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Abstract: Modified combined scattering rate Monte Carlo technique is proposed. 

Electron collisions with phonons, impurities and among themselves are taken into 

account. The proposed technique avoids the short-time-step procedure inherent to 

conventional ensemble Monte Carlo method. All N modeled electrons move using the 

total probability for the scattering of each electron by the thermal bath and mutual 

scattering between electrons pairs (“events in the electron system”). The quantitative 

fitting to the available experimental data on the spectral density is achieved and the range 

of moderate fields is defined for interparticle collisions to manifest themselves in the 

noise. In the second part of the presented report a drift velocity correlator is investigated 

numerically by Monte Carlo simulation and for the fist time analytically by a 

phenomenological approach taking into account electron-phonon and electron-electron 

scattering between free carriers. The thermodynamic approach is investigated. The 

results of the velocity-to-velocity correlation functions and electron noise spectrum 

obtained analytically are in quite good agreement with those given by the Monte Carlo 

method. 

Keywords: Monte Carlo, Electron-electron collisions, Drift velocity fluctuations, 

Spectral density.  

 

1. Introduction 
Fluctuations phenomena in semiconductors have been intensively investigated 

during the last three decades [1-3]. Fluctuation effects have been conventionally 

investigated without an account on the Coulomb electron-electron (e-e) 

scattering. However at sufficiently high electron densities, it is necessary to take 

into account e-e scattering to the total distribution function and related 

correlators. 

Interparticle collisions though conserving energy and momentum of the electron 

system have an indirect effect on transport and – even more direct – on velocity 

correlations. In the presented report the ‘combined scattering method’ (CSR) 

Monte Carlo method [4] is used to interpret the results of microwave noise. 

 

The important role of e-e collisions is demonstrated, and velocity-velocity cross-

correlation under non-e1uilibrium conditions is calculated. In the second part  

drift velocity correlation functions are investigated analytically in a 

phenomenological approach and numerically through Monte Carlo simulation. 
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Thermodynamic equilibrium state is investigated. Analytical results are in good 

agreement with those obtained by Monte Carlo method in the GaAs crystals. 

 

2. Electron-electron collisions. Drift velocity fluctuations 
It can be shown [4] that the “time of free flight” for independent scattering 

events of the N electron system with ki wave-vectors is defined by the combined 

scattering rate: 
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where )( ii kλ  and ),( ji

ee

ij kkλ are conventional integral rates of scattering of the 

ith electron by the thermal bath and by the jth electron respectively [5]. 

Equation (1) reduces to that written down in [6] for N=2. All N electrons move 

without scattering for the “time of free flight of the system” between two 

successive events of an electron by the thermal bath or mutual collision between 

two electrons occurs. The “time of free flight” is defined from the sum of the 

each electon scattering rate on the thermal bath and on the all remaining 

electrons. CSR technique avoids the short-time step procedure and a large 

electron number inherent to conventional ensemble MC simulation. 

The time-displaced drift-velocity correlation function is 
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where the auto- and cross-correlation functions are defined as: 
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In order to demonstrate the effect of e-e collisions on fluctuations the calculated 
velocity correlation functions in heating electric field are shown in Figure 1 for 

a model corresponding to n-type GaAs with the impurity scattering neglected. In 

our case τee ≤ τp strong cross-correlation appears. The equal-time cross-

correlation also appears in non-equilibrium system as it was predicted in [1]. 

The auto-correlation decreases mainly in time τee. The decay of totalΦ is caused 

by the electron interaction with thermostat. In thermodynamic equilibrium, 

when 0)0( =Φ cross , the latter is equal to  mkTVautototal /)0()0( 2
==Φ=Φ . 
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The results of the spectral density on the spectral density of drift velocity 

fluctuations are presented in Figure 2. The experimental data are obtained from 

the current fluctuations data through normalization at zero field by using 

mobility data and Nyquist formula [7]. One can see that the most pronounced 

effect is obtained at intermediate fields ranging from 5 V/cm to 500 V/cm 

1 10 100 1000
100

150

200

250

300

n=3 10
17
 cm

-3

N
I
=7.5 10

17
 cm

-3

 

 

S
p
e
c
tr
a
l 
d
e
n
s
it
y
 S

V
 c
m

2
/s
 

Electric field (V/cm)

GaAs, 80 K

 

 

Fig. 2. Dependence of the spectral density of electron drift velocity fluctuations 

in compensated n-GaAs. MC with phonon, impurity and e-e scattering: (closed 

circles), without e-e scattering (diamonds). Experimental data–open squares [7].  

 

Fig. 1. Drift-velocity correlation functions: total (solid line), auto-

correlation (dashed line) and cross-correlation (dotted line). Phonon 

and interelectron scattering is taken into account, impurity 

scattering is neglected 
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The nearly constant behavior at fields up to 100 V/cm can be explained by 

enhanced energy loss by electrons on optical phonons in the presence of e-e 

collisions. The role of e-e collisions diminishes at higher field. 

 

3. Drift velocity correlations in semiconductors in the 

thermodynamic equilibrium state.  
The values of correlators at the thermodynamic equilibrium have been 

calculated for the parabolic model of  Г valley in GaAs. The material parameters 

correspond to these listed in [8]. Electron scattering on non-elastic acoustic and 

optical modes of lattice vibrations, as well as e-e scattering (ne = 10
15

 cm
-3

) is 

taken into account. Inter-electron collisions are treated in the Brooks-Herring 

approximation. Standard expressions for electron scattering rates are used [5]. 

The calculations are performed by the CSR method. 

Let us start with the simplified Boltzmann-Langevin equation for the fluctuation 

distribution function. In the state of thermodynamic equilibrium it can be 

written as 
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Here Fp(t) is the instantaneous electron momentum distribution function, Fp

M (t) 

is the drifted Maxwellian distribution corresponding to the Fp(t)  at time t , )(typ  

describes the Langevin random force. In our case the rate of fluctuation 

relaxation is governed by the lattice and e-e scattering mechanisms. 
The first term on the right-hand side of equation (4) ensures the relaxation of 

instantaneous distribution )(tFp to the equilibrium distribution during lattice 

relaxation time τp. The second term is written in accordance with the Gross-

Bhatnager-Krook approach [9]. Its form is based on the property of the 

instantaneous electron distribution function to acquire symmetric form (the 

drifted Maxwellian distribution) in the e-e scattering time τee under the influence 

of e-e scattering. R. Liboff in his textbook [10] gives considerable attention to 

this approach (see also [11]). Electron momentum can be intensively scattered 

by impurity centers too, but the energy of electrons is conserved in this 

scattering process. Even in this simple approach we cannot predict the final 

distribution that will result under the influence of impurity scattering. Therefore, 

we will omit further the impurity scattering. 

The therm )(tF M

pδ  describes the deviation of a drifted Maxwellian distribution.  

E-e scattering does not tend to bring either )(tF M

p  or )t(Fp  to  the 

thermodynamic equilibrium, because the average energy and momentum do not  
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change during e-e collisions. So, the drifted Maxwellian distribution is supposed 

to relax only under the influence of lattice scattering during the corresponding 

scattering time τp. Therefore, we have used )/exp()0()( p

M

p

M

p tFtF τδδ −= . 

Then, we multiply the equation (4) by the initial distribution function fluctuation 

)( 11 tFpδ , and average the product. Let us denote the correlator 

)()( 111 ttFtF pp +δδ  as )()0(1 tFF pp δδ ). Now we write the dynamic equation: 
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The last term in Eq. (3) representing a random force vanishes because this force 

is δ -correlated in time. Initial fluctuations of an actual distribution and the 

drifted Maxwellian distribution are related in the following way: 
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M

p FFF ∆+= δδ                                     (6) 

 

where )0(pF∆  is deviation between them. Because of the chaotic behaviour of 

)0(pF∆  we assume that 
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We are interested in the velocity-to-velocity correlators; therefore we multiply 

the equation (4) by )()0(1 tVV ji
 and sum it up by  p1 and  p. Finally, we obtain 

the phenomenological equation describing the relaxation of the total velocity-to- 

velocity correlator coefficient )()()( tctctc crossautototal +=  in the 

thermodynamic equilibrium: 
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The first-order linear differential equations for the velocity-to-velocity 

correlator coefficients can be then written as 
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Taking into account the known initial conditions [1] under equilibrium: 

1)0( =autoc , and  0)0( =crossc , the correlation coefficients are given as 
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As it seen the auto-correlation coefficient in equilibrium decreases exponentially 

with a combined relaxation time )/( eepeepc τττττ += . This result describes 

conventionally the relaxation of the probe particle velocity correlator. We obtain 

from the second equation that the cross-correlation coefficient tends to increase 

during the time τee , but then decreases to zero per lattice scattering time.   

One can see an important result of the total correlation coefficient: 

 

                     )/exp()()()( pcrossautototal ttctctc τ−=+= ,                   (11) 

 

which shows that it does not depend on e-e scattering. 

The analytical dependencies calculated with equation (11) reasonably well 

coincide with those from the MC data (Fig. 3).    
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Fig. 3. Relaxation of velocity correlation coefficients in n-GaAs. Points - MC, 

curves by equations (1). 

 

The characteristic time at which the cross-correlation function reaches its 

maximum in the case of τee  ≤ τp is )/1ln(max eepeet τττ +≈ . The more details of 

the corelation functions bechavior (spectral density, etc.) can be found in [12]. 
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4. Conclusions 
The presented MC procedure was demonstrated to be an efficient tool for 

studying electron noise in the presence of e-e scattering. Taking them in 

accordance is crucial for explanation of experimental data on microwave noise 

in doped GaAs. 

The results of analytical approach are in good agreement with the Monte Carlo 

simulation, what confirms the usefulness of our simple analytical model. Till 

now only the single particle autocorrelation behavior has been describe 

analytically in the textbooks of fluctuation phenomena (for example, see [13]). 
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Abstract. A quantity formally similar to averaged angular momentum is com-
puted for many chaotic scalar time series with additional Gaussian noise. Consid-
ered time series are constructed using iterative maps, three-dimensional ODEs and
computer generated noise. Using proposed method we can distinguish chaos with
noise from pure noise, if level of noise in time series is low enough. Some types of
chaos can be detected in short time series with very high level of noise. Application
of the method on real time series is demonstrated.
Keywords: Chaos, noise, time series.

1 Introduction

Identifying chaos in time series is a very difficult task arising in physics,
fluid mechanics, astronomy, geophysics, meteorology, ecology, life sciences
and finance. One can try to solve this task using time delay embedding [1,2]
and correlation dimension algorithm [3] or estimating entropies [4] and Lya-
punov exponents [5,6]. There are methods for analysis of irregular time series
(chaotic and stochastic) based on short-term predictability (chaotic systems
follow definite rules), detection of nonlinearity, reversibility, surrogate data
and transportation distance function [7]. It is important for understanding,
modeling and forecasting of complex processes [8].
We compute here a quantity looks like the averaged component of the angular
momentum of a particle. The aim is to develop a new approach in the anal-
ysis of irregular time series in other to have the value of this quantity as an
additional indicator of chaos, in a specific time series, beside other indicators
obtained by different methods. Our mechanical view on time series is similar
to Tuncay’s mechanics of stock exchange, where he introduces potential and
kinetic energies for prices [9].

2 Angular Momentum

For a time series αj (1 ≤ j ≤ N + 3), we compute

xj =
αj

αmax
(1)
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where
αmax = max{|αj |; j = 1, 2, ..., N + 3} (2)

Then we take
yj = xj+3, 1 ≤ j ≤ N (3)

(it is not so important if time delay is 1, 2 or 3) and compute components of
velocity in discrete time

vxj = xj − xj−1, vyj = yj − yj−1, 2 ≤ j ≤ N (4)

We can now find out values of z component of the angular momentum

Lzj = xjvyj − yjvxj , 2 ≤ j ≤ N (5)

For a particle of unit mass with coordinates xj and yj , the quantity

L =
1

N − 1

N∑
j=2

Lzj (6)

would be the angular momentum averaged in discrete time. We will see that
the level of noise in a time series significantly influences the value of L.

3 Time Series Constructed Using Feigenbaum Map
and Lorenz Equations

We compute here
αj = (1− b)ξj + bξmaxGj (7)

where
ξj = 1− qξ2j−1 (8)

(Feigenbaum map) and

ξmax = max{|ξj |; j = 1, 2, ..., N + 3} (9)

Gj is computer generated Gaussian noise where distribution mean is zero and
scale parameter is one. The level of noise is denoted by b. For low enough
b, we can distinguish chaotic time series with noise from clean noise if the
averaged angular momentum (L) is computed (figures 1 and 2).
We also use the relations (7) and (9) after replacement

ξj −→ ξ(jh) (10)

where ξ(jh) satisfies equations (Lorenz)

dξ

dt
= 10(η − ξ), dη

dt
= rξ − η − ξζ, dζ

dt
= ξη − 8

3
ζ (11)

Again we can distinguish chaotic time series with noise from clean noise, for
low enough noise level (figure 3).
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Fig. 1. Averaged angular momentum (L) of a very short time series (N = 300)
constructed using Feigenbaum map (8) with q = 1.94 and ξ0 = 0.6. For low enough
noise level b, L(b) is different from L(1) (corresponding to clean Gaussian noise).

Fig. 2. L of time series with N = 597 constructed using Feigenbaum map (8) with
q = 1.67 and ξ0 = 0.4.

Fig. 3. Averaged angular momentum of time series with N = 475 constructed using
Lorenz equations (11) with r = 30 and ξ(0) = η(0) = ζ(0) = 1. Here h = 0.1.
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4 LM Diagrams

Besides the averaged angular momentum L, the spread of angular momentum

M = max{Lzj ; j = 2, 3, ..., N} −min{Lzj ; j = 2, 3, ..., N} (12)

will be of crucial importance in our approach.
Here we consider time series (7) with (10) using three-dimensional ODEs like
(11). We take

N = 3000, 0.01 ≤ h ≤ 0.1, −1 ≤ ξ(0), η(0), ζ(0) ≤ 1 (13)

Values of h, ξ(0), η(0), ζ(0), restricted in this manner, we choose randomly.

We have computed L and M for 2800 different chaotic time series with
additional Gaussian noise (red circles in figures 4,5,6,7). There are included:

• 200 different time series (αj = (1− b)ξ(jh) + bξmaxGj) constructed using
Lorenz equations (11) with r = 28 and different values of b, h, ξ(0), η(0)
and ζ(0) randomly chosen in given intervals
• 200 different time series constructed using Rössler equations

dξ

dt
= −η − ζ, dη

dt
= ξ + 0.1η,

dζ

dt
= 0.1 + ζ(ξ − 10)

• 200 different time series constructed using Ueda equations

dξ

dt
= η,

dη

dt
= −ξ3 − kη +B sin ζ,

dζ

dt
= 1

with k = 0.06 and B = 8.1
• 200 different time series constructed using Rikitake equations

dξ

dt
= −µξ + ζη,

dη

dt
= −µη + (ζ − a)ξ,

dζ

dt
= 1− ξη

with µ = 1 and a = 4
• 200 different time series constructed using modified Lorenz equations [10]

dξ

dt
= 10(η − ξ), dη

dt
= (24− 4ρ)ξ + ρη − ξζ, dζ

dt
= ξη − 8

3
ζ

where ρ = 6.4
• 200 different time series constructed using modified Lorenz equations with

another value of ρ corresponding to chaos
• etc.

We also have computed L and M for 3600 different stochastic time series
(blue circles in figures 4,5,6,7) with N = 3000. There are included:
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• 200 different time series with float random numbers between 6.9 and 25.3
• 200 different time series with rational random numbers between −15/2

and 15/2
• 200 different time series with integer random numbers between −61 and
−4

• 200 different time series with random numbers between other certain
boundaries

• random series with Gaussian distribution (b = 1)
• etc.

Fig. 4. Averaged angular momentum (L) and spread of the angular momentum
(M) for chaotoc time series (red circles) and stochastic time series (blue circles).
Here we take b = 0 (there is not noise in chaotic time series) and N = 3000.

Fig. 5. L and M for chaotic time series with noise (red circles) and stochastic time
series (blue circles). Here 0 ≤ b ≤ 0.05 (the level of noise is randomly chosen) and
N = 3000.

Fig. 6. Averaged angular momentum and spread of the angular momentum for
chaotic time series with noise (red circles) and stochastic time series (blue circles).
Here we take 0 ≤ b ≤ 0.15 and N = 3000. Broadening of red area, compared with
the previous figure, is a consequence of the increasing of maximal b.
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Fig. 7. L and M for chaotic time series with noise (red circles) and stochastic time
series (blue circles). Here 0 ≤ b ≤ 0.3 and N = 3000. If the point (L,M), for a real
time series, is in the overlapping area of red and blue circles, we can not distinguish
chaos from noise.

5 Real Time Series

If αn (1 ≤ n ≤ N+3) is vertical acceleration (nm/s2) of the Kobe earthquake
in nth second [11], recorded at Tasmania University on 16 January 1995, we
find L = −0.01 and M = 0.5. Here N = 3045. The point (−0.01, 0.5) is in red
area of figure 5 so we conclude that we have an indication of chaos. We find,
using angular momentum method, that considered real time series is chaotic
one with the noise level b ≤ 0.05. This is in agreement with two results pub-
lished before. First, de Sousa Vieira found out that chaos is present in the
symmetric two-block Burridge-Knopoff model for earthquakes [12]. Second,
according to Iliopoulos et al. [13], the Hellenic lithospheric system appears
to be in a state of early turbulence with a low dimensional universal attractor.

Considering monthly temperatures in England [11] for the yers 1723-1970
(N = 2973), we get L = −0.06 and M = 0.7. One can see the point
(−0.06, 0.7) in red area of figure 5. Again we have chaos with noise of level
b ≤ 0.05. It is interesting that Berndtsson et al. [14] analyzed monthly tem-
perature time series observed in Lund (1753-1990) and concluded that there
are indications of a low dimensional chaotic component.

For daily brightness of a variable star on successive midnights [11] (N =
597) it is found L = −0.02. If we use figure 2, we can conclude that there
is a very large amount of noise in this time series. This is in agreement
with the results found by Kiss et al. Power spectra of red supergiant stars
show a single mode resolved into multiple peaks under a Lorenzian envelope,
interpreted as evidence for stochastic oscillations caused by convection and
pulsations. A strong 1/f noise component in the power spectra is also found
[15].

