitoring
for each n-bit fragment of the target bits sequence,
where n is the parameter used by the (n, k)-code
(specified by the stego-key):

a) requires changing the code for only one of
the » LUT units in the fragment in case of a mis-
match between the syndromes S; and S;*;

b) does not require changes to the codes of the
LUT units in the fragment in case these syndromes
coincide.

The visible problem (which causes the need for
future research) of the proposed method is the need
to include a table of prefix codes in the stego-key.
This need is caused by the fact that the table is cal-
culated at the stage of embedding a digital water-
mark and cannot be calculated in advance. The re-
maining parameters of the key can be specified in
advance by the embedding side and the digital wa-
termark extraction side. This requirement increases
the size of the stego-key. In the case of the inclusion
of a code table in the composition of a digital water-
mark, the potential effective volume of a digital wa-
termark is reduced. In this regard, there is a need for
future research on the possibility of using (within the
framework of the proposed approach) compression
methods that do not require the preservation of a code
table as part of a stego-key or digital watermark.
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eamu paxm guxkonanHa konmpoJio yinicnocmi. Lleti pakm € eioxkpumum. Hasimo 8 ymosax 000amx06020 wugpysans KOHmMpoabHoi
Xewt-cymu i1 HAsIBHICMb CEIOUUMb NPO Me, WO NPOOOUMbCL KOHMPOTb YilicHocmi. B pobomi udinsiemoscs Kiac memoois, 6 pamKkax
AKUX KOHMPONbHA Xeui-cyma 60Y008YEMbCA 8 NPOSPAMHULL KOO Y 8unadi yugpogozo 60051020 3uaxy. Lleii kiac memodig poszensoa-
€MbCA CMOCOBHO KOHMPOTIIO YIiCHOCMI npocpamuozo Kooy mikpocxem FPGA (Field Programmable Gate Array). /{na 66yoogysans
suxopucmosyomocs ocoonueocmi LUT-opienmosanoi apximexmypu FPGA. BOyoogysanhs KOHMPONbHO20 YUPPO8020 6005HO20
3HAKY 8UKOHYEMbCS 3d PAXYHOK 3ACMOCYBAHHA eK8IBAIEHMHUX NepemBopeHs NPopamMtux kooie na muoxcuni onokie LUT, wo éxo-
osimwb 00 cknady FPGA. Ocobrusicmio 66y008y6ants yuposo2o 001020 3HAKY € me, Wo make 60Y008Y68AHHS He 3MIHIOE POIMID
npocpaAmMHO20 KOOy i He Mooupixye gyuxyionyeanna mikpocxemu FPGA. B pesynvmami 66y008y6ants 16HO 8UOLIUMU KOHMPOIbHY
Xew-cymy 6 npocpamHomy KoOi Cmae HeMONCIUBUM. Bumseanns yugposozo 60051020 3HaKy, AKU 6KIIOUAE 00 CB020 CKNAOY Xeli-
CYMY MOMCIUBO MINLKU NPU HAABHOCHI CHEYIANbHO20 CMe2aHoepapiuHo2o Kuova (o 3a0a€ npasuia posmiyents 6005SH020 3HAKA 6
npocmopi npozpamuo2o kody FPGA). B 0aniti pob6omi nponoHyemvcs KOMRO3UyiiHuL Memoo 80y008y8anHs KOHMPOIbHO20 YUudpo-
6020 80051H020 3HAKY 6 npocpamHuil ko0 FPGA. Memoo noeonye énacmusocmi memoois, wo 3a6e3neyyioms 6i0HOGIEHHS NePEICHO20
CIMAHY NPOSPAMHO20 KOOY, i Memo0i8, aKi 30IUCHI0IOMb 80Y008Y8AHHA HA OCHOBI CUHOPOMHO20 0eK0ody8anHs. [Ipononosanuii memoo
NOEOHYE KOPUCHI 61ACMUBOCII 3A3HAYEHUX OB0X KIACI8 MEMOOi8 i CHPAMOBAHUI HA 3MEHWEHHS KIIbKOCII eK6I8ANeHMHUX NepemBo-
PeHb, WO 3aCMOCO8YIOMbCs 00 NPOSPAMHO20 KOOY 6 X00i 80y008y6anHs YUPP0o602o 60051020 3HaKy. [Ipedcmasneno onuc i pesynb-
mamu eKCnepuMeHmanbHo20 00CHiONHCEHHs 3anpOnoHO8an020 memooy. Ilokazano nepesazu 3anponoHOBaHO20 MemOoOy 8 NOPIGHAHHI
3 6A306UMU MEMOOAMU, 80YO0BYEAHHS YUPPOBUX 00AHUX 3HAKIE 6 npoepamHull koo FPGA.