Considering monthly prices of gold in US Dollars from January of 1971
to October of 2010 [16] (N = 475), we find out L = −0.00013. For prices in
Yens we get L = −0.00074. We conclude that these time series are stochastic
both (figure 3). It is often in econometrics that time series are assumed to
be stochastic [17].
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6 Conclusion

The proposed angular momentum method can give us an indication of low-
dimensional chaos in a noisy time series. It is possible sometimes distinguish
chaos from noise in a very short time series. We have analyzed some real time
series using the angular momentum method and our results are in agreement
with the published results obtained by some other methods. We are restricted
here on certain types of chaos and noise so there are time series we can not
analyze using the method. The upgrade of LM diagrams is possible and the
method can be more efficient, but never absolutely efficient.
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Abstract. Aim. This work aims to find evidence of deterministic dynamics in Fi-
nancial Markets combining the advanced spectral method of the Singular-Spectrum
Analysis (SSA) with the classical tools provided by the chaos theory. We focus
on return and realized volatility series of several stock indexes (i.e., FTSE ITALIA

MIB STORICO, DAX 30, CAC 40, FTSE ALL SHARE, S&P500, NASDAQ 100, NIKKEI ALL

STOCKS and EURO STOXX).
Methods. Initially, a Monte Carlo SSA (MC-SSA) tests significance against a

red-noise null-hypothesis (AR(1), first-order autoregressive process) is performed.
Specifically, the error bars computed for each empirical orthogonal function rep-
resent 95% of the range of variance found in the state-space direction defined by
that empirical orthogonal function in an ensemble of 1000 red-noise realizations.
Thus, the bars represent the interval between the 0.5% and 99.5% percentiles, and
eigenvalues that lie outside this range are significantly different (at the 5% level)
from those generated by the red-noise process against which they are tested. Then,
the eigenvalues lie outside this interval are used to reconstruct the time series of
the stock indexes. Finally, we apply the chaotic analysis on the reconstructed time
series.

Results. Despite the extremely complex morphologies observed in the vast ma-
jority of the Financial Markets time series, here we show that the fundamental
dynamic appears to be governed by a well-defined fractal attractor. A universal
strange attractor –underlying the nontrivial financial time structures– suggests that
the mechanism of production of such phenomena is governed by some inherent de-
terministic processes with a few degrees of freedom. In conclusion, we discuss the
stock indexes of FTSE ITALIA MIB STORICO and the NIKKEI ALL STOCKS in which
the Monte Carlo SSA test does not distinguish the signals from a relatively signifi-
cant red-noise.
Keywords: Financial Time Series, Chaos, Singular Spectrum Analysis.

1 Introduction and Purpose

Chaos theory has been applied to many different fields, from predicting
weather patterns to the stock market. However, the stochastic random noise
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present in several physical processes affect the possibility of using this anal-
ysis and, more generally, to treat the system with a relative low number of
dimensions [1]. In this paper, we treat the financial time series as natural dy-
namic process with the purpose of extracting the deterministic signal from a
pure noisy. The de-noise time series is then analyzed with the classical tools
provided by the chaos theory. The experiment is performed by using sev-
eral stock indexes. Excepted in the cases of the FTSE ITALIA MIB STORICO

and the NIKKEI ALL STOCKS indexes, all time series analyzed here show an
universal strange attractor with a correlation dimension, D2 . 2. This fact
point out that the mechanism of production of such phenomena is governed
by some inherent deterministic processes with a few degrees of freedom mak-
ing the financial signal more tractable from a mathematical point of view.
Furthermore, the evidence of small positive maximum Lyapunov exponents
found here, 0.01< λmax < 0.003, provide an useful constraint on making
prediction. Lyapunov exponents, in fact, are inversely proportional to the
predictability horizon.

In this work, we only present the detailed analysis of the EURO STOXX. The
complete Singular Spectrum Analysis, as well as, the chaotic investigation of
the entire sample will be publish by Romano et al. (in preparation).

2 Data

We focus our analysis on return and realized volatility series of several stock
indexes, FTSE ITALIA MIB STORICO, DAX 30, CAC 40, FTSE ALL SHARE, EURO
STOXX NASDAQ 100, S&P500, and NIKKEI ALL STOCKS. The analyzed fre-
quency is daily for a period ranging from 01/01/1990 to 31/03/2010. All
time series are temporally coincident with the exception of the Japanese index
ranging from 01/01/1991 to 31/03/2010. Before addressing the statistical
chaotic analysis, we test the non-linearity of time series under consideration
using the BDS test. The null hypothesis H0: the time series are independent
and identically distributed, is rejected for all stock indexes analyzed here.

3 Method

In this work we combining the advanced spectral method of the Singular-
Spectrum Analysis (SSA) with the classical tools provided by the chaos the-
ory. Our analysis is briefly summarized in what follows.

(I) Initially, a Monte Carlo SSA (MC-SSA) tests significance against a
AR(1) null-hypothesis H0 is performed. Specifically, the error bars computed
for each empirical orthogonal function represent 95% of the range of variance
found in the state-space direction defined by that empirical orthogonal func-
tion in an ensemble of 1000 red-noise realizations. Thus, the bars represent
the interval between the 0.5% and 99.5% percentiles, and eigenvalues that
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lie outside this range are significantly different (at the 5% level) from those
generated by the red-noise process against which they are tested.

(II) By using these de-noise eigenvalues we reconstruct the time series of
the stock indexes.

(III) Finally, on the reconstructed time series we apply the classical
chaotic analysis: attractor reconstruction, correlation dimension, D2 and
maximum Lyapunov exponent λmax.

3.1 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a recent and alternative time series
method [2].

Based on principal component analysis, the SSA method generates a set of
eigenvalues and eigenvectors from a symmetric covariance matrix obtained by
setting a specified window length M . The window length M should be chosen
to be longer than number of data points. In general, the window length be
less than about N/5 where N is the number of points in the time series.
The choice of window length sets the dimension of the lag autocorrelation
matrix to be constructed and diagonalized by SSA, and thus determines the
computational burden of the application. Larger values of M correspond to
higher spectral resolution, although there is no direct equivalence between
them. Robustness of results to M is an important test of their validity. We
test different settings of the window length (3 < N < 10) without observing
significant changes in our analysis.

The eigenvalues quantify the variance associated with each eigenvector or
empirical orthogonal function (EOF). Projection of the data onto a set of
EOFs allows its reconstruction for selected components, such as those above
the noise floor accounting for most of the significant signal.

The application of SSA in combination with this red-noise test is known
as Monte Carlo SSA [3]. The SSA-MTM TOOLKIT freeware software1 was
used for the analysis [4].

3.2 Monte Carlo SSA

The Monte Carlo SSA test (MC-SSA) was used to distinguish deterministic
signals from red noise. Red-noise, is known to be significant relevant in
several natural system. It is dominated by cycles of low frequency (long
period) in its power spectrum and exhibits significant autocorrelations that
decay over time. For red-noise, we specifically consider here a first-order
autoregressive process, AR(1), given by xt=ϕxt−1+εt with 0<ϕ<1 and ϵt
independent identically distributed normal errors.

A total of 1000 randomizations were used for the computation of MC-
SSA. MC-SSA estimates the parameters of the AR(1) model from the time
series itself by using a maximum-likelihood criterion [5].

1 http://www.atmos.ucla.edu/tcd/ssa/
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Fig. 1. Eigen-spectrum Shape Test of EURO STOXX index. The eigenvalues are
ranked by order of importance according to the variance. The bars specify the
95% confidence intervals generated with Monte Carlo simulations of red-noise.

4 Results

Fig. 1 shows the eigenvalues decomposition (eigen-spectrum) obtained by
MC-SSA for the EURO STOXX index. The eigenvalues are ranked by order of
importance according to the variance. Specifically, the error bars computed
for each empirical orthogonal function represent 95% of the range of vari-
ance found in the state-space direction defined by that empirical orthogonal
function in an ensemble of 1000 red-noise realizations. The 95% confidence
intervals are defined by the values expected for a red noise process with sim-
ilar decorrelation time τ=–1/log(r), where r is the lag-one autocorrelation
value (see §3). Thus, the bars represent the interval between the 0.5% and
99.5% percentiles, and eigenvalues lying outside this range are significantly
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Fig. 2. EURO STOXX index: in red we show the the noise sub-components as reported
in the the eigen-spectrum shape (MC-SSA); in blue the deterministic part of the
signal is reconstructed.

different (at the 5% level) from those generated by the red-noise process
against which they are tested. The first two eigenvalues are dominant and
lie outside this interval and their variances are significantly different from
the noise-variance. These eigenvalues are used to reconstruct the de-noise
time series plotted in blue color inside the original signal (see Fig. 2) The
strange attractors of the EURO STOXX index is plotted in Fig. 3. In partic-
ular, the Fig. 4 shows the Strange Attractor of the EURO STOXX index from
01/01/1995 to 01/01/2005 in which we perform the research for the max-
imum Lyapunov exponent. The values of the correlation dimension and the
maximun Lyapunov Exponent are D2 = 1.87 and λmax = 0.006, respectively
(see Figs. 5-6). Excepted in the cases of the FTSE ITALIA MIB STORICO and
the NIKKEI ALL STOCKS indexes, all stock indexes reported in §2 show an
universal strange attractor with a correlation dimension, D2 . 2 and 0.01 <
λmax < 0.003 (Romano et al. in preparation).

5 Conclusion

The advanced spectral method of the Singular-Spectrum Analysis (SSA) with
the classical tools provided in the chaos theory prove largely successful to de-
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Fig. 3. Strange Attractor of the EURO STOXX index after removing the noise sub-
components from the eigen-spectrum shape. See text for more details.

scribe and classify the financial time series. Despite the extremely complex
morphologies observed in the vast majority of the Financial Markets time
series, here we show that the fundamental dynamic appears to be governed
by a well-defined fractal attractor. A universal strange attractor underly-
ing the nontrivial financial time structures suggests that the mechanism of
production of such phenomena is governed by some inherent deterministic
processes with a few degrees of freedom.

Clearly our analysis shows two types of markets (i) the financial sig-
nal is separable from a stochastic noise (DAX 30, CAC 40, FTSE ALL SHARE,
S&P500, NASDAQ 100, and EURO STOXX) (ii) the dynamic process of the
time series is completely affected by random phenomena (FTSE ITALIA MIB

STORICO and NIKKEI ALL STOCKS). This in principle gives us the opportunity
to make more accurate econometric analysis because a priori we know the
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Fig. 4. Strange Attractor of the EURO STOXX index from 01/01/1995 to
01/01/2005. In this time period we perform the research for the maximum Lya-
punov exponent.
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Fig. 5. Maximum Lyapunov exponent of EURO STOXX index, λmax=0.006. We use
the tseriesChaos package of R software to estimate the largest Lyapunov exponent.
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Fig. 6. Correlation Dimension of EURO STOXX index, D2=1.8. We use the
Grassberger-Procaccia method implemented in Visual Recurrence Analysis Soft-
ware, http://nonlinear.110mb.com/vra/.

underlying process involving in time series under examinantion. This differ-
ent behavior may be a reflection of the various marketing strategies adapted
by different countries during the dynamic financial evolution.
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Abstract. Even if noise titration cannot be used to prove the presence of chaos,
it can still be used to detect nonlinear component in dynamics. Nevertheless, since
the technique is based on nonlinear models for one-step-ahead predictions, it re-
quires an acute choice of modelling parameters, that is the number of terms and
the nonlinearity degree of the models. Based on illustrative examples, we propose
conditions under which the noise titration can be reliably applied to characterize
nonlinearity governing the dynamics underlying the measured time series. More-
over, we found that investigating nonlinear dynamics in the entire phase space or
in a Poincaré section does not necessarily lead to similar results.
Keywords: noise titration technique, time series analysis.

Identifying chaotic dynamics from biological data still remains a great
challenge, mainly because it requires a conclusive proof for a global deter-
minism governing the whole system, that was never provided until now (Glass
[1]). To overcome this difficulty, a technique to identify and to quantify chaos
from short time series was proposed by C.-S. Poon and M. Barahona [2].
Unfortunately, the so-called “noise titration technique”, based on the com-
parison between one-step-ahead predictions given by linear and nonlinear
models, is not always able to distinguish some coloured noise from a purely
deterministic chaotic dynamics (Freitas et al. [3]). Thus this method is not
able to provide a conclusive proof of a chaotic behaviour. Nevertheless it can
still be used to detect a nonlinear process — deterministic or stochastic —
which governs the dynamics. In fact, this technique was used to discriminate
healthy subjects from patients suffering from different cardiac failures, by
comparing the strength of the nonlinearity underlying the data (Freitas et

al. [4]). On the other hand, the results obtained with the noise titration ap-
plied to some spontaneous respiratory dynamics (Fiamma et al. [5]), or some
breathing patterns of patients assisted by mechanical ventilation (Mangin et

al. [6]), remains valid if one ignores the references to chaos in the conclusions.
Nevertheless, this technique has to be applied according to some precautions,
relative to the sampling of the data set, the choice of the modelling parame-
ters, the choice of the observable, and so on. These guidelines are described
section 1.
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When the detection of the nonlinear component (Barahona et al. [7])
is applied, the probability p for having better predictions with a nonlinear
model is computed. A p value greater than 0.99 ensure that the dynamics
is nonlinear, while p around 0.50 means there is no gain to use a nonlinear
model. Nevertheless, in the case of p around 0, encountered in the case of
atrial fibrillation (Freitas et al. [4]), it is not so clear which kind of dynamics
can lead to such results. We therefore propose to check whether relaxation os-
cillations could not be a good candidate to understand this case. Relaxation
oscillations were already observed on a cellular scale (Tyson and Kauffman[8],
Guevara et al. [9]) but also on the scale of a whole organism, considering
physiological (Van Der Pol [10]) or biological (Barlow [11]) rhythms, or even
on a collective, behavioural approach (Liu et al. [12]). These oscillations can
present a fast increase of their amplitude, followed by a slow relaxation to
a basis value. Typically, the slow part can be reproduced by a linear pro-
cess, while the fast dynamics is controlled by a nonlinear process, driving
notably the amplitude fluctuations. This type of dynamics is hard to anal-
yse, because of its intrinsic dual behaviour. In order to better understand
the phenomenon, we built a caricature of relaxation oscillations, based on
periodical oscillations whose amplitude is modulated by the logistic function.
The time series provided is a pathological case for data analysis, due to the
fact that the nonlinearity only acts by very brief impulses. We showed that
the nonlinearity detection, proposed in Barahona et al. [7], failed to detect
the nonlinear component of this so-built dynamics.

1 The noise titration technique

The noise titration technique (Poon and Barahona [2]) is conditioned by
a nonlinearity detection based on estimations of one-step-ahead polynomial
predictors (Barahona and Poon [7]). Once this detection achieved, and only if
a nonlinearity is detected (p > 0.99), the noise titration is applied. A white
Gaussian noise is then gradually added to the data, until the nonlinearity
goes undetected according to the predictors. These two steps are detailed in
the following two subsections.

1.1 Detecting nonlinearity

A time series {yn}
N
n=1 is investigated by comparing one step ahead predictions

obtained with linear and nonlinear parametric models. These models are not
built to reproduce the global dynamics but only to be optimal for one-step-
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ahead predictions. The general form of these models is:

ỹn(d,M) = a0 + a1 yn−1 + a2 yn−2 + ...

+aκ+1 y2
n−1 + aκ+2 yn−1 yn−2 + ... + aM−1 yd

n−κ

=

M−1
∑

m=0

amzm(n)

(1)

where {zm(n)}M
m=1, M ∈ N, is the functional basis made of all distinct com-

binations of delay coordinates {yn−k}
κ

k=1, κ ∈ N, up to the maximum allowed

degree d. There is thus M = (κ+d)!
(d!κ!) terms. The models are thus defined by

the two parameters d and M , from which the order κ of the model can be
obtained. For a linear model (d = 1), κ = M − 1.

Coefficients am of model (1) are estimated using a least squares technique
in order to minimize the squared prediction error

ǫ2 =

N
∑

n=1

(ỹn − yn)
2

N
∑

n=1

(yn − y)
2

(2)

where y =
1

N

∑

N

n=1 yn. This error was used to assess the quality of the model

from the one-step-ahead prediction point of view. This error can be also
used for selecting the most important term in the model as follows (Chen et

al. [13]): The maximum squared prediction error max(ǫ2) is achieved when
no terms are included in the model, that is, when M = 0. In this case,
ǫ2 = max(ǫ2) = 1. The inclusion of the nth term in the auxiliary model
(1) induces a reduction in ǫ2. Expressing this reduction as a percentage of
max(ǫ2) yields the error reduction ratio (ERR) (Chen et al. [13]). The terms
with large ERR values are thus selected to form the model.

Among each class of models parametrized by (d,M), we retained the best
nonlinear model (δ,mnl) where δ ≤ d, and mnl ≤ M , which was compared to
the best linear model parametrized by (1,ml) selected among (1,M) models.
Obviously ml ≤ M . Thus, when we assess the performance of a nonlinear
model (d,M), this always means that the performance of the best nonlin-
ear model (δ,mnl) for one-step-ahead predictions is compared to the perfor-
mance of the best linear model (1,ml). For short, we will say that models
parametrized by (d,M) are tested.

Once the best linear (1,ml) and the best nonlinear (δ,mnl) models are
selected, the null hypothesis (the best linear model) is then tested against
the alternate hypothesis (the best nonlinear model) using the non-parametric
Mann-Whitney statistical test. So the probability p for the best nonlinear
model to provide better one-step-ahead predictions than those provided by
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the linear model is calculated. When the probability p is around 50%, this
means that there is no advantage to choose a nonlinear model rather than a
linear one. Nevertheless, when p is greater than 99%, a nonlinearity — or a
nonlinear component — is detected among the data, and the noise titration
can then be applied.

1.2 Noise titration

To titrate the noise in a time series, a Gaussian distributed white noise νn of
the same standard deviation as yn with increasing amplitude A (0 ≤ A ≤ 1) is
added to the data until its nonlinearity goes undetected (within a prescribed
level of statistical confidence). If the nonlinearity detection persists to be
conclusive, parameter A is increased. This process continues until the p-
value goes under the threshold of 0.99. The corresponding noise amplitude
A defines the Noise Limit (NL).

We would like to insist on the fact that this nonlinearity test is actually
able to detect nonlinear relations between two states of the system delayed
in time, using models which were selected only to ensure good one-step-
ahead predictions. This not necessarily involves an underlying determinism
(Freitas et al. [3]), since one-step-ahead prediction cannot provide such a
proof (Dafilis et al. [14]).

1.3 Recommendations for an optimal use

We showed that the results provided by the noise titration technique could
strongly depend on some modelling parameters on one side, or to the time
series on the other side (Roulin et al. [15]). The modelling parameters d

and M cannot be chosen too small or too big, because it could leads to false
results. We showed some examples where wrong negative and wrong positive
answers can be obtained (Freitas et al. [4]), and such a feature is our main
argument to ban the use of the noise titration to proove the chaotic nature
of a dynamics. The nonlinearity degree has to be at least equal to 3, and the
number of terms at least equal to 20 or 30, but it should not exceed 100, to
avoid over parametrization. On the other hand, the noise limit is sensitive to
the noise realization used for the titration. It becomes necessary to consider
a mean value of several titrations (we recommend at least 5 titrations). We
also showed (Roulin et al. [15]) that the choice of the variable describing the
dynamics may affect the results according to the observability coefficients
(Letellier and Aguirre [16]). Indeed, there are better variables than others
to investigate a dynamics, and the noise titration is sensitive to that choice,
as many other techniques. Moreover, we found that investigating nonlinear
dynamics using a trajectory in the phase space or using a Poincaré section
does not necessarily lead to similar results (Letellier [17]).

Finally, when the probability p is equal to 0.50, this means that the choice
between a linear and a nonlinear model is not obvious, and that the pertinence
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of both types of models is equivalent. When p is above 0.99, the use of a
nonlinear model is required to describe the one-step-ahead dynamics, and we
conclude about the underlying nonlinearity of the system. If p is about 0, in
principle, the dynamics is mainly linear, but this was never proved. So we
wanted to test this last case.

2 Slow/fast dynamics with chaotic amplitude
modulation

The nonlinearity detection applied on cardiac data revealed different kinds of
dynamical behaviour for patients suffering from congestive heart failure (p ≈
1), for others suffering from atrial fibrillation (p ≈ 0), and for healthy patients
(p ≈ 0.75) (Freitas et al. [4]). Surprisingly, the nonlinearity detection seemed
to show that the cardiac dynamics was strongly linear in the case of atrial
fibrillation, as revealed by the very low p-values (Fig. 1).
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Fig. 1. Probability p calculated from ∆RRn = RRn+1−RRn for 5 patients suffering
from atrial fibrillation. Modelling parameters: (d, M) = (3, 50). From Freitas et al.

[4].

We consider here the time series generated by a periodic behaviour, whose
amplitude is modulated by the logistic function in a chaotic regime. The
periodic component corresponds to a triangular signal, for which the linear
decrease is slow in comparison to the fast increase. Indeed, only one iteration
is sufficient to reach the maximal amplitude of the ith cycle, given by:

Ai =
n

20

(

1 +
yi

10

)

(3)

where n gives the number of iterations in one oscillation and yi is a solution
of the logistic function

yn+1 = µyn (1 − yn) . (4)

The time series {xk} is then built according to

xk+1 =

∣

∣

∣

∣

∣

∣

xk −
Ai

n
si xk > 0

Ai si xk ≤ 0 .
(5)
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where i = [ k

n
]. To each cycle i corresponds only one Ai value; the oscillation

period remains constant, and does not depend on the amplitude value, which
is varying between two successive cycles. A typical time series is shown Fig.
2.
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Fig. 2. Time series of the slow/fast dynamics with chaotic amplitude modulation.
Parameter values: µ = 3.9 and n = 20.

This time series is mainly governed by the linear behaviour defined by
the first equation of process (5). But, very briefly, a nonlinear component
drives the amplitude of the signal. From the time series point of view, the
system is mainly linear, but a first-return map to a Poincaré section provides
a parabola similar to the logistic function’s hallmark (Fig. 3).
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Fig. 3. First-return map of the slow/fast dynamics with chaotic amplitude modu-
lation. Parameter values: µ = 3, 9 and n = 20.
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2.1 Results

The nonlinearity detection technique described in section 1 was then applied
to the time series {xk}. The modelling parameters were chosen as (d,M) =
(3, 50), and a mean value over 5 detections is computed for each p value. We
observed that the probability p for the best nonlinear model to be better for
the one-step-ahead prediction than the best linear model were always equal
to 0. This value never changed when we varied the number α of relaxation
oscillations in the data’s window considered for the detection. We tested
the nonlinearity for a time series where n = 20 and α ≥ 12, that is, a
window of 240 points for the models estimation. Even if α was equal to 30, p

remained around zero. This means that the nonlinear component was acting
too sporadically to be detected on the basis of one-step-ahead predictions.
Typically, a linear model would furnish a bad prediction only during the
stiff increase of the amplitude. But larger n is, less the error weight on the
statistics, and since with n = 20 the technique already failed to detect the
nonlinear component, this remain true for layer n.

The so-built time series is then presented as a “pathological” case: since
the nonlinearity acts on very brief impulses, the noise titration technique
fails to detect the nonlinear component of the dynamics, and only shows its
linear component. However, we noted that if the problem was approached
in a Poincaré section, p values were always equal to 1, as it was observed
with the logistic function, evidencing the presence of a nonlinear component.
This example was certainly a caricature, but it showed the non-equivalence
to work in the phase space, or in a Poincaré section. Such a difference was
already revealed while estimating a Shannon entropy (Letellier [17]).

3 Conclusion

In addition to the guidelines we provided to carefully use the nonlinearity
detection, we showed here that using the nonlinearity detection to search for
a nonlinear component failed when the time series results from a dynam-
ics where the nonlinearity only acts very briefly. Our caricatural dynamics
appeared to be a typical case to test the robustness of any analysis. In addi-
tion, the non-equivalence to analyse a trajectory in the phase space and in a
Poincaré section is once again confirmed here, for the nonlinearity detection
in particular.
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Abstract 

 

We show that the stability сondition for the soliton-like wave of nuclear burning in 

neutron-multiplicating medium is determined in general by two conditions. The first condition 

(necessary) is determined by relationship between the equilibrium concentration and critical 

concentration of active (fissile) isotope, that is a consequence of the Bohr-Sommerfeld 

quantization condition. The second condition (sufficient) is set by the so-called Wigner quantum 

statistics, or more accurately, by a ststistics of the Gaussian simplectic ensembles with respect to 

the parameter that describes the squared width of burning wave front of nuclear fuel active 

component.  
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I. INTRODUCTION 

 

In spite of obvious efficiency and allurement of the nuclear power engineering of next 

generation, the main difficulties of its perception are predetermined by non-trivial properties 

which future ideal nuclear reactor must possess. At first, the natural, i.e. unenriched uranium or 

thorium must be used as a nuclear fuel. Secondly, the reactivity regulation system of reactor by 

traditional control rods is completely absents, but for all that a reactor must possess the property 

of so-called inner safety. It means that the critical state of reactor core must be permanently 

maintained in any situation, i.e. the reactor normal operation is automatically maintained not as a 

result of operator activity, but by virtue of physical reasons-laws preventing the explosive 

development of chain reaction by the natural way. Figuratively speaking, the reactor with inner 

safety it is “the nuclear installation which never explode” [1]. 

 

                                 ),(),( 239239239238 fissionnPuNpUnU →→→
−− ββγ                               (1) 

 

Strangely enough, but reactors satisfying such unusual requirements are possible in the 

reality. For the first time the idea of such reactor was proposed by Feoktistov [2] and 

independently by Teller, Ishikawa and Wood [3]. 

The main idea of reactor with inner safety consists in the selection of fuel composition so 

that, at first, the characteristic time τβ of the nuclear burning of fuel active (fissile) component is 

substantially greater than the characteristic time of delayed neutrons production and, secondly, 

necessary self-regulation conditions are meet during the reactor operation (that always take place, 

when the equilibrium concentration fisn~  of fuel active component is greater than critical 

concentration ncrit [2]). These very important conditions can practically always to be attained, if 

among other reactions in the reactor the chain of nuclear transformations of the Feoktistov 

uranium-plutonium cycle type [2]  

                                 ),(),( 239239239238 fissionnPuNpUnU →→→
−− ββγ                              (1) 

or the Teller-Ishikawa-Wood thorium-uranium cycle type [3] 
 

                                           ),(),( 233233232 fissionnUPanTh →→
−βγ ,                                       (2) 

 

will be enough appreciable.  
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In both cases the produced fissile isotopes of 239Pu or 233U are the active components of 

nuclear fuel. The characteristic time of such reaction, i.e. the time of proper β-decays, is 

approximately equal to τβ =2.3/ln2≈3.3 days for reaction (1) and τβ ≈39.5 days and for reaction 

(2), that is several orders greater than the time of delayed neutrons production. 

The self-regulation of nuclear burning process is stipulated by the fact that such system 

left by itself can not pass from a critical state to reactor acceleration mode, because a critical 

concentration is bounded from above by the finite equilibrium concentration of nuclear fuel 

fissile component (plutonium for (1) or uranium for (2)), i.e. fisn~ > ncrit (Feoktistov’s stability 

condition [2]). On phenomenological level the self-regulation of nuclear burning is manifested as 

follows. The increase of neutron flux due to some reasons will result in the rapid burnup of 

nuclear fuel fissile component (plutonium for (1) or uranium for (2)), i.e. its concentration as 

well as the neutron flux will decrease, while the new nuclei of corresponding fissile component 

of nuclear fuel are produced with the same generation rate during time τβ. And vice versa, if the 

neutron flux is sharply decreased due to external action, the burnup rate decrease too, and the 

accumulation rate of fuel fissile component will be increased as well as the number of neutron 

production after a while τβ.  

However, as is known [2], the Feoktistov stability condition is only necessary but 

insufficient condition. Therefore full generalization of the Feoktistov stability condition for 

critical waves of nuclear burning in neutron-multiplicating mediums is the purpose of this paper. 

 

II. PROPERTIES OF STABILITY CONDITION FOR CRITICAL WAVE  

OF NUCLEAR BURNING ACCORDING TO FEOKTISTOV 

 

Following [2], let us consider the known “polygon” system of kinetic equations for 

neutrons and nuclei in the reaction chain (1) with respect to the normalized autowave variable 

z=(х+ut)/L: 

                                                          ∗
∗









−= n

n

n

dz

nd
Pu
crit

Pu1
2

2

,                                                          (3) 

                                                      [ ] ∗−−−=Λ nnnn
dz

dn
Pu98

8 ,                                                   (4) 

                                                        ( ) 998
9 nnnn

dz
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where u is phase velocity of the steady running wave, L is the neutron average diffusion length, 

n∗(z,t) is the neutron density, D=υ/3Σs= L2/τ is neutron diffusion constant, cm2⋅s-1; υ is neutron 

velocity in the one-group approximation, cm⋅s-1; Σs is neutron microscopic scattering cross-

section, cm-1; τ = ∑ i
i
a Nσυ1 is neutron lifetime in medium, s; Λ= uτβ /L is dimensionless 

constant, )(8 −∞= NNn crit
Pu
crit = = Pu

fi
i
an σνσ )1/() −∑  is the plutonium relative critical 

concentration, Ncrit is the plutonium critical concentration, N8  is the U238 concentration, σa and σf  

are the microscopic neutron capture cross-section and fission cross-section, respectively, n8 and 

n9 are the concentrations of U 238and U239 normalized to U238 initial concentration, i.e., to N8(-∞), 

ν is the average number of prompt neutrons produced per plutonium nucleus fission. 

Solving these equations Feoktistov was based on the analogy of diffusion equation and 

the Schrödinger steady-state equation in quasi-classical approximation [2]. Naturally, in this case 

(see Eq. (3)) the stationarity condition of solution is satisfied integrally, because there are points 

where nPu > ncrit, and there are points where nPu < ncrit. In this sense, the region at nPu > ncrit 

corresponds as it were to allowed region, while the region at nPu < ncrit corresponds to subbarrier 

region. In other words, the inverted profile of plutonium concentration in the 238U medium plays 

the role of potential well (Fig. 1(a) [4]). 

In the region at front of wave (z =−∞) the approximate solution looks like 

  

                                                                    zCn exp= ,                                                                (7) 

                                                            








Λ
−= z

C
n expexp8 ,                                                        (8) 

                                                                z
C

n exp
19 Λ+

= ,                                                             (9) 

                                               
















Λ
−−

Λ+
= z

n

Cn
n

Pu

Pu
Pu exp~exp1

1

~
.                                          (10)  

 

Let us remind that obtaining this solution, we have neglected summands п9 and nPu whose 

values are determined by edge condition п8 ≅1. Then assuming that the subbarrier region ends at 

z=0, we have nPu = ncrit  at this point. This allows us to determinate the value of constant C. At the 

point z=а, according to the Bohr-Sommerfeld quantization condition, we have the following 

equality 

                                                             ∫ =−
a

Pu
crit

Pu dz
n

n

0 2
1

π
,                                                   (11) 
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where the integral is taken over the supercritical region (nPu>ncrit). At the same time condition 

(11) plays also the role of condition for finding the point a at nPu = ncrit, i.e., when the transition 

into subbarrier region happens due to burn-up (see Fig. 1(a) and Fig.2)1.  

Executing the ordinary for quasi-classical approximation linkage with the supercriticality 

region  (nPu>ncrit) we will come to calculation of Λ. 

As a critical state is automatically maintained at nPu > ncrit [2] (that is the direct 

consequence of the Bohr-Sommerfeld quantization condition), we can use this fact for 

generalization of the following inequality: 

 

                                                                Pu
critPuPu nnn >>~ ,                                                         (12) 

 

Thus, Feoktistov shown for the first time [2] that the soliton-like propagation of neutron-

fission wave of nuclear burning is possible in 238U medium only under the condition of a certain 

ratio between equilibrium and critical plutonium concentrations ( Pun~ >ncrit), which is 

characterized by the Bohr-Sommerfeld quantization condition. In other words, only in this case 

the critical (quasi-stationary) state of system (reactor core) can automatically maintained without 

any external intervention, and, consequently, only in this case the reactor fully and 

unambiguously possesses the inner safety properties. 

It is appropriate here to pay an attention to very important Feoktistov’s parameter, which, 

as shown below, is basis for ideology of the stability of soliton-like wave of nuclear burning: 

 

                                                                  
L

u
a βτ

=Λ )( ,                                                              (13) 

 

where a is the width of permitted range of integration in the Bohr-Sommerfeld condition (11), 

where the inequality nPu > ncrit (Fig. 2) and Pun~ > ncrit,, respectively, are satisfied; Λ(а) is 

dimensionless coefficient, which appears within the framework of simplified diffusion model of 

the Feoktistov reactor (3)-(6). 

                                                 
1 Note that the model calculations of the Feoktistov problem by the system of equations (3)-(6) really 
show [4] that at steady-state conditions the Bohr-Sommerfeld quantization condition is fulfiled with an 
accuracy up to a few percents (!!!). Authors [4] note that there are no grounds to expect  the  more exact 
coincidence because a quantization condition for lower level is approximate. 
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Obviously, Eq. (11) due to its physical meaning is a key factor which predetermines the 

phase velocity of soliton-like burning wave. Therefore, this equation exists regardless of an 

idealization degree of reactor core model and should appear in explicit or implicit form in any 

model whose the system of kinetics equations for neutrons and nuclei has soliton-like solutions 

for neutrons. At the same time, as the average width of soliton wave has an order of 2L, the 

maximum values of the dimensionless coefficient Λ(а) and wave velocity u are determined by 

the following approximate equality 

 

                                                         1)(
1 max

max ==Λ
bL

u
a

b
βτ

,                                                     (14) 

 

where coefficient is b~2 although a final estimation will be done below.  

From analysis of Eq. (14)  it follows that the velocity of stable propagation of soliton-like 

wave is not necessarily equal to the diffusion rate u=L/τβ . It can be considerably slower or faster 

due to very strong domination either of the nonlinearity parameter or dispersion parameter, 

which in its turn reflects the peculiarities of nuclear transformation kinetics, for example, in the 

chain (1) and/or in (2). In practice they manifest itself as higher or lower degree of fuel burn-up. 

In other words, when the wave velocity and consequently the degree of fuel burnup are 

low, the wave stops due to the following reasons. Neutrons from an external source, which take 

place in the initial stage of wave initiation, burn out the plutonium on medium bondary and 

simultaneously transmute the uranium into 239Np. Neptunium with time starts to produce the 

plutonium but it can not create the required high concentration, while the 239Pu production 

decreases due to the uranium burnup. More and more thick layer without both 238U and 239Pu 

grows on the medium boundary. The neutron diffusion through this layer does not provide the 

increase of plutonium concentration in next layers, and the wave does not arise even at nPu (x,0)= 

ncrit. 

Conversely, when the wave velocity and degree of fuel burn-up are high, the wave stops 

also because of the scarce (or more exactly, delayed) plutonium production which takes place 

due to another reason. Figuratively speaking, the situation resembles the fire in the forest under 

strong wind, when only tree crowns burn. When the wind speed increases, it could extinguish the 

fire at all. We have the similar situation, when there is a velocity, at which in the early stage 

(when x≈0) the front of neutron soliton wave outruns the front of plutonium production wave, 

and this advance exceeds the neutron diffusion length. This leads, in fact, to transformation of 

fast wave into slow wave or to its full stop. It is interesting to note that this case not studied in 

the literature (with the exception of [4,5]), but it is possible to postulate that it corresponds to 
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some hypothetical situation, when the nuclear burning wave forms in highly-enriched fuel which 

has the ultra-low critical concentration of fuel fissile component. 

Thus, the lag (Fig. 1(b)) or advance of neutron wave front relative to the plutonium wave 

front for a distance considerably exceeding the neutron diffusion length will leads to stop and 

total degradation of these waves. This means that degradation of waves with very low or very 

high initial phase velocity will exhibits as the tendency to zero of Eq. (11) at very low or very 

high values of a. Therefore taking into account Eq. (14), we can conclude that Eq. (11) is true in 

the range 0≤(1/b)Λ(а)≤1. Based on this generalization, we can make an important assumption 

that the expression (1/b)Λ(а) means the certain probability density distribution p(a) with respect 

to a: 

                                                                   )(ap
bL

u
=βτ

.                                                             (15) 

 

Let us consider and substantiate the type and main properties of such a statistics, and also 

show the results of its verification based on the known computational experiments on simulation 

of nuclear burning wave in the  U−Pu (1) and Th−U (2) fuel cycles. 

 

III. CHAOS AND INTEGRABILITY IN NONLINEAR DYNAMIC 

OF REACTOR CORE 

 
In order to solve the assigned task we use the known analogy between the neutron 

diffusion equation and the Schrödinger steady-state equation in quasiclassical approximation. 

We would remind that  this analogy was used earlier to solve the system of kinetics equation for 

neutrons and nuclei (3)-(6) in the reaction chain (1) of the U−Pu fuel cycle. Since the system of 

equations for neutrons and nuclei in the Th−U fuel cycle (2) is structurally identical to the  

system equation for the U−Pu fuel cycle (1), the computed “quantum mechanical” solution, 

which describes the statistics (15), will be general for both fuel cycles, except for a few details. 