Knrwuoei cnosa: konmpons yinichocmi npoepamuo2o Kooy, npoepamosani anapamui komnonenmu, FPGA; LUT-opieumogana
apximexmypa, KOHMPOAbHA Xeul-CyMa, YuGposuii 600aAHUL 3HAK, CMe2aHoepagiunuil nioxio 00 KOHMPOIIO YLIICHOCMI
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KOMIIO3UIIMOHHBIN METO/J KOHTPOJISI HEJTIOCTHOCTH TIPOIT'PAMMHOTI'O KOJA
FPGA, OCHOBAHHBIN HA NCITIOJIb30BAHUU TUP®POBBIX BOJAAHBIX 3HAKOB

Annomauusa. B pabome paccmomperna npobrema obecneyenus yeioCmHOCMU NPOSPAMMUPYEMbIX KOMNOHEHMO08 KOMNbIOmep-
Hulx cucmem. Tlokazanvi 0OCHOGHBIE IMANBL HCUSHEHHO20 YUKIA NPOSPAMMUPYEMBIX KOMNOHEHMO8. OmMmeyeHo, Ymo 803MOHCHOCb
MOOUGhUKayUY NPOSPAMMHO20 KOOAd OMKpblieaem nymu K 310HAMEPEHHOMY HapyuleHuio e2o yeiocmuocmu. Tpaouyuonnvie memooul
KOHMPOJISL YeIOCMHOCUY, OCHOBAHbL HA UCTIONb308AHUU KOHMPONbHLIX X2ul-cyMm. OOHAKO HeO0Cmamox mpaouyuoHHbIX Memooos
cocmoum 6 Mmom, Ymo OHU He OAIom 803MONHCHOCb CKPbIMb PAKM BbINOIHEHUs KOHMPOISL YeloCmHocmu. Imom akm aeisiemcs
omrpwuimuiM. [asice 8 yCi08Usax 0ONOTHUMENbHO20 WUDPOSAHUS KOHMPOJIbHOU XIU-CYMMbL ee HATudue C8UOemenbCmeayem o mom,
YUMo NPou3800UMCcst KOHMPOb yerocmuocmu. B pabome evioensemes knacc memooos, 8 pamkax KOMopvix KOHMPOIbHASL XIUl-CYMMA
BHEOPAEMCS 8 NPOSPAMMHDBILL KOO 8 8UOe YUPPOBO2O BOOAHO20 3HAKA. DMOM KIACC MeMOO08 PACCMAMPUBAETNCS NPUMEHUMETbHO K
KOHMPOJIIO YeIOCMHOCIU NPoSpammuo2o kooa muxpocxem FPGA (Field Programmable Gate Array). /[na ecmpausanusi ucnonv3y-
tomea ocobennocmu LUT-opuenmuposannoti apxumexmypvl FPGA. Bcmpauganue KOHMPOavHo20 Yyu@posoco 8005H020 3HAKA Gbi-
NOTHAEMCA 34 CYem NPUMEHEeHUs IKBUBAIEHMHBIX NPeoOPA308aHULL NPOSPAMMHBIX KOO08 HA MHOdcecmge 610k08 LUT, exoosawux 6
cocmag FPGA. Ocobennocmoio écmpausanus yughpoeoco 800SIHO20 3HAKA SGISEMCS MO, YMO MAaKoe GCmpausanue He usmeHsiem
pasmep npoepamMmHo20 Kooa u He moouguyupyem Gynxkyuonuposanue mukpocxemvr FPGA. B pezynvmame 6cmpaugaHus s6HvIM
06pazom 6vl0enUums KOHMPOILHYIO XIUL-CYMMY 8 NPOSPAMMHOM KOO CIMAHOBUMCS HeBO3MONCHbIM. H38neuenue yugposozo 00sHo-
20 3HAKA, KOMOPbIU BKIIOUAEm 8 CB0U COCMAS XIUL-CYMMY BO3MONCHO MOLLKO NPU HATUYUU CREeYUATbHO2O0 CMe2aH02pa@duiecKo2o
Katoua (Komopwlil 3a0aem npasuia pasmeujeHusi 600SIH020 3HAKA 8 NPocmpancmeae npoepammuozo kooa FPGA). B oaunnoti pabome
npeonazaemcsi KOMNO3UYUOHHbLI MEMOO 8CIMPAUSAHUS KOHMPOIbHO20 YUPPOBO2O 8005IHO20 3HAKA 6 npocpammublil ko0 FPGA. Me-
Mmoo cosmewjaem ceolucmea Memooos, 00ecneyusaux 60CCMAaHO8IeHUe UHUYUATLHO20 COCMOANHUSA NPOSPAMMHO20 KOOd, U Memo-
008, 0CYEeCMBIAIOUUX 6CMPAUBAHUE HA OCHOBE CUHOPOMHO20 Oekoouposanus. Ilpednacaemviii Memoo couemaem nojesnvie ceoui-
CMBA YKA3AHHBIX 08X KIACCO8 MeMO008 U HANPAGLeH HA YMeHbUeHUe KOIUYeCmed IKGUBALEHIMHBIX NPe0OpaA308aHULl, NPUMEHAEMbIX
K NPOSPAMMHOMY KOOY 8 X00e 8CMpausanus yugpogozo 800sHo2o 3uaxa. IIpedcmasneno onucanue u pe3yibmamvi IKCNEPUMEH-
ManbHo20 Ucciedoganus npeonazaemozo memooa. Iloxkasanvl npeumyuwiecmea npeodrazaemo20 mMemood 8 cpagHeHuu ¢ 6a3oebimu
Memooamu, 6Cmpausanus YUGpPosvix 600HbIX 3HAKOE 8 NPoepaMMHbLL K00 FPGA.

Knrouesvie cnosa: xonmponv yenocmuocmu npoepamMmHozo K0Od, npozpammupyemvie annapamuvle Komnonenmoli, FPGA;
LUT-opuenmuposannas apxumexmypa, KOHMPOIbHASL XOU-CYMMA, YUPPOBOU 800AHOU 3HAK, CMe2aHOSPAPUUecKUtl NoOX00 K KOH-
MPOJIIO YeN0CMHOCIU
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