Now, let us remind that earlier we have used the Bohr-Sommerfeld quantization 

condition which in the case of the one-dimensional systems determines in the explicit form the 

energy eigenvalues En 

                             ∫ ∫ =






 +=−= ...2,1,0,
2

1
2)((2)( nndxxVEmdxxp n hπ ,                       (16) 

where m and p(x) are the mass and momentum of particle in the field of some smooth potential 

V(x). 
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For the Feoktistov nearly integrable system of the equations (3)-(6) or for the anologous 

Teller system of equations, for which it is assumed that m=1/2, V(x)=1 and n=0, this condition is 

applied in the form 

                                                     
fis

crit

fis
a

n

n
EdzE ==−∫ 0

0

0 ,
2

1
π

,                                               (17) 

 

where index fis denotes the fissionable isotope, for example, the 239Pu in the Feoktistov U−Pu 

fuel cycle (1) or the 233U in the Teller Th−U fuel cycle. 

However, in describing the real evolution of fast reactor core, the corresponding systems 

of equations for neutrons and nuclei are nonintegrable almost without exception. This, in its turn, 

means that according to the Kolmogorov-Arnold-Moser theorem [6,7] quasiclassical 

quantization formulas are inapplicable for the system, where the motion in phase space is not 

limited by multidimentional tori. This is stipulated by the fact that in the Hamiltonian 

nonintegrable systems the more and more number of tori collapse in phase space with 

perturbation (nonintegrability) growth. As a result, the trajectories of majority of bound states 

gets entangled, the motion becomes mainly chaotic, and bound states themselves and their 

energies, can not be described by the rules of quasiclassical quiantization, for example, such as 

the Einstein-Brillouin-Keller (EBK) quantization rule for multidimentional case [7,8], which 

generalizes the Bohr-Sommerfeld quiantization rule. Note that nowdays a notion “quantum 

chaos” is included the circle of problems related to quantum-mechanical description of systems 

chaotic in a classic limit [9, 10]. 

Since the results of random matrices theory will be used for research of chaotic properties 

of the statistics (11), we first give an overview of the main concepts of this theory.  

First, following [9,10], let us shortly consider a nature of so-called universality classes 

and the Gaussian ensemble types. As is known, the Hamilton operator matrix in possession of 

any kind of a symmetry can be reduced to the block-diagonal form. At the same time, matrix 

elements in each block are specified by a certain quantum number set. For the sake of simplicity 

we assume that the Schrödinger equation ψψ Hti ˆ)( =∂∂h  is expressed for states belonging to 

the one block. At the same time the size of the operator Ĥ matrix is finite and equal to an integer. 

As shown in [9,10], these universality classes separate physical systems into groups 

according to their relation to orthogonal, unitary or simplectic transformation, which leave the 

Ĥ  matrix invariant. In other words, as it postulated in [9]: 

• the Hamiltonian of spinless system possessing a symmetry with respect to time 

inversion is invariant under orthogonal transformations and can be represented by real matrix; 
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• the Hamiltonian of spinless system not possessing a symmetry with respect to time 

inversion is invariant under unitary transformations and can be represented by the Hermitian 

matrix; 

• the Hamiltonian of the system with spin of 1/2 possessing a symmetry with respect to 

time inversion is invariant under simplectic transformations and can be represented by 

quaternion real matrix. 

Now let us talk about the Gaussian ensembles. If the matrix element distribution function 

is invariant under one of indicated transformations, this means that the sets of all matrices with 

elements described by these distribution functions form the Gaussian orthogonal ensemble 

(GOE), the Gaussian unitary ensemble (GUE) and the Gaussian simplectic ensemble (GSE), 

respectively. 

At the same time it should be noted the one very substantial detail. The matrix element 

distribution function of the Gaussian ensembles can not be directly measured, since the 

experiment can give us information about the energy levels of investigated quantum-mechanical 

system only. In other words, just the energy eigenvalues distribution function is of greater 

interest from the practical point of view. 

Derivation of corresponding equations for the considered types of the Gaussian 

ensembles can be found in [10]. At the same time, the correlated distribution function of energy 

eigenvalues it is possible to write down in the sufficiently universal form for all ensemble types : 

 

                                        )exp()(~),...,( 2
1 ∏ ∑

>

−−
mn n

nmnN EAEEEEP ν ,                                   (18) 

 

where ν  is an universality index, which takes on the value of 1, 2 and 4 for GOE, GUE and GSE 

statistics, respectively. At ν=0 energy eigenvalues are not correlated. In this case, the energy 

level spacing distribution function is described by the Poisson statistics, and the matrix ensemble 

itself is called  the Poisson ensemble. 

 

So long as the energy level spacing distribution function is the most studied property of 

chaotic systems, following [9], we give a calculation only for relatively simple case of the 

Gaussian ensemble with matrixes 2×2 in size. Let us calculate the energy level spacing 

distribution function pW(s) substituting the function P(E1, E2) in (18): 

 

∫ ∫
+∞

∞−

+∞

∞−

=−−= )(),()( 212121 EEsEEPdEdEspW δ  
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Constants A and C are defined by the two normalization conditions: 

                                                                 ∫
∞

=
0

1)( dsspW ,                                                            (20) 

                                                                 ∫
∞

=
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1)( dssspW .                                                           (21) 

 

The first condition is normalization of the total probability, and the second condition is 

normalization of the average energy level spacing. Integration of (19) gives us the so-called 

Wigner energy level spacing distribution functions, which correspond to the different Gaussian 

ensembles: 

 

                                     















=−








=−

=−

=

).(4,)
9

64
exp(

3

8

);(2,)
4

exp(
32

);(1,)
4

exp(
2

)(

24

6

22

2

GSEss

GUEss

GOEss

spW

ν
ππ

νπ
π

νππ

                               (22) 

 

Despite the fact that these functions were obtained for the Gaussian ensemble with 

matrixes 2×2 in size, they describe with sufficient accuracy the spectra of arbitrary size matrices 

[9].  

Note that random matrix theory at first was developed to find some regularities of heavy 

nucleus energy spectra [10,11], but it attracted keen interest after the Bohigas, Giannoni and 

Schmit conclusion [12] that this theory can be applied to any chaotic system. 

We now turn to our problem of determination of statistics (15) type and will try to use the 

considered statistics properties of the Gaussian ensembles. 

 
IV. THE WIGNER QUANTUM STATISTICS AND GENERALIZED  

STABILITY CONDITION 

 

Now, in the framework of nearly integrable system, to which the system of equations 

describing the nuclear burning kinetics of the Feoktistov U−Pu fuel cycle (1) or the Taylor Th−U 
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fuel cycle (2) belongs, we formally introduce the “energy” eigenvalue of stationary state as 

( fis
critfis nn 0

~ )=Е0 and ”energy” eigenvalue of quasistationary state as ( fis
crit

semi
fiss nn )=Еsemi (where 

E0≥Esemi and 0
~

fisn  is the current equilibrium concentration of fissile isotope limited from above 

by its initial equilibrium concentration, i.e., fissfis nn ~~
0 < ). In general case, to describe the wave 

mode of nuclear burning, when the reactor is maintained in the near-critical state, we can 

consider that Esemi→1. Then in the framework of quantum-mechanical analogy, this means that 

the evolution of nuclear burning “energy” spectrum in allowed region is described by some 

quasi-equivalent two-level scheme (Fig. 3). 

Then, for the nearly-integrable system which describes the nuclear transformation 

kinetics for the Feoktistov (1) or for the Teller (2) fuel cycle in general case we can use the Bohr-

Sommerfeld approximate condition in the form  

 

                                                 
2

~1 0
0

π
semi

a

fis
crit

fis EEadz
n

n
−≈−∫ .                                             (23) 

 

It follows that, we can postulate one obvious and important assertion: by virtue of the 

Bohr-Sommerfeld condition (23) the type of the Wigner energy level spacing statistics 

unambiguously predetermines the analogous statistics type of parameter, which characterizes the 

squared width (а2)  of concentration wave front of active (fissile) material. 

Note that we have not any information about the value of energy E0 before the 

experiment, whereas it is possible to consider that Esemi = 1. If to add also, that in the steady-state 

mode all wave kinetic parameters are predetermined by the initial equilibrium fisn~  and critical 

fis
critn  concentration of active (fissile) isotope (whose values are known before experiment), the 

physical meaning and the necessity of following change 

 

                                                     1
~

0 −=− ∗ fis
crit

fis
semi

n

n
aEEa                                                   (24) 

become apparent. 

It is obvious that the conditions (23) and (24) make it possible to obtain the expression 

for parameter а∗: 

                                                              
critPu

crit

nn

n
a

−∗ ~4
~

2
2 π

.                                                       (25) 

The next step for determining the statistics p(а∗) of Eq. (15) type consists in the 

experimental validation of proposed hypothesis. For that we have compared the Gaussian 
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ensemble statistics (22) with the calculated data of well-known computational experiments 

[4,13-17] and have obtained a good accordance of calculation data with theoretical dependence, 

which is described by the Gaussian simplectic ensemble statistics (see Table I and Fig. 4).  

Thus, we can conclude that the wave velocity (15) is predetermined by the following 

approximate equality 
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where coefficient b = 2 (see Eq.(15)); τβ  is the delay time caused by active (fissile) isotope 

production, which is equal to the β−decay time of compound nuclei in the Feoktistov (1) or the 

Teller (2) fuel cycle; )( ∗ap S
W  is the Wigner symplectic statistics. 

Thus, based on the verification results of Eq.(26) we can make a conclusion, which 

generalizes the physical conditions of existence of Feoktistov’s wave mode: the velocity of 

soliton-like wave propagation in neutron-multiplicating mediumin must be determined in general 

case by two conditions. The first condition (necessary) is predetermined by relationship between 

the equilibrium concentration and critical concentration of active (fissile) isotope 1)~( >critpu nn ) 

or, more exactly, by the Bohr-Sommerfeld quantization condition. The second condition 

(sufficient) is set by statistics of the Gaussian simplectic ensembles with respect to the parameter 

a, which describes the burning concentration wave width of active (fissile) component of nuclear 

fuel. 

 

V. COMPUTATION 3D-EXPERIMENT AND VERIFICATION  

OF THE WIGNER QUANTUM STATISTICS 

 

Let us consider the simplified diffusion model of neutrons and nuclei kinetics in the chain 

(1) in the one-group approximation (neutron energy is ~ 1 MeV) and cylindrical geometry. Then, 

taking into account delayed neutrons, the respective system of differential equations, which 

describes the kinetics of Feoktistov’s U-Pu fuel cycle, i.e., the kinetics of initiation and 

propagation of neutron-fission wave n(x, t), is as follows [13]: 
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where 
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To determine the last term q(x, t) on the right-hand-side of Eq.(27), we use the effective 

additional neutron absorber approximation: 
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Taking into account the fact that fission with two fragment formation is most probable, 

the kinetic equation for N (x,t) becomes 
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Here ( )txn ,  is the neutron density; D is the diffusion constant of neutrons; υn is the neutron 

velocity (En =1 MeV in the one-group approximation); iN
~

 are the concentrations of neutron-rich 

fission fragments of the 239Pu nuclei; N8, N9, NPu  are the 238U , 239U, 239Pu concentrations; iN  

are the concentrations of rest fission fragments of the 239Pu nuclei; σa is the neutron-capture 

microcross-section; σf  is the fission microcross-section; τβ is the nucleus life time with respect to 

the β−decay; pi( ∑
=

=
6

1i
ipp ) are the parameters characterizing delayed neutrons groups for main 

fuel fissionable nuclides [18].   

The boundary conditions for the system of differential equations (27)-(31) are 
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                                               ( ) 0),(,, 00 =Φ=
== lxnx txntxn υ ,                                            (34) 

 

where Φ0 is the neutron density of plane diffusion source of neutrons which is located on the 

boundary x=0; l is the uranium block length. 

An estimation of the neutron flux densityΦ0 from the external source on the boundary  

can be obtained from an estimation of the Pu critical concentration which is of order of 10%: 

 

                                              ( ) ( ) 0808
8

0 ,1,0,4 == =Φ tta txNtxNστ β ,                                        (35) 

and therefore 

 

                                                               8
0 41.0 aστ β≈Φ .                                                         (36) 

 

Here we note that Eq. (36) is only an estimation of Φ0. The results of computational 

experiment show that it can be substantially smaller in reality.  

In general, different boundary conditions can be used, depending on physical conditions 

under which nuclear burning is initiated by the source neutrons, for example, the Dirichlet 

condition of (36) type, the Neumann condition or the so-called third-kind boundary condition, 

which summarizes the first two conditions. Use of the third-kind boundary condition is 

recommended in neutron transport theory [18]. Here we use this condition in the simple case 

which is known as Milne’s problem, or more precisely, it is the linear combination of the neutron 

concentration n(x,t) and its spatial derivative ∂n/∂x(x,t) on the boundary: 

 

                                                   0),0(7104.0),0( )0,1( =− tntn λ ,                                                (37) 

 

where λ is the range of neutrons and n(1,0)(0, t)≡∂n/∂x (0, t). 

Although the behavior of the "neutron source-nuclear fuel" system depends on the 

boundary conditions near the boundary, computational experiments show that in reactor core, 

i.e., far from the boundary, the system is asymptotically independent of the boundary conditions. 

This confirms the independence of wave propagation in reactor volume on the boundary 

conditions and parameters of nuclear fuel "ignition". In this sense the problem of determining the 

optimum parameters of nuclear fuel "ignition" in "neutron source-nuclear fuel" system is a 

nontrivial and extraordinarily vital issue, which requires a separate examination. 

The initial conditions for the system of differential equations (27)-(31) are 
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where ρ8  is the density, which is expressed in the units of g⋅cm-3; NA  is the Avogadro constant. 

The following values of constants were used for simulation: 

 

                                           224100,2 cmPu
f

−⋅=σ ; 2248 1055, сmf
−⋅=σ ;                                     (41) 

 

              2268 1038.5 cmfragments
a

i
aa

−⋅=== σσσ ;   2269 1012.2 cmPu
aa

−⋅== σσ ;                      (42) 

 

                          9,2=ν ; βτ ∼3,3 days; 910≈nυ cm/s;  9108.2 ⋅≈D cm2/s.                          (43) 

 

The system of equations (27)-(32) with boundary conditions (37)-(35), initial conditions 

(38)-(40) and the values of constants (41)-(43) is solved numerically using the software package 

Fortran Power Station 4.0. At the same time we use the DMOLCH subprogram from the IMSL 

Fortran Library. The DMOLCH subprogram solves a system of partial differential equations of 

the form ut=f(x,t,ux,uxx) by the method of straight lines [13, 19]. The solutions of diffusion model 

of neutrons and nuclei kinetics in the chain (1) in the one-group approximation and cylindrical 

geomerty are presented in Fig.5. 

Verification of the Wigner symplectic statistics consists in comparison of the 

experimental velocity of nuclear burning wave obtained by a computational 3D-experiment with 

its theoretical value obtained by Eq. (26). For this purpose we at first find the plutonium critical 

concentration fis
critn  from the profile of space-time evolution of its experimental concentration 

distribution (Fig. 5). It is obvious, that the absolute value of critical concentration approximately 

is Pu
critN ≅ 8⋅1020 cm-3⋅(see Fig. 6(b)). It follows that the plutonium normalized critical 

concentration is  

 

                                                 0167.0)0,(8 == xNNn Pu
crit

fis
crit ,                                                 (44) 
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where by virtue of Eq.(39) the initial uranium concentration is N8(x,0)= 4.79⋅1022 cm-3⋅and the 

value of a∗  is equal to 0.704 by virtue of Eq. (25). In other words, the important case when а∗<1 

takes a place (see Fig. 4). 

Taking into account the plutonium normalized equilibrium concentration fisn~ = 0.1, by 

virtue of Eq. (26) we have the theoretical value of the Wigner symplectic probability: 

 

                                                       9303.0)()(
2

1 ==Λ ∗∗ apa s
W ,                                                (45) 

 

which corresponds to the velocity of nuclear burning wave of utheor =2.82 cm/day at known 

parameters L=5 cm and τβ =3.3 days. 

Now we can simply determine the experimental values of nuclear burning wave velocity 

and, accordingly, the Wigner symplectic probability. In Fig. 6(a) the profile of space-time 

evolution of experimental concentration distribution of neutrons is shown. We can see that the 

wave crest has covered the distance of 600 cm during t=217 days. So, the velocity of nuclear 

burning neutron wave is 

                                                 daycmu simul 77.2217600 ≅= .                                            (46) 

 
This, in its turn, corresponds to the value of (1/2)Λ(а∗) = )( ∗ap s

W =0.9141. 

Thus, the approximate equality of the experimental and theoretical velocity of nuclear 

burning wave (utheor≅usimul) makes it possible to conclude that the Wigner quantum (symplectic) 

statistics verified by computing 3D-experiment (see Fig. 4) satisfactorily describes experimental 

data characterized by the parameter Λ(а∗).  

Here we note that computing experiments show that the conditions of wave blocking, 

which describe the degradation and subsequent stop of wave, are predetermined by the degree of 

burn-up of the main nonfissionable (238U) and fissionable (239Pu) components of nuclear fuel in 

front of the wave by neutrons from external source in the initial stage of wave “ignition”. This 

process is very important, since the high degree of fuel component burn-up in front of the wave 

will inhibit the wave from overcoming this region just as fire in the steppe can not cross the 

plowed in advance stripe of the land. It is obvious that in the initial stage of wave initiation the 

degree of fuel burn-up is determined first of all by the energy spectrum and intensity of neutrons 

from the external source and by the properties of nuclear fuel. The most important of these 

properties is the delay time τβ  of active (fissile) isotope generation due to the β−decay of 

compound nuclei in the Feoktistov U-Pu fuel cycle (1) or the Teller Th-U fuel cycle (2).  
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In spite of the general understanding of physics of nuclear burning wave blocking, it is 

obvious that indicated above difficulties in the describing this process testify to nontriviality of 

given problem. Unfortunately, the solving of this problem exceeds the scope of this work, but it 

will be a subject of future research. 

 

CONCLUSIONS 

 

The solutions of the system of diffusion type equations for neutrons and concomitant 

kinetic equations for nuclei obtained by numerical 3D-simulation persistently point to the 

regions where the stable soliton-like solutions for neutrons and solitary wave solutions for nuclei 

are existed. This is no wonder for nearly intergrable systems, to which the investigated system of 

equations for neutrons and nuclei belongs, whereas the existence of stable soliton-like solutions 

in three spatial dimensions causes a surprise for the following reason.   

As is known, the derivation and solution of integrable nonlinear evolution partial 

differential equations in three spatial dimensions has been the holy grail in the field of 

integrability since the late 1970s. The celebrated Korteveg-de Vries and nonlinear Schrödinger 

equations, as well as Kadomtsev-Petviashvili and Davey-Stewertson equations, are prototypical 

examples of integrable evolution equations in the one and two spatial dimensions, respectively. 

Do there exist integrable analogs of these equations in three spatial dimensions?  

As it has turned out, quite recently, in 2006, the method for finding of an analytical 

solutions of indicated above partial differential equations in three spatial dimensions was 

developed [20]. Therefore, the natural question arises: “To which from this equations does the 

diffusion equation for neutrons correspond, or, maybe, his is perfectly a new type of soliton 

partial differential equations in three spatial dimensions?” 
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TABLE I. The parameters of nuclear burning wave 
 

U-Pu cycle Th-U cycle 

References 
Parameter 

Present 
paper 

[14] [15] [15] [16] [4] [17] ∗) 

 

fis
crit

fis
equil

n

n~
 017.0

100.0
 

750.1

585.2
 

080.0

145.0
 

015.0

024.0
 

105.0

240.0
 

05.0

10.0
 

032.0

071.0
 

035.0

070.0
 

а∗ 0.704 2.274 1.743 2.028 1.385 1.571 1.423 1.571 

utheor/usimul 

[cm/year] 
1030/1012 2.9/3.1 125/130 21/22 622/620 293/331 46/~50 25 

 

∗ Forecast for the Th−U fuel cycle in infinite medium at 10% enrichment of 233U. 

527

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



FIGURE CAPTIONS 

 

FIG. 1.  Time dependence of neutron concentration. Propagating wave (a) and  locked wave (b): 

a segment of the curve of nPu(z) above the ncr line is the reactor core; the scales of ncr and nPu are 

given with a×10 magnification [4]. 

 

FIG. 2. The schematic view of permitted and subbarier (gray colored) region corresponding to 

the conditions nPu > ncrit and nPu < ncrit, respectively. The delineated by square region is 

considered  more particularly in Fig. 3.  

 

FIG. 3. Schematic description of the permitted and forbidden region boundaries of nuclear 

burning according to the Borh-Sommerfeld condition (a) and the corresponding quasi-equivalent 

two-level scheme (b). 

 

FIG. 4. The theoretical (solid line)) and experimental (points) dependence of Λ(a*) on the 

parameter a*. 

 

FIG. 5. Concentration kinetics of neutrons, 238U, 239U and 239Pu in the core of cylindrical reactor 

with radius of 125 cm and 1000 cm long at the time of 240 days. Here r is transverse spatial 

coordinate axis (cylinder radius), z is longitudinal spatial coordinate axis (cylinder length). 

 

FIG. 6. (a) - The neutron concentration distribution at the cylinder axis at t = 217 days. The wave 

velocity is usimul ≈ 2,77. (b) - The 239Pu concentration distribution at the cylinder axis for 

Pu
critPu nn 1.0= nPu = 0.0167 at t = 217 days. 
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CHAOTIC MODELING OF INTELLECT 

 

Nikolay Serov 
1
 

 

 

In chromatism, the definitions are based on their classical (non-cognitive) 

interpretation in science. Thus for example, under „intellect‟ (Latin: „intellectus‟ – a 

sensation, perception, understanding) we mean the informative model of the personality. In 

chromatism, intellect is subdivided into definite “atomic” components in correspondence 

with its principal functions: biological (unconsciousness), psychological (subconsciousness) 

and social (consciousness). Each of these components of the intellect is characterized by the 

definite functions and formalized ontological plans of the system: consciousness is a M-plan, 

subconsciousness is an Id-plan and unconsciousness is a S-plan. As far as in the history of 

global culture each of the functional “atoms” in the intellect was archetypal linked with a 

definite color (M – white, Id – grey and S – black), we had called our model an archetypal 

model of intellect (AMI).  

 

Fig. 1. Transition of the twentieth century concepts from the color solid to AMI. 

 

Methodology of chromatism is based on ancient Greek notion „chroma‟.
  

We shall 

represent the meanings of this notion: 1) Color image as something psychic, unobjectified, 

ideal, i.e. an Id-plan of AMI. 2) Tint as an object of outer space, being something physical and 

material relatively color and intellect. This is an M-plan of the “outer space – AMI” system. 

                                                 
1
 Faculty of Applied Psychology, St.Petersburg State Institute of Psychology & Social 

Work 199178-St.Petersburg (Russia) Corresponding author: nserov@gmail.com 
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3) Color designation objectified in a word is more material than a color image. This is an M-

plan of AMI. 4) The pigmentation of a human body as something physiological, syntonic, i.e. 

S-plan of AMI. 5) Emotions as an informative-energetic correlation of the plans mentioned 

above. Objectively, this correlation manifests itself in such idioms as “to become red from 

shame”, “to have a red face”, “green with envy”, “to become white as a sheet from fear” etc. 

These idioms show us in particular, the meaning of emotional relations between the psychic 

(color) and the physiological (the coloring of skin pigment), as between something ideal and 

material. Thus, the close link between given definitions and plans clearly show that neither 

the problem of color nor the problem of intellect can be solved independently by isolate 

scientific disciplines. That is why we have listed in short the possible stages in the intellect of 

processing color information about the outer environment from the point of view of 

chromatism.
 1 

In the AMI-system these components are linked semantically with subdivision of 

individuals according to their gender (psychological sex) and, at the same time, with the 

definite colors that were canonized by world culture.
1
 In accordance with such statement of 

the problem, it appeared to be necessary to experiment the link between gender distribution 

of “atomic” components in the AMI and preferred colors. From here came the principal task 

of the investigation: to verify the link between the ideal (a perception, a color concept) and 

the material (i.e. tests, objectivized in words, on one hand, and tints of stimulus samples as 

well as verbal color designations, on the other hand).  

 

2. ONTOLOGICAL RELATIVISM OF THE COLOR CIRCLE AND INTELLECT 

Similarly, one can imagine the reflection of colors in the color circle. As far as I 

know, Newton, Lambert, Young, Helmholtz, Maxwell, Munsell, Judd, and Wyszecki 

arranged the transition from red through green to blue clockwise. As a rule, these colors were 

stimuli. As for Goethe, Runge, Hegel, Schopenhauer, Hering, Kandinsky, Steiner, Ostwald, 

and Itten, all of them gave the same disposition of colors but in the opposite direction. They 

had dealt with perceptive colors.  

Remarkably, that all over the world people calls the “red” those who share the “left” 

ideas (extremists, communists, etc). Hence, the world (not only of subconscious context, but 

entirely conscious text) uses percepts according to Goethe, i.e. unconscious image-percept 

rather than stimuli (where red in the color circle according to Newton, positioned to the 

right).  
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Psychology studies a human soul and spirit, i.e. in essence the ontologically ideal 

phenomenon.
 
The functions of color concept are also ideal.

 1; 2 
That‟s why we suppose that 

color is an optimal instrument for studying intellect and its digital simulation. The dynamic 

functional model of a personality is based on the dynamic model of intellect (from Latin 

word „intellectus‟ – „sensation‟, „perception‟, ‟understanding‟).
1 

In chromatism the archetypal model of intellect (AMI) is subdivided into the 

following “atomic” functional components that are formalized in the plans of AMI (see 

Tabl.1). Consciousness (M-plan of AMI) deals with arbitrarily comprehended functions of 

social conditionality, verbal thinking, principles of formal logical processing of information 

and its understanding (in science, philosophy, etc). Subconsciousness (Id-plan of AMI) is 

characterized by unconscious and / or partially (e.g. arbitrary in the insight) conscious 

functions of cultural conditionality, image-logic operations and „perception‟ (in art, creative 

activity, etc), as well as esthetic (non-pragmatic) perception of creative activity, games, in 

general, „ideal‟.
1
 Unconsciousness (S-plan of AMI) included principally uncomprehended 

functions of natural conditionality, of „sensation‟ (color phenomena in retina, nervous system, 

affects, etc) and genetic coding of information.  

3. “FEMININE” AND “MASCULINE” LOGIC 

To analyze „gender‟ as spiritual (unlike sexual, bodily) dimorphism, it is necessary to 

give its definitions. „Sex‟ is a physiological and juridical (passport) notion. „Gender‟ is 

principally a psychological notion. According to our estimation, correlation between sex and 

gender quantitatively amounts to no less than 85 5% of individual, of both sexes. For 

instance, men and masculine women usually overestimate their knowledge, while women and 

feminine men underestimate one. Everything depends upon proportions between the intellect 

dominants (i.e. plans of AMI) because a human personality results from permanently 

changing phases of psychosexual development. That‟s why both feminine intellects on 

definite stages of its development pass through the ones where masculine components 

dominants, and a male intellect pass through stages of dominants feminine components. In 

chromatism they are simulated by definite plans of AMI and/or an AMI with gender 

opposition (AMIGO, see below) and definite colors, canonized by global culture.
1
 [I ask 

readers to excuse me for the mistakes in tables 4 and 5 (ref.1) in which instead of gender 

(feminine and masculine) characteristics the sexual (male and female) ones for color canons 

were given.] So, representatively, all components of AMI are linked with chromatic functions 

of intellect and depend upon gender dominants. Nevertheless in publications on gender 
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psychology we may sometimes meet two diametrically contrary opinions about one and the 

same problem: logic of men and women either is being opposed or identified. But how are 

the things in reality? 

 

Fig. 2. Transition from the models of intelligence by Jung, Aizenk, Luscher and Schwartz to AMIGO 1. 

 

The equation for AMI was obtained by three independent ways, but within the limits 

of the given report this equation follows from the Ostwald‟s achromatic equation: 

Grey = White + Black. (1) 

From (1) it follows (see Table 1) that  

I = M + A, (2) 

where A = S / M d – total quantity of absorbed (bound, uncomprehended) information; M – 

total quantity of reflected (free, comprehended) information. 

From here, equation (1) may be written for the AMI-plans as follows: 

I = M + S/Md. (3) 

Here I = Id / U – quantity of objective information about outer environment, where potential 

U is equal to the one of intellect d in optimal condition of adaptation (for polychrome color 

Idch/0 and I=iL0; [i]=bytecandle
-1m2

; luminance L0= (2-1); []=candlem-2nm
-1

, 1 

and 2 – complementary wavelengths). 

In chromatism the equation (3) links the plans of the outer and inner world. The 

solution of this equation for variable М gives two values:  Mf (feminine legal consciousness) 

and Mm (masculine self-consciousness). The experience shows that Mm and Mf are really 

distinct for both men and women in 85±5 % cases. Strictly speaking, AMI-plans represent a 
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quantity of information that is processed on the levels of feminine and masculine components 

in AMI.  

In Figure 3 the curves describe the dependence of comprehensible (M-plan) 

information upon color modelling components of the AMI. According to the legend, in the 

diagram we provide designations similar to the ones in the equation (2). We take the middle 

part of spectrum (green shades in M-plan) with linear development of logic Mf as being the  

Figure 3: Estimation of gender function in AMI, obtained according to equation (3). 

 

conventional standard for comprehending information I by Mf and Mm plans. Then, the 

interval from –50 to +50 cbyte (conventional information units) will be the standard for 

information perception. 

First of all, it strikes our eyes that all over the spectrum area the curves of Mm-plan 

and objective information I develop parallels. It may be explained by the relatively high 

content of ferric ions in men‟s blood, which, consequently, have to be more empathic to 

change in information about the outer environment. At the same time, the curve of Mf-plan 

stays within the limits of conventional standard (050 cbyte) independently of information I 

about outer environment. From the diagram it follows that logics of Mf and Mm plans appear 

to be similar rather than opposite and mutually complement each other to obtain optimal 

quantity of “transparent” M-plan information: Mf + Mm= I . This is confirmed by the 

development of curve of Mf-plan that is similar to (Mf=A) all over the spectrum area except 

green, where it “reflects” (Mf=M) information I. Mm-plan “absorbs” information only in the 

green area (Mm=A), while in other parts of the area it “reflects” information (Mm=M). For all 
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this, the equation (2) keeps true. The gender characteristics were distinctly modeled by a 

color and demonstrated a polar nature on the diameters of a color circle: (red Sm – blue Idf , 

purple Mf – green Mm; violet Idm – yellow Sf , and deep-blue Ida – orange Sa , where index „a‟ 

is androgyny; „f‟ is feminine and „m‟ is masculine component in AMI 
1
). 

The reproduction of gender semantics in color canons during many thousands of 

world history was, in essence, the objectivism of subjective manifestation of the intellect 

(exceptions amount to less than 15% from total data base). 

4. EXPERIMENTAL DATA 

Figure 4 gives the preliminary results of experiments on visual choosing the stimulus-

preferred colors (270 women and 58 men of 20-25 years of age). The given equations were 

obtained from equation (3) and represented in a legend where CI was a color concept. From 

Fig.2 we can see that within a warm area the necessity of S-plan N(S) dominated actually, 

within a cold one the necessity of Id-plan N(Id) did (as it followed from color canons 
1
).  

The experiments were held to confirm the atomic nature of AMI. The identification of 

atomic components in the AMI (that had been defined by completely different approaches) 

had to be found experimentally. Thus, on the one hand, choosing preferred colors in a visual 

test, as well as in a verbal one, could do it. On the other hand, the same results had to be 

obtained in answers to 

“transparent” test-question in 

verbal tests MMPI and AMI. 

In other words, ideally, all 4 

tests had to enable each person 

under test to choose the same 

AMI- components. The 

preliminary results enable to 

think that AMI is really 

atomic, as far as colors of its 

“atoms” had been correlated 

(r=0.80.1) with relevant choice of color both in visual tests or verbal color designations, and 

in verbal question of the AMI-test, characterizing gender functions of each AMI-component. 

The experimental data obtained during 2001-2004 and given in Fig.2 showed that a 

contemporary keeps in himself the archetypal properties of our far ancestry.  

 

-0,03
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-0,01

0,00

0,01
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0,03

P R О Y G s-B B V P

N(S) = S / (M*С)

N(M) = M*d / С 

N(Id) = Id / С

Figure 4: Experimental assessment of necessity for “atomic” 

AMI-components in choosing color stimuli. Abscissa axis is 

first letter of color designations; axis of ordinate is necessity 

(conventional units). 
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Table 3. The parameters of information in “atomic“ model of intellect (AMI) 

Type of 

information 

Semantic characteristics 

of information (plans of AMI) 

Branch  

of science 

Linkage of 

formulae 

Total I(OE) 

(flux I0) 

Objective information about  

outer environment (OE)  

Physics: 

Informatics

: 

σ = α + ρ 

A + M =  

I  

A = α I0 

M = ρ I0  

Free Iρ 

(reflected, 

external) 

Subjectively conscious,  

verbalized in OE,  

objectified in the past    –  (M-

plan) 

 

Psycholinguistics: 

C = Cα + Cρ 

Cρ = M 

Cρ = ρ C 

C ≈ Id /U 

Image-

concept 

(database 

AMI about 

OE) 

Objectifying of information in 

uncomprehended image of OE 

for adaptation in the present – 

(Id-plan) 

 

Chromatism: 

I= М +S/Md 

M = S / Ad 

I ≈ i(λ2 – λ1) 
 

Id=Мd+S/

M 

Bound Iα 

(absorbed, 

internal) 

Subjectively unconscious , 

unobjectified in OE,  

demanded in the future  –   (S-

plan) 

 

Psychophysics: 

σ λ0 =α λ1 + ρ λ2 

α = Cα / C 

ρ = 1 – α 

S = Α Q(λ0) 

 

CONCLUSION 

In conclusion, by using the experimentally checked equations (1)-(3) we have got a 

chance for context dependent representing the information on all levels of digital coding. 

Taking into account heterogeneous data of multispectroscopy we may link the “archetypal” 

properties of color with objective parameters for digital processing of color information.
 
The 

possibility is given for context dependant representation of information on all levels of digital 

coding. The equations for digital representation of a color concept are given as well. To my 

estimation the exceptions of the rule of archetypal properties of image-concept in color 

canons are no more than 15 % of all data obtained on color canons in various cultures. 
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The chromatic approaches to the information processing enabled to represent an 

archetype as a psychophysical formation that had been canonized by world cultures in the 

process of thousand of years and on the basis of which the archetypal model of intellect 

(AMI) of the atomic type was obtained. The link between the dominant character of “atomic” 

components in the AMI and choice of preferred colors was confirmed experimentally. 

Primary concordance with the experiment enabled to consider the established principles of 

AMI to be the basis for color simulation of gender aspects of a personality. 

We have shown that “atomic” components in the AMI-system (M-, Id-, S-plans) are 

linked with relevant parameters of a color concept in psychophysics, chromatism, 

psycholinguistics, and informatics in tabl.3.Triad logic of a complex information system may 

be actually revealed only if we take into account the boundary that separates, and at the same 

time, combines complementary colors λ2 and λ1of the components, forming this system λ0. 

The principles, established for the AMI, become the basis for digital representation of all 

stages for color information processing from spectral components of the outer environment 

to the forming of a color concept.  
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Abstract 

Electrostatic torsional micro-mirrors have wide spread use in different industries for 

diverse purposes. This paper investigates the development of superharmonics and 

chaotic responses in electrostatic torsional micro-mirrors near pull-in condition. 

Appearance of nonlinear phenomena is investigated in models accounting for and 

disregarding coupling of torsional and flexural deflections. Analysis of the system 

response to step and harmonic excitation reveals the appearance of DC and AC 

symmetry breaking. Increasing the amplitude of harmonic excitation the response in 

the form of distinct superharmonics changes to a broad band response, where there is 

loss of periodicity and the response becomes chaotic. Accounting for flexural 

deflections in coupled model reduces the voltage thresholds corresponding to 

symmetry breaking and chaotic responses. It is also shown that damping has a 

regularizing effect and introduction of damping changes the chaotic undamped 

response into quasi-periodic one.  

Keywords: Micro mirror, nonlinear vibrations, chaotic vibrations. 

1. Introduction 

Electrostatic torsional micro-mirrors are devices which are used for reflecting the light 

beams to specific directions. They are used in projection display systems, optical 

scanners for projection display, optical switches (In telecommunications), and optical 

cross-connects. For these applications, the performances of the torsional micro-

mirrors depends on the mirror size, natural frequency, operating voltage, rotation 

angle, linearity range, and some surface specifications. Many investigations have been 

done on the analysis of the electrostatic torsional micro-mirrors. Static analysis of the 

mirrors was reported by Zhang et al. [1], where the pull-in conditions are extracted. 

Fischer et al. investigated the static and dynamic behavior of micro mirrors using 

finite element analysis and clarified the dependency of natural frequency on the 

squeeze film conditions [2]. Large deflection analysis of MEMS structures was 

examined by Chaterjee et al., where beside the electrostatic nonlinearity the structural 

nonlinearity is also considered and dynamic pull-in conditions was studied [3]. The 

effects of intermolecular forces (Van der Waals and Casimir forces) on the static and 

dynamic responses of torsional actuators have been investigated by some researchers. 

Gusso et al.  studied the effects of Casmir force on the response of micro mirrors [4]. 

Guo, and Zhao. considering the Van der Waals and Casimir forces, studied the effects 

of these forces on the static and dynamic behavior of electrostatic torsional micro and 

nanoelectromechanical actuators [5, 6]. In a separate study, they also considered the 

effect of Casmir and capillary forces on the stability of the micro-mirrors [7]. In the 
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analysis of micro mirrors in addition the torsional mode the bending mode may also 

be affects the response. The static coupling effects of bending and torsional modes of 

micromirrors have been studied by Huang et al. [8]. Rezazadeh et al. also investigated 

the effect of the coupling between bending and torsional modes on the static and 

dynamic behavior of micro mirrors [9, 10]. The main emphasis in the previous studies 

on the behavior of micro-mirrors is on the eigenfrequency analysis or developing the 

response of the system to step excitation [11] or mechanical shock. But the behavior 

of the system in nonlinear regime of the response are not clarified in details.  

In this paper the emergence of nonlinear behavior in electrostatic torsional micro-

mirrors are investigated with emphasis on the effect of bending deflection on the 

behavior of the system. Evidence of the nonlinear behavior for step and harmonic 

excitations appears when the amplitudes of the excitations exceed some specific 

thresholds. The behavior of the systemwith and without taking into account for 

bending deflection as excited by step and harmonic excitation are investigated 

 

2. Mathematical modeling 
A schematic 3D view of a torsional micro-mirror and its cross-sectional view 

are shown in Fig. 1, where the micro-mirror plate is suspended by two 

torsional micro- beams with length l, width w, and thickness t.  The length 

and width of the micro-mirror plate are L and a, respectively, and h denotes 

the initial gap between the micro-mirror and electrode. The position and size 

of the electrodes are controlled by a1 and a2. 

 

 
Fig. 1. Schematic diagram of torsional micro-mirror, a) 3-D isometric view, b) cross-sectional 
view [11]. 

 

In the micro-mirrors modeling it is customary to ignore the deflection of the 

micro-mirror plate, by assuming rigid micro-mirror plate. Ignoring the plate 

deformation, the micro-mirror becomes a system with two torsional and 

flexural degrees of freedom. When a potential voltage is applied between the 

micro-mirror and the electrodes, the micro-mirror rotates about its centerline 

(with angle of rotation θ) and also displaces in vertical directions (as denoted 

by δ). Assuming a proportional damping and also linear elastic 
restoring torque and bending forces for micro-mirror beams, the governing 

equations become. 

                

                 
(1) 

Where m is the micro-mirror mass and It is the mass moment of inertia about 

the axis of rotation and Cb and Ct are the bending and torsional damping 

coefficients, respectively. The torsional and bending stiffness of the micro-
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beams are denoted by kt and kb, respectively, and Fe and Te are the 

electrostatic force and torque imposed to micro-mirror due to applied voltage. 

By introducing the following non dimensional parameters  
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the governing equations of the system can be rewritten in non dimensional 

form as 
   

   
   

  

  
 

  
  

   
   

 

 
 

 

      
 

 

      
  

   

   
   

  

  
   

   
 

   
   

      
 

   

      
    

      

      
   

 

(3a) 

 

 

 

(3b) 

where I and Ip  are the cross-sectional and polar moment of the torsional 

micro-beams, respectively and ε is the permittivity of air and  B1 and B2 are 

defined as following  

    
   

    
   

                      
  

(4) 

 

Expanding the right hand sides of Equation 3 in terms of nondimensionalized 

displacements gives rise to the appearance of these displacements with 

different powers. This means that the equation has a general form of Duffing 

equation. Therefore, it is anticipated that for excitation near the pull-in 

conditions, the forcing frequency multiplications (superharmonics) appears in 

the response, which is investigated in this paper. 

3. Simulation results 
The parameters of the micro-mirror used in the simulations are listed in Table 

1. Using these parameters, frequencies of the torsional and vertical free 

vibration of the undeflected micro-mirror are calculated as 40 and 67 KHz, 

respectively. 

Table 1. Parameters of the electrostatic torsional micro-mirror 
Items  Parameters  Values 

Material properties Shear modulus, G (Gpa) 

Young’s modulus, E (Gpa) 

Density (Kg/m3) 

66 

170.28 

2,330 

Micro-mirror Width, a (µm) 

Length, L (µm) 

100 

100 

Torsional beam Length, l (µm) 

Width, w (µm) 

Thickness, th (µm) 

65 

2 

1.5 

Electrode Width a1 (µm) 

Width a2 (µm) 

Gap h (µm) 

6 

84 

2.75 

To evaluate the effect of flexural deflections on the system response, two 

models are considered in the simulations. The first uncoupled model 

disregards coupling between flexural and torsional deflections, while second 

coupled model accounts for coupling between torsional and flexural 

deflections. Due to importance of the step and harmonic response of the 
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micro-mirrors in real world applications, in the following sections the 

response of the coupled and uncoupled micro-mirror models with and 

without damping to step and harmonic excitations is investigated.  

 
3.1. Step response 

When the micro-mirrors used as optical switches the transient response 

determined by settling time, overshoot and also pull-in voltage due to step 

excitations (stepped DC voltage) will be important. For uncoupled undamped 

case, the mirror has two equilibrium positions, a stable center one and an 

unstable saddle node. For DC step excitation voltages lower than 21 V the 

response is linear and the trajectories in the phase plane have symmetric 

forms (Figs. 2a). Increasing the voltage of the step excitation, the trajectories 

in the phase plane shows symmetry breaking for voltages between 21 and 

23.22 V. For higher voltages a divergent response develops and the tilting 

angle increases abruptly until the mirror touches on the substrate. The voltage 

corresponding to the separatrix on the phase plane (trajectory crossing the 

saddle node) is called dynamic pull-in voltage, VDP. Frequency spectrum of 

the response for different voltages (Fig. 2b) reveals the development of the 

multiply of natural frequency in the response for voltages near dynamic pull-

in, which is an indication of the nonlinear oscillation.  

 

 

(a) (b) 
Figure 2. Symmetry breaking and pull-in conditions in undamped step response of 

uncoupled model, a) phase plane, b) FFT plot. 

 

  
(a) (b) 

Figure 3. Undamped response of uncoupled model due to step excitations of 15 

volt, a) phase plane, b) FFT plot. 

548

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



 
 

  
(a) (b) 

Fig. 4. Undamped response of coupled model due to step excitations of 19.8 volt, 

a) phase plane of torsional mode, b) FFT plot of the torsional and bending modes. 
 

Considering the response of coupled undamped model, there is a decrease in 

the threshold voltage corresponding to the symmetry breaking and at the 

same time the pull-in voltage decreases from 23.22 to 20 V. Fig. 3 depicts the 

step response of the coupled undamped model due to 15 V DC step 

excitation, where in spite of nearly symmetric response, FFT plot of the 

torsional and flexural responses reveals the emergence of superharmonics 

(Figs. 3a and 3b). By further increase of the excitation voltage to 19.8 V, in 

addition to symmetry breaking, there is loss of the periodicity in the response 

(Fig. 4a, b).  

 

3.2. Harmonic excitation 

For harmonic excitations the micro-mirror is excited with an AC voltage 

superimposed on a DC one. To study the nonlinear behavior, the DC 

excitation level is set near the pull-in voltage at 16 V.  

Figs. 5 and 6 depict the response of the uncoupled model for harmonic 

excitations. In these simulations the damping ratio is set equal to 0.1 and 

forcing frequency is one tenth of the system undeflected torsional free 

vibration frequency. For small values of AC voltage the response is linear 

and the micro-mirror oscillates with the same frequency as the forcing 

frequency and ignoring the transient part of the response, the phase portrait 

has elliptic shape (Fig. 5a). However as AC voltage increases the response 

losses its symmetry and AC symmetry breaking occurs (Oval shape in Fig. 

5b).  

  
(a) (b) 

Figure 5. Damped harmonic response of uncoupled model a)for AC voltage 

of 1 V, b) for AC voltage of 3 V 
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By further increase of AC voltage a cascade of period doubling bifurcations 

appears. Emergence of period doubling is shown in Figs. 6 where the 

amplitudes of harmonic excitations is 9 V. As discussed in the earlier section, 

the form of nonlinear excitation in Equation 3 leads to the appearance of 

different powers of rotational and translational displacements. This explains 

the appearance of superharmonics in the response.    

  
(a) (b) 

Figure 6. Damped harmonic response of uncoupled model for AC voltage of 9 V, a) 

phase plane of torsional deflection, b) FFT plot of torsional deflection. 

 

Increase of AC voltage results in the loss periodicity and appearance of 

quasi-periodic and chaotic responses. At harmonic excitation amplitude of 

9.5 V, some evidence of loss of periodicity emerges and the response 

becomes quasi-periodic. The phase portrait and Poincare map are shown in 

Figs.7, which clearly show that the response is quasi-periodic.  

  

  
Figure 7. Damped harmonic response of 

torsional deflection of uncoupled model 

for AC voltage of  9.5 V, a) phase plane, 

b) Poincare map. 

Figure 8. Undamped harmonic response 

of torsional deflection of uncoupled 

model for AC voltage of  9.102 V, a) 

phase plane, b) Poincare map. 
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Removing the damping from the system, which has a regularizing effect on 

the response, chaotic response emerges even at lower voltage at about 9.102 

V, as is depicted in Fig. 8.       

To develop the response of coupled model, again AC voltage superimposed 

on a DC voltage of 16 V and a damping ratio of 0.1 is used in the 

simulations. Increasing the AC amplitudes to 1.5 V the symmetry breaking is 

taking place which is not shown here. Further increase of the AC amplitude 

to 5 and 5.78 V, increases the number and strength of superharmonics and at 

the same time the response in the phase plane becomes increasingly complex.  

By further increasing the amplitude of excitation to 5.93 V, the Poincare map 

of the torsional response reveals the emergence of the quasi-periodic 

response, Fig. 9. Similar to the uncoupled case, in the coupled model the 

presence of the damping has a regularizing effect on the response and 

removing the damping from model, the quasi periodic response changes to 

chaotic ones (Fig. 10).       

  
(a) (a) 

  
(b) (b) 

Figure 9. Damped harmonic response of 

of torsional deflection of coupled model 

with AC voltage of 5.79 V, a) phase 

plane, b) Poincare map. 

Figure 10. Undamped harmonic response 

of torsional deflection of coupled model 

for AC voltage of 4.93 V, a) phase plane, 

b) Poincare map. 

 

5. Conclusion 
Due to the structure of the electrostatic force, it is anticipated that the micro 

electromechanical systems such as micro-mirrors should have rich nonlinear 

dynamics near pull-in condition. It was shown that for voltages near pull in 

condition, DC symmetry breaking in step excitations and AC symmetry 

breaking in harmonic excitations occurs. Also for wide range of harmonic 

excitation amplitudes, decomposition of the response to its frequency 
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components reveals the existence of superharmonics. Further increase of 

excitation amplitude the response becomes quasi periodic or even chaotic. It 

is shown that damping regularizing the response turns the chaotic undamped 

response into quasi-periodic one.  
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                                           Nomenclature                                                                                                                          
V                 Velocity of flight in body frame                                                                                                               

α                  Angle of attack                                                                                                                                             

β                  Sideslip angle                                                                                                                                                     

µ                  Velocity vector roll angle                                                                                                                             

γ                   Flight path angle                                                                                                                                                                      

φ,θ ,Ψ           Body axis Roll,Pitch,Yaw angle respectively (Euler angles) 

Ω=[p,q,r]      Body axis Roll,Pitch,Yaw rate respectively (Angular velocities)                                                                                       

δa ,δe,δr         Aileron,Elevator,Rudder deflection  respectively                                                                                                                         

Τ                  Thrust command 

 

Abstract : This paper presents a robust technique to design the flight controllers 

for the aircraft to fly under turbulent atmosphere as well as to perform 

maneuvers incorporating the whole highly nonlinear dynamics of the aircraft 

system.Aircrafts have a number of degrees of freedom (DOF) and so 

translational as well as rotational motion can be performed by the aircrafts in all 

those directions of freedom. Aircraft flight controller is required for the aircraft 

to undergo various flight conditions and to perform various types of maneuvers 

in a desired and controlled manner. In this study, completely nonlinear set of 
equations defining whole dynamics of the aircraft have been used for simulation 

and Nonlinear Dynamics Inversion (NDI) control technique has been used to 

design the controller of the flight vehicle. NDI control technique is a highly 

emerging time domain control methodology used to design the controllers for 

various types of highly nonlinear systems.      

Keywords : Nonlinear dynamics inversion (NDI), Aircraft flight controller, 

Flight envelope.    

                             

1. Introduction :               
In the field of aerospace vehicles, flight vehicle control law design methods 

have gained a lot of attention due to advancements in the theoretical concepts as 

well as exponential improvements in the hardware technologies over past 

decades. Any sort of flight vehicle designed i.e aircraft,rocket,missile is required 

to perform its intended task and alongwith that is an essential requirement for 

the vehicle to perform the task in a well controlled and desired manner and to 

implement that, there is requirement of a controller which would ensure that the 
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desired task is done in the controlled manner even if there is sudden turbulence                                                                                                                             

caused by wind gusts. It is extremely important that these vehicles undergo any 

 of the flight condition in a controlled manner. Several attempts have been made 

to design the controllers for all sort of flight vehicles. There are a number of 

control techniques to design controllers for nonlinear dynamics systems like 

aircrafts. In this study, NDI technique is discussed and implemented to design 

the controller of an aircraft. The advantage of preferring NDI control technique 

over other linear control methods is that the linear control methods linearize the 

nonlinear system about the equilibrium points to approximate it into a linear 

system and then design a control law, In this manner the approximated 
linearized equations can predict the actual system performance only in a very 

small flight envelope i.e. in a small range of operations and if the system goes 

beyond that range then these equations do not simulate the actual behavior of 

the system and so the linear controllers stay no more effective, whereas the NDI 

control technique does not linearize the system about any equilibrium point, 

rather it incorporates all the system nonlinearities while developing the control 

law and so NDI controllers stay quite efficient over a wide flight envelope.Thus 

NDI is a very efficient control technique to design controllers for the nonlinear 

systems.  

In the field of control of aerospace vehicles, NDI control technique has gained a 

lot of attention and it has been applied to many of aircraft applications, such as 
F-16[1], F-18 HARV [2], F-117 [3] for designing the control law. 

 

2. The Aircraft Model :            
The modeled aircraft used in this study is McDonnell Douglas F-4 which is a 

highly maneuverable fighter aircraft. An attempt has been made to control the 

various flight conditions of the aircraft using NDI. The aircraft 6 DOF equations 

of motion are given by the following set of differential equations which explain 
the translational and rotational dynamics of the aircraft model[4,5]. 

                               V� = (f� cos α cos β + f
 sin β + f� sin α cos β) /m                 

  α� = �(f� cos α − f� sin α)/(mV cos β)� − p cos α Tan β + q − r sin α Tan β                            
             β� = ��f
 cos β − sin β(f� cos α + f� sin α)�/(mV) + p sin α − r cos α                                                  Ω� = �I�#$�M − Ω ∗ (�I�Ω)�                                                       

  'φ�θ�Ψ� + = ,1 Tan.Sin0 Tan.Cos00 Cos0 −Sin00 Sin0Sec. Cos0Sec.
4 5pqr6                                            

      μ� = p8 + (q8SinμTanγ) + (r8CosμTanγ )                                                                       γ� = (q8Cosμ) − (r8Sinμ)                                                                      

 'x� ;y� ;z� ;+ = C$(φ)C>(θ)C?(Ψ) ,VCos@CosAVSinAVSin@CosA
4                                                           

           p8 = (pCosα + rSinα)(Cosβ + TanβSinβ) + BCD EFG @#CH IJE @KL M Tanβ     

  q8 = BCD EFG @#CH IJE @KL M                                        

where 
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 r8 = �f
 cos β − sin β(f� cos α + f� sin α) /(mV)          --Eq.Set (1)                         

Here f�, f
, f�  represent the net forces along X,Y,Z axes of the aircraft. Matrix 

[I] represent the moment of inertia matrix and M consists of the rotational 

moments about X,Y,Z axes of the aircraft and  x;, y;, z; represent the spatial 

position of the aircraft with respect to the earth axis system. 

3. NDI Control Law :                                                
In the implementation of NDI control law, the control commands are generated 

based upon the error signal generated from the desired state and current state 

received from the sensors via feedback path. In the NDI technique, generally a 

robust 2-scale separation method is used which allows the order of the controller 

to be smaller[6,7]. The NDI law used in this study uses time scale separation 

between slow variables and fast variables and correspondingly generates the 

control commands. Any aircraft system can be represented by the following 

nonlinear vector form dynamics equation 

                                         O� = P(O) + Q(O)R                                          --(2) O represents the vector representing state variables,P(O) represent nonlinear 

state dynamic function and  Q(O) represent the control distribution function.NDI 

control law inverts the dynamics equation and then replaces the inherent rate of 

change of state variable by the desired rate of change of that variable to generate 

the required command which is fed to the system. Inverting eq. (2) we get  

                                  R = Q(O)#$�O� − P(O)�                                         --(3) 

Applying NDI control logic, above equation is converted  into a form as

                         RS = Q(O)#$�O�S − P(O)�         --(4)                  
where,                         O� S = T(OS − O)                               --(5)                        OS  in eq.(5) represents the vector consisting of the desired values of state 

variables and O represents the vector consisting of the measured values of 

corresponding state variables obtained via feedback path.T represents state gain 

matrix whose elements are design parameters of the controller and RS represents 

the vector consisting of the control commands generated i.e. elevator, aileron, 

rudder deflections and thrust command which are to be fed to the aircraft system 

as control input. 

 

4. Applicaton of NDI under various flight conditions : 
The purpose of this study is to control the various parameters of the aircraft for 

different flight conditions like cruise flight, steady sideslip flight, co-ordinated 

turn, pull-up maneuver, velocity vector roll maneuver etc. 

Table 1 shows all the flight conditions studied in this paper and shows the 

corresponding variables to be controlled in each flight condition so that the 

flight vehicle performs in the desired manner. For each case, NDI control law is 

implemented on the concerned set of governing nonlinear equations of the 

aircraft system and control commands corresponding to the desired states are 
generated.         
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                Flight conditions               Control variables 
                      Cruise flight                                    α,β,µ,γ 

                      Steady sideslip flight                       α,β,Ψ,γ 

                      Co-ordinated turn                            α,β,γ,Ψ�  
                      Pull-up maneuver                             p,q,r,V 

                      Velocity vector roll maneuver         α,β,γ,μ�  
 

        Table 1.Various flight conditions and corresponding control variables 

 

    
Figure1. NDI control approach for control variables α,β,µ,γ. 

 

Figure1 explains the implementation of NDI control law for the cases in which 

control variables are α,β,µ,γ.The desired states are represented by(α
d
,β

d
,µ

d
, γ

d
). 

Similarly other variables can be controlled in the similar fashion for other cases. 

In present case, (α,β,µ,γ) act as slow state variables whereas (p,q,r) act as fast 

state variables.NDI is applied on slow state variables as well as fast state 

variables as explained in equations (2)-(5) and control surfaces deflection 

commands (δa
d
,δe

d
,δr

d
) are generated. These command values are passed through 

the actuator dynamics system so as to ensure that the commands generated are 

well within the control surfaces deflection limits as well as within the maximum 

rate of deflection of control surfaces.Thrust command (T
d
) is generated by 

applying NDI on γ dynamics equation  in case of various flight conditions 

except pull-up and pull-down maneuvers as in these maneuvers, the thrust 

command is generated by applying  NDI on dynamics equation of velocity. 

 

5. Simulation, Control and Results :                           
The 6 DOF equations of motion of the aircraft explain its translational and 

rotational dynamics.The equations were simulated using numerical method 

Runge kutta-4 (RK-4) algorithm.For simulation,completely nonlinear set of 

aerodynamic data of McDonnell Douglas F-4 aircraft has been used [8].Results 

have been shown for different flight conditions as following.  
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Note : For all the following figures,the values of all the angles are in degrees, 

distances are in meters, time is in seconds, angular velocities (p,q,r) are in 

radian/sec, velocities are in meter/sec and acceleration is in meter/sec2. 

 

Case 1. Cruise flight control under effect of wind gusts : 

In this case, Cruise flight is controlled under turbulent atmosphere as sudden 

gust comes and aircraft trim condition is disturbed and the controller has to 

control the aircraft and bring it back to the trim condition. As shown in figure 2, 

Aircraft is cruising at α= 4 deg and a sudden gust comes to disturb the trim 

condition of the aircraft and the controller acts to bring the aircraft back to the 
trim condition. 

 
             Figure 2. Cruise flight control under turbulent atmosphere 

 

Case 2. Steady sideslip flight under effect of wind gusts : 
In this case, aircraft is undergoing steady sideslip flight and suddenly a wind 

gust is introduced to disturb the aircraft states and the controller has to control 

and bring the aircraft states back to the desired values. As shown in figure 3, 

aircraft is flying at α = 4 deg, β = 2 deg and the aircraft is holding Ψ= -2 deg for 

proper steady sideslip and then a sudden gust is introduced but the aircraft 

controller still performs in the desired manner. 

 

 

 

 

 

2

4

6

α

-1

0

1

β

-20

0

20

A
c
c
. z

-5

0

5

γ

-4
-3
-2
-1

δ
e

0 5 10 15 20 25 30
5

10
15
20

G
u
s
t 

(V
z
)

Time (sec)

557

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



          Figure 3. Steady sideslip flight control under turbulent atmosphere 

 

Case 3. Steady co-ordinated turn : 
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Figure 4. Aircraft states and control commands for co-ordinated turn 

In case 3 as explained by figure 4, the aircraft has to undergo steady co-

ordinated turn i.e. the sideslip angle should be zero during the turn. Here in this 

case, aircraft is turning at the rate of change of Ψ as 2.5 deg/sec at α= 6 deg. 

 

Case 4. Pull-up maneuver : 

 
Figure 5(a). Aircraft states and control commands for pull-up maneuver 

 

In this case, aircraft performs a continuous pull-up maneuver in vertical XZ 

plane. In this case, maneuver is done at pitch rate of 0.1 rad/sec as shown by 

figure 5(a). Figure 5(b) shows the trajectory in XZ plane during this flight 

condition. 

 
Figure 5(b). Aircraft trajectory in XZ plane during pull-up maneuver  

 

 

0

100

200

 θ

-1

0

1

p

0
0.05
0.1

q

-1

0

1

r

-1

0

1

δ
a

-20

-10

0

δ
e

0 5 10 15 20 25 30
-1

0

1

δ
r

Time (sec)

0 500 1000 1500

2000

3000

4000

A
lt
it
u
d
e
 (

Z
-a

x
is

)

Horizontal distance (X-axis)

559

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Case 5.  Velocity vector roll maneuver :  

Aircraft performs a continuous roll maneuver about the velocity axis at high  α. 

During it aircraft should not lose altitude. In this case, aircraft performs this 

maneuver at α=12 deg as shown in fig. 6. 

 
Figure 6. Velocity vector roll maneuver at α =12 degree 
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Abstract: Software engineering is known as a problem solving activity and modeling. 
All the principles in software engineering are emphasized on the conditions for software 
producers are unpredictable because of the interactions and mutual relationships between 
all the factors involved in creating and those conditions never allow full control over this 
process. Since the emergence of software engineering processes, models and processes 
focus on reducing non-forecasting in the process model due to provide available software 
in a certain period with predicted cost, but it cannot  be out of this complexity, and the 
simplicity would not lead by imposing a simple model to process model. The aim of this 
paper is design of a software process based on chaos theory.  
In this article, software production process assumed as a nonlinear dynamic process, and 
hence it is located in the ordination complex systems. It would continue with using chaos 
techniques to analyze software production process and fractal structure of process models 
is presented.In particular, preparation of a model based on chaos theory can show close 
relationships between many of the facts contained in software development and reflect 
complex patterns that occur during the project, with a help of flexible and variable fractal 
structure. 
Keywords: Software engineering, Chaos theory,  Process model,  Fractal , Problem 
 
1. Introduction 
The linear loop is not complete with solving a software problem. The 
complexity of software development causes chaos in project. Development is a 
continuum from the whole project down to each line of code and involves both 
human and technical issues on all levels[3].  
Developers need to describe the structure between different parts of a software 
development process. They wants a flexible structure which reflects the intricate 
patterns that occur in real projects. 
The problem definition can be very different such as a new program for solving 
an application or use the latest technology, or port a program to a new platform. 
Some of them are simple and some of them are complex. 
During problem definition, developers choose a  problem to solve it. The 
problem definition needs the ability of people to describe their problems and 
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solution-integration need the ability of development to find  a solution.  
Developers must decide where the system should be in five and ten years[3]. 
Software project manager expects exact estimated processes. So clearly we need 
to improve the estimates and measurements in software engineering. However, 
so far few attempts form to identify and apply exactly the appropriate approach 
to software systems, while this action could influence in software costs.  
  
2. Nonlinearity in software engineering 
The study of nonlinear dynamical systems is called nonlinear science. 
Nonlinearity in software engineering is the rule rather than the exception. For a 
linear system, we can combine two solutions, and the result is also a solution for 
the system. The above property is called linearity, and it makes the linear 
systems mathematically tractable. 
This is not true for nonlinear systems such as the process model . We cannot 
break up a software problem into little pieces, solve each piece separately and 
put them back together to make the complete solution.   
Many nonlinear systems such as the process model are approximately linear for 
small perturbations about points of equilibrium, and if we consider that 
problems are linear, then we can solve all of them. In the other hand Nonlinear 
problems are seldom exactly solvable. Before the advent of computers, almost 
nothing could be said about the behavior of nonlinear systems. 
 
3. Chaos in the process model 
Before answering to the question of the applicability of chaos in software 
engineering, we must define the concept. How is chaos theory used exactly in 
software engineering? According to one definition of chaos, "Chaos theory is 
the qualitative study of unstable aperiodic behavior in deterministic nonlinear 
dynamical systems."[2] ,so with this definition, we can find the characteristics 
of chaos in software engineering. 
First, that the system is dynamical, means that it changes over time. The 
software project scheduler are very fragile and sometimes the most pressure is 
applied to  project staff. 
 Second, that the behavior of the system is aperiodic and unstable means that it 
does not repeat itself. Software industry was faced with the fact that the 
estimates do not have enough precision. None estimated models is generally 
superior than other models and experimental results are often contradictory in 
software engineering. 
Third, although the chaotic behavior is complex, it can have simple causes. 
Many software development organizations do not have real data about software 
costs, and more estimates are made by inadequate descriptions of user 
requirements. 
Fourth, because the system is nonlinear, it is sensitive to initial conditions.  The 
output of the software development process is not proportional to the input and  
the process model does not conform to the principle of additivity. The structure 
of a simple problem is different from the structure of a more complex problem. 

562

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



In general, we cannot break complex problems into simpler sub problems. In the 
other word in software complex problem the whole is not equal to the sum of its 
parts. So   cannot use this reductionist approach to deal with problems.  
The software development has a partial decision-making problem, and risk 
assessment is difficult. All this shows the non-linear features in software 
engineering. 
Fifth, because of the instability, aperiodicity, and sensitivity to initial conditions, 
the behavior of chaotic systems is not predictable even though it is 
deterministic.   
Common software development process is a sequence of decision problems that 
attempts to convert  a fuzzy set of expectations to requirements, specification, 
design and ultimately code and documentation. So it is not predictable, too. 
Even though it is deterministic. 
A final feature of chaos, although not included in the above definition, is that of 
iteration or feedback, in which the output of the system is used as the input in 
the next calculation. 
Usual cascade approach has been rejected in creating software to achieve its 
goals, because it is a method for resident and almost unchanged problems. This 
assumption is far from reality. 
 
4. Fractal process model 
For at least 200 years, the branch of mathematics , known as Analysis, is not 
only the richest of all the branches, but also by far the most useful for 
applications to quantitative science, from physics to engineering. Theoretical 
scientists became applied mathematicians. Software project manager expects 
exact estimated processes. So clearly we need to improve the estimates and 
measurements in software engineering. 
Integrals, differential equations, series' expansions, integral representations of 
special functions are the tools that calculus has provided and that are capable of 
solving an amazing variety of problems in all areas of quantitative knowledge. 
however,The mathematicians were telling us all along that smooth curves were 
the exception, not the rule[4].  
Analysis is not  the appropriate approach to software systems and  chaos theory 
solves a wide variety of scientific and engineering problems, which do not 
respond to calculus. 
The software development process  provides a structure for problem solving. 
Common approach is suitable for simple problems, but it cannot solve any 
complex problem in software engineering. 
To add the necessary complexity, the process model can combines with itself. 
Sequential design and  parallel design are common mode. 
Sequential design means the end of one complete problem solving cycle with 
the start of another. Parallel design is identified by many instances of  start state, 
in other words   problem solvers can solve problems in parallel[1],but none of 
them describe full connection between whole of a development beginning from 
problem definition until coding. 
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Fractal design structures are self-similar. It is chaos in space and fractal shows 
chaotic in space. There are many possible definitions of the word fractal. A very 
loose and general definition is this: a fractal is a geometric figure that does not 
become simpler when you analyze it into smaller and smaller parts. Which 
implies, of course, that it is not smooth. However, simple examples of fractals 
have been known to mathematicians for a long time[4].  
Process model that is drawn in  fractal mode, meaning that they do not become 
simpler when you examine them with an increasingly powerful microscope. 
Fractal design in the process model actually has a high degree of self-similarity 
when examined on finer scales. 
As we said, the process model is a dynamical system because it  is capable of 
changing with time.  The process model such as a dynamical system consists of 
some “variables” and some “equations of motion” or “dynamical equations”.  
Developer can find  variables in the process model. There are any things, which 
can vary with time. In other words, two similar process model with the same 
values of all the variables are in identical configurations now, and will evolve 
identically.  
Time-chaos in the process model is the rule rather than the exception. The 
connection between time-chaos and space-chaos is very close.   
We let time flow in process model base on chaos. As each area of the process 
model follows its trajectory, the process model itself moves and changes shape. 
During  its evolution, slowly but surely the region will turn into a fractal. The 
fractal builds up as time progresses and becomes complete with an infinite time.  
 
5. Conclusion 
Chaos Theory solves a wide variety of engineering problems, which do not 
respond to calculus. Problem and the solution is thought as a component of the 
process model. Software problem cannot be broken up into little pieces and 
solved separately. They have to be dealt with in their full complexity. Chaos in 
the process model is the rule rather than the exception. To add the necessary 
complexity, we introduced fractal design in the process model.That was no 
reason for the lack of interest in these chaotic-looking phenomena at software 
engineering after known the fractal process model.   
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Abstract: Before making effort to analyze systems, we should identify the exact type of 
system and determine that we consider our system in which categories of systems. Rapid 
changes in technology are created the double problems in the field of planning and 
organizing the structure of manufacturing software engineering projects. Detailed 
industry estimates is impractical for preparing a software application. In such an 
environment, a new way of thinking is required.   
Introduction of complex systems is discussed here as alternatives to plan and deal with 
these changes. Order in complex systems is not because a targeted behavior of the system 
elements or influence a central organization management. Regular patterns in this system 
are an example of Self-Organized. In this article, software engineering is proven as a 
nonlinear complex system and continues to review the components and features Self-
Organized in software engineering.After demonstrating the software production process 
among the complex systems, we can  use complexity theory and techniques relating to 
building complex systems for more accurate understanding of the process and prevented  
impact of inappropriate nonlinear to cost, function, relationship and program features. 
Keywords: Software engineering, Complex system, Dynamic, Self-Organized 
Criticality, Process model, Life cycle.  
 
1. Introduction 
Patterns in complex systems are because communication between factor based 
on law on the very small levels of the system. These rules – adapt – under the 
influence of the experience and the learning abilities of the actors constituting 
the system [2] and alter the system characteristics  as a consequence of 
development in the structure of complex systems. In other words, how  can a 
regional map of the Earth, that is constantly changing, be useful? It should be 
noted, rejection long-term strategic plans do not mean rejection managing in a 
project. This is a common event in complex environments, and it is 
unpredictable. A large number of academics are  engaged in research in 
complexity theory to help decision makers to improve its project management 
methods. 
If we can prove that a system is nondeterministic nonlinear dynamic system, 
then this system will be complex. Linear systems are not complex. These 
systems have a set of very tight and stable rules and cannot adapt to the 
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environment. A complex system is a fully functional system that includes 
variable and dependent components. Unlike a perfectly regular linear system, 
components of a complex system do not have precisely defined communication 
,or constant behavior or values and is not possible to explain the behavior of 
these components as well as conventional methods in linear systems. We cannot 
predict what happens in complex systems, but when it occurs, it is easy to 
identify patterns that system is based on. [8] 
If we can consider the software development process as a complex system, then 
complexity theory and its quantitative techniques help us understand those 
processes and access to more accurate estimates.  
In the article [7] the first stone is laid in the presence of chaos in software 
engineering. 
Raccoon considers the presence of chaos in the production process and the 
software life cycle. 
However, in [7] and also [5 , 6] are presented only theoretical matters and has 
not used the exact characteristics of chaos systems to prove this claim. 
 
2. Complexity in Software Engineering 
In 1994, as Gibbs said, despite 50 years experience in programming, the 
software industry is behind for years _perhaps decades _ from the needed rules 
to achieve the engineering requirements in the information age society. 
Although software systems are faced extensive, but still production and 
development of software use the basic structure in software engineering. This 
has led researchers are using different approaches in dealing with the problem. 
Among them can be pointed to tools, methodology, the prototype and varies 
software processes.Inability to choose the exact way to solve software problems, 
indicating that Gibbs` opinion is still correct. 
Demonstrating the complex dynamics in software engineering can be used from 
complexity theory and quantitative techniques related to complex systems for 
more accurate understanding of this area and prevented from the nonlinear 
inappropriate influence on cost and performance. 
However, some of the articles are used characteristics of complex systems to 
identify such systems, but rules are stronger to correct identification of  complex 
systems. 
This article will continue to introduce and review the six major law of  complex 
systems[1] in software engineering. 
 
1-Complex systems contain many constituents interacting nonlinearly. 
Nonlinearity is a necessary condition for complexity, and that almost all 
nonlinear systems whose phase space has three or more dimensions are chaotic 
in at least a part of that phase space. This does not mean that all chaotic systems 
are complex. Chaotic does happen with very few constituents; complexity does 
not. 
Common software development process is a sequence of decision problems that 
attempts to convert a fuzzy set of expectations to be requirements, specification, 
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design and ultimately code and documentation. 
Usual cascade approach was rejected to achieve its goals in creating software, 
because it is a method for resident and almost unchanged problems. This 
assumption is far from reality. Today, that process of modern software is based 
on creating a sample basis. These approaches indicate the fact that software 
development has a partial decision-making problem, and its risk assessment is 
difficult. This shows the non-linear features in software engineering. 
 
2-The constituents of a complex system are interdependent. 
Here is an example of interdependence. Remove a part of a system with non-
complex components does not cause many difficult on the result.   However, 
complex system does not allow us to do this, because of numerous 
communication between components.  
Different systems in software engineering are placed together and occur the 
wide information flow between them. Many of these systems cannot be 
considered independent of the others, and if we removed the information flow, 
then data redundancy will grow with the system. Software engineering is 
therefore, including components with numerous dependence. 
 
3- A complex system possesses a structure spanning several scales. 
In this case, we can consider the human body as a complex system and its scale 
such as different organs and cells and bone .  
Modeling a system starts with an initial process in software engineering. DFD 
that  performing  it, is called context diagram. This chart displays  the whole 
input and output of a system. This chart can be seen all the foreign entities that 
interact with the system and data flow between these entities and the system. 
The next level is identified that the main system process and high-level DFD are 
drawn. The DFD can be detailed to make the process, as well as they continue to 
display more details of the system in the lower levels.  
The same structure of complex systems with different scales lead to one of the 
basic and new features of complex system , and it is the fourth feature. 
 
4- A complex system is capable of emerging behavior. 
Emergence happens when you switch the focus of attention from one scale to 
the coarser scale above it. A certain behavior, observed at a certain scale, is said 
to be emergent if it cannot be understood when you study, separately and one by 
one, every constituent of this scale, each of which may also be a complex 
system made up of finer scales. Thus the emerging behavior is a new 
phenomenon special to the scale considered, and it results from global 
interactions between the scale’s constituents. 
These features have been seen in use case related to software engineering. As 
the level to look into a process model, database and network can make new 
results that were different from the other levels. By combining similar or shared 
but incomplete low-level DFD operation can be understood major operation of 
systems.  It is an example of this property in software engineering. 
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The combination of structure and emergence leads to the self-organization, 
which is what happens when an emerging behavior has the effect of changing 
the structure or creating a new structure. More detail about this property is 
discussed. 
 
5- Complexity involves an interplay between chaos and non-chaos. 
Many people have suggested that complexity occurs “at the edge of chaos”, but 
no one has been able to make this totally clear. It is like a critical point in phase 
transitions. It is the point where the long-range correlations are most important. 
Perhaps complex systems manage to modify their environment to operate as 
much as possible at this edge-of-chaos place, which would also be the place 
where the self-organization is most likely to occur. It makes sense to expect the 
self-organization to happen when there are strong long-range correlations. 
Use of parallel different processes is a way to obtain the best solutions in 
software environments. 
Although some of these solutions will lead to fail, but some of them are very 
successful. This is a very effective method for developing software systems. 
In this case, the software system is located in conditions between the full order - 
where flexibility  of the system is limited and the ability is zero to identify and 
change to the new situation - and  chaos - where the minimum structure exists in 
the system-. 
Finally, there is one more property of complex systems that concerns all of us 
very closely, which makes it, especially interesting. In order to evolve and stay 
alive, in order to remain complex, all the complex systems need to obey the 
following rule: 
 
6- Complexity involves an interplay between cooperation and competition. 
Once again, this is an interplay between scales. The usual situation is that the 
competition on the scale n is nourished by cooperation on the finer scale below 
it (scale n+1). 
This property can be easily seen in subsystems that designed for the original 
software system. 
Although these subsystems are in a competitive mode,  But at higher levels,  
they followed access to the  main target. 
Self-organization occurs when the emergence behavior leads to change  the 
structure or create a new structure. Self-Organized Critically is  the most 
important shared characteristics of complex systems. 
 
3.Self-Organized Critically components in software 
engineering 
Self-organization occurs when the emergence behavior leads to change  the 
structure or create a new structure. Self-Organized Critically is  the most 
important shared characteristics of complex systems. Table 1 shows components 
and their definition in software Engineering. 
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     Table 1 : Self-Organized Critically components  and their definition  
in software engineering 

 
SOC components 

 
description 

 
Power law and critical point 

Size and structure distribution of the 
project. The critical point in the 
project is acceptance of the changes 
periodically. 

 
 

Driving force 

Changed on user requirements and 
demands 
 Technology change 
 Staff change 
 Identify and create new solutions 

 
Thresholds 

Identified and predicted range of 
projects, 
Basic definitions of the project and 
Initial specified rules 

Cascades 
 

Change in a phase of the project and 
extend it to other parts 

 
4. General characteristics of Self-Organized Critically in 
Software Engineering 
SOC is the only known mechanism to produce the overall complexity. We show 
the most important characteristics of this mechanism in the software 
development process. 
 
1-Relationship:  
Components have more than one input and output on average. The perceived 
requirement starts creating problems for the software development process and 
software development process create different output with a software approach 
to solving these problems. 
 
2-The converting status: 
Approximately, it  is equal to one. Increasing requirements cause to define 
problems that the reach of these problems led to a unique solution. A direct 
relationship is created between the numbers of problems and solutions by the 
software development process.  
 
3-Learning ability: 
Components have the learning ability from past experiences. Software 
development process can be given past experiences and create the optimal 
solution. 
 
4-Parallel operation: 

569

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Components work parallel. These components exist to solve a problem or 
several problems. That is easily understandable to explain the software 
development process to solve problems in a parallel mode so it causes to 
improve speed and create the high adaptation ability. 
 
5- change the interaction: 
Components are able to change other components that interact with them. This 
change can be permanent or temporary. Problem and the solution is thought as a 
component of the relationship into the software development process, that could 
be causing transformations in each other. 
At first, the problems are transferred into a series of solutions, but at validation 
phase, the definition of the problems may be revise. Assume a fixed 
environment is too restrictive for high-speed scenarios. 
In software engineering are constantly changing the customer expectations and  
competitors`ability. Products will be assessed faster than expected and if they 
are unsuitable,   they removed easily. There are some new means such as 
information technology, internet and global economy that help to shape this 
phenomenon.  
 
6-feedback loops: 
Outputs are returned to begin of the process in the feedback loop. The actual 
results of this operation will make the process correction. Creating positive 
feedback loops was discussed in the process model from years ago. It was more 
important when observed that adding manpower to backward project would 
cause the more delayed. 
The presence of feedback loops can be seen in each stage of the software 
development process to redefine the problem or the solution. This feedback loop 
has a significant impact on performance of system. 
 
7- Ability to Control: 
There are many variables in the software problems and its solutions in the 
software development process. They cause to make requirement definition and 
convert it to the problem and the useable  metric. The specific area is defined 
the overall image from the implementation process. 
All variables must be controlled. However, controls should not cause to be 
changed, simply it keeps  the system in the defined scope. 
 
8-Attracted areas: 
There are different ways to achieve an acceptable response in the software 
development process, so it shows creative freedom. 
There are several problems, all of which eventually reach a specific solution that 
meets the system requirement. All of them show flexibility in the production 
process. 
 
9-External borders: 
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Complete exact boundary is not imaginable between the problems creating and 
requirements and also offering solutions and product [3]. System boundaries are 
not completely closed and not completely open. 
 
10- Performance: 
The overall goal is construction of  problem solving in the software 
development process. Even so, each one of problem solving has own means. 
Performance goals can be multiple. It will give a multi-dimensional aspect to the 
system.  
 
11-Building blocks: 
Problem and solution are clearly two-block in the software development 
process, but there are many other blocks such as problems assessment and 
evaluation with different aspects [4]. 
Subsystems could exist in different dimensions that make a fractal structure of 
the system. 
 
12-The dominant properties: 
You can consider a certain mode of the finding the problem and solve it for  
software development process with progress in the larger dimensions of time. 
Although this property is understandable in small size,  but connected between 
components looks organized in the dimension broader. 
 
13-Stability of the system: 
Changed in requirements and existing technologies and creating the new 
solution cause unexpected side effects in the software development process over 
the time. 
However, some of these conversions overturn into the software development 
process, but a group of them has a considerable impact on the problem 
definition and production process. 
 
14-Decentralized control: 
Centralized management and control is not  in one part of the process. Each 
component requires separate management. Problem and solutions manage in the 
own area, although this does not cause to change the interactions between 
components. 
 
15-Information flow: 
Information and data flow exist increasingly in the software process that is from 
problem to the solution  and vice versa. 
The steady information flow changes the system mode from linear and 
definitive to nonlinear. 
  
5. Conclusion 
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Attempt to estimate project schedule  or activities terminate a series of partial 
non-exact estimates without regard to the type of software engineering dynamic. 
Clearly, the need is felt  to improve the estimates and measurements in software 
engineering. 
However, few effort assisted to identify exact systems in software engineering. 
In this article complex system was introduced as the best solution for complying 
with plenty of changes in software engineering.Software engineering and its 
scope is proven among the complex systems, so its rules can identify reliably 
direction to a useful software, and it causes a better understanding of problems 
and the factors that will lead the software engineering to create optimized 
software rather early move toward solutions.There are no fears of a complex 
nuclear in the software scope, direction to having paved reliable software.It is 
also an effective method to achieve competitive advantages in software 
engineering so software engineers find the superiority of information on 
software projects by using the complex theory. 
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Abstract. The principles of creation of the mechanics of structured particles are considered. The explanation how 

this mechanics leads to the account of dissipative forces is offered. The explanation of a motion equation for the 

system consisting from the potentially interacting material points is submitted. It is discussed why the motions of the 

system determine by two type of symmetry: symmetry of the system and symmetry of space and how it leads to two 

types of energy and forces accordingly. It is shown how the mechanics of the structured particles leads to thermody-

namics, statistical physics and kinetics.  

Keywords: Dynamics, irreversibility, Hamilton formalism, classical mechanics, entropy. 

 

Introduction. The Newton’s motion equation is gained on the basis of the model bodies in the form of the mate-

rial points (МP) and solid bodies. Such idealization of models of real bodies leads us to the second law of Newton. 

According to this law, the acceleration of MP is proportional to the potential force which acts on it [1, 2]. The work of 

this force is equal to their integral along the way. The energy conservation law of MP from here follows. In connection 

with this law the dynamics of MP is determined by two types of energy: the kinetic energy and potential energy. Along 

trajectory of MP the sum of these types of energy is constant. The MP motion is reversible. It is follows from the 

Newton’s second law and potentiality of forces. 

All bodies in the nature have a structure. Therefore they have the internal energy which is caused by relative mo-

tion of the body’s elements. Therefore the works of the external forces change not only the body’s motion energy but 

the internal energy also. However the Newton's motion equation, which has been constructed on the basis of models of 

structureless bodies, does not include the terms responsible for the change an internal energy. In practice they are 

taken into account by addition to the Newton's motion equation of the empirical force of a friction.  

The work of the frictional forces defines the dissipative part of motion energy which goes to the body’s internal 

energy and dissipated in the environment [2]. The friction coefficient is taken from the experiment. Thus, the rigorous 

description of the dynamics of bodies in the frame of classical mechanics is absent. It is due to the simplification of the 

bodies models. Therefore for description of a motion of real bodies, the MP should be replaced on a structural 

particle and the motion equation for the structural particles should be obtained.  

The great diversity of structures does not allow analyzing all types of energy dissipation. But we can select such 

relatively simple models that allow understanding the nature of dissipation in the framework of the laws of classical 

mechanics. It is a system of potentially interacting material points. 

The problem of description of the dissipative forces in the frame of the classical mechanics is similar to the prob-

lem of irreversibility. This problem was formulated by Boltzmann. All attempts to solve it without the use of statistical 

laws were till now unsuccessful. The generally accepted explanations of the irreversibility of today are based on 

probabilistic laws contradicting the determinism of classical mechanics [3]. Nevertheless, the explanation of irreversi-

bility without attraction of probabilistically laws, if particles possess by the structure, can be offered [4, 5]. 

To find an approach to solving the irreversibility problem in the framework of the laws of classical mechanics we 

studied in the beginning the dynamics of hard disks. As a result, it was found that the system, consisting of two inter-

acting of disks subsystems, moves to equilibrium [4]. It has been shown that this is due to the transformation of energy 

of relative motion of subsystems into the motion energy of disks relative to the centre of masses (CM) of the corre-

sponding subsystem. The same mechanism of equilibration takes place for the structured particles (SP) where SP is 

equilibrium system consisting from a big enough number of potentially interacting MP.  

Mechanic of SP can be constructed at following restrictions [6]: 1). Everyone MP is belonging to its SP during all 

process. 2). SP is in equilibrium during all time. The first restriction eliminates inessential complications related to the 

necessity to reconsider of SP structure due to transitions МP between them. The second restriction is equivalent to the 

requirement of weak interacting which accepted in thermodynamics.  

The aim of this paper is to show how the mechanics of SP can be constructed on the bases of a Newton’s laws for 

MP. For this purpose the nature of the restrictions of classical mechanics is analyzed. The explanation of the necessity 

of the systems dynamics description on the basis of two types of symmetry: the symmetry of the system and the 

symmetry of the space are submitted. How from SP mechanics to come to thermodynamics, statistical physics and 

kinetics and how to introduce the concept of entropy into the classic mechanics are explained. 

 

THE SYSTEM OF TWO MP. The basic principles for construct of the SP mechanics as well as the method of its 

construction can be illustrated on the example of system of two MP. The task of two MP is solved by transition to a 

coordinate system of CM [7]. In this case, the variables are separated. The nature of such separation of variables is 

connected with the emergence of a new quality of a system that is absent for MP. It is internal energy caused by the 

relative motions of system elements. The energy of two MP in laboratory coordinates of system (LS) has the form: 

E = 2 2

1 2( ) / 2m v v+ +
12 1 2( ) ( ) ( )env envU r U r U r+ + = const ,   (1) 
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where 
12( )U r  is a potential energy of MP interaction; 

1( )envU r ,
2( )envU r  are potential energies for MP in an external 

field of forces; 21, rr -coordinates of MP; )( 2112 rrr −= , 
1 2,v v  are the velocities of MP. 

The motion of each MP is caused by two independent types of forces: forces of interaction MP and external forces. 

In the LS coordinate system the task is nonlinear because the motion of one MP depends from the motion of the other 

MP. Thus in the LS coordinates of system the MP motion are interdependent. Therefore the LS system is unacceptable 

for the description of dynamics of system. New variables are set as follows: 2/)( 212 rrR += , 
2 2V R= &  are coordinates 

and velocities for CM, 
1212 rv &= . In these variables the system’s energy is: 

E = { 2/2

2MV }+{ 4/2

12mv +
12( )U r }+

2 12( , )envU R r    (2) 

Here 2/2

2MV  is a kinetic energy of CM system’s motion. The energy 4/2

12mv +
12( )U r  is a internal energy of 

system determined by forces of interaction MP and their relative motion; 
1212 rv &= ; 

2 12( , )envU R r -is a potential energy 

of system in an external field. mM 2= . Differentiating the energy (2) with respect to time, we get: 

+22VMV & +2/1212vmv & +1212vF +22
VF env

R 1212
vF env

r
0= ,  (3) 

where 
121212 /)( rrUF ∂∂= , 

2 2 12 2( , ) /env env

RF U R r R = ∂ ∂  , 
12 2 12 12( , ) /env env

rF U R r r = ∂ ∂  .  

If there is no external force field, the last two terms in eq. (3) are zero. Variables are separated and eq. (3) is inte-

grable. If the external field exist but does not depend from 12r  then last term in the eq. (3) is equal to zero and its 

breaks up on two independent equations: 

+22VMV & DVF env

R =22
, (4)   

12 122mv v +& DvF −=1212 . (5) 

Here the eq. (4) describes the motion of the CM system in an external field of force; the eq. (5) describes the rela-

tive motion MP which does not depend on exterior forces; D  is a constant which we take equal to zero. It means that 

when the external forces are homogeneous the internal energy can’t change. Thus, in the first and second cases the 

motion of two MP is determined by the Newton's third law. In general case the exterior forces can change both the 

energy of system motion and internal energy. 

Thus, on the example of the two-body system has shown that the energy of the system is split into two independ-

ent types by transition to the CM coordinates system. It is the internal energy which depends on the relative velocities 

of MP and the forces of their interaction. And it is the energy of the system motion in the field of external forces which 

depends on the coordinates of the CM and its velocity. We can see that by summarizing of the motion equation for LS, 

we exclude internal forces, leaving only the external forces. As a result we come to the system’s motion equation in 

space. By subtracting these equations, we exclude the external forces and come to the equation for the relative motion 

of MP in the interaction field of forces. I.e. the system’s motion, unlike the MP motion, is determined by two invari-

ants: the energy of its motion and internal energy. 

All bodies consist of microparticles or molecules. Therefore they can be represented in the form of the SP whose 

position is determined by its CM. As shown on example of two MP, the motion of each MP should be determined in 

relative to the CM. Coordinates and velocities of the MP relative to the CM systems we will call micro variables, the 

coordinates and velocity of the CM systems we will call as macro variables. Since internal and external forces are 

independent, then these variables are also independent. Hence the two spaces variables in relevant micro and macro 

variables, also independent. I.e. the new variables divide the space of the generalized co-ordinates and velocities on 

two independent subspaces. One subspace is determined by the internal symmetries of the system, and the second 

subspace is determined by the symmetry of the outer space [8]. Thus the systems dynamics is defined by two types of 

symmetry: symmetry of the system which defined by distribution of its elements and character of their interactions, 

and symmetry of space in which the system moves. Hence, the energy of the system will be the sum of two invariants 

of motion: internal energy and the energy of motion of the system as a whole.  

Since the energy, unlike the forces, is the additive function of dynamic parameters of the MP, the mechanics of SP 

conveniently builds basing on the energy function. Below we will obtain the expression for the energy of the system 

consisting from potentially interacting MP which will be written down in micro and macro dynamic variables. 

 

ENERGY OF THE MP SYSTEM. Let us take a system from N  of potentially interacting a unit mass MP. The 

potentials in each point of space are additive. Therefore, the force acting on a given MP is equal to the sum of forces 

acting on it from all others MP and from the external forces. The forces between everyone two MP are determined by 

distance between them. Thus, the kinetic energy of system NT  can be represented as the sum of the kinetic energies of 

the MP. So, =NT ∑ =

N

i imv
1

2 2 . Potential energy is equal to the sum of potential energies of all MP in the field of the 

external forces and potential energies of MP pair interactions among themselves which is )( ijN rU = 

∑ ∑−= +=

1

1 1
)(

N

i

N

ij ijij rU , where Nji ...3,2,1, =  are the number of MP, −iv is a velocity of i -element; ijij rv &= . Hence, 

full energy of system is equal to 
NE

env

NN UUT ++= = const . It is obvious that kinetic energy of system includes the 
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energy of its motion in the field of external forces, tr

NT  and kinetic energy of relative motion, ins

NT  caused by interac-

tions MP among themselves. I.e., =NT
tr

NT + ins

NT . We will write down the velocities of everyone MP in the form of the 

sum:
i N iv V v= + %  where 

N NV R= & , 
1

( ) /
N

N ii
R r N

=
= ∑ , 

1
0

N

ii
v

=
=∑ % . Momentum of the system 

NP  is the sum of the 

moment of all MP. I.e., 
1

N

N i i N Ni
P m v M V

=
= =∑ . Thus, the relationship between the momentum 

NP  and body is the 

same as between the momentum of one MP with the weight 
NM . I.e., the system can be considered as a point with the 

coordinates of the CM that moves with velocity equal to the sum of the velocities of all MP. Therefore the dynamics of 

the system, unless you consider changing its internal energy, is determined by Newton's equation of motion for MP 

with a mass equal to 
NM . Hence it is clear that in a CM coordinate system the momentum of the system is equal to 

zero and 2

1
2

N

N ii
T mv

=
=∑ = 2/2

NNVM +∑ =

N

i ivm1

2 2~ . It means that unlike one MP, the total kinetic energy of motionless 

system is equal to the sum kinetic energies of MP determined by their velocities relative to the CM. I.e., one part of 

kinetic energy of system is connected with motion of the MP relative to the CM, and the second part is connected with 

the motion of the system CM. Hence, the velocity of system is determined by the velocity of its CM whose position is 

defined by a radius-vector 
NR . 

Thus, the system’s energy consists of the kinetic energy of the MP motion relative to the CM and the potential 

energy of their interaction. The sum of this energy called the internal energy of the system. Then the energy can be 

written as a sum of internal energy plus the system’s energy in the field of external forces. I.e.: 
envins

N

tr

NN UETE ++= ,      (6) 

where 
N

ins

N

ins

N UTE +=  is internal energy, 
ins

NT =∑ =

N

i ivm1

2 2~  is a kinetic part of internal energy, NU  is a potential 

part of internal energy, determined by the interactions of MP. 

Quadratic function of the kinetic energy can be expressed through a quadratic function in which arguments are the 

velocities of the MP in relative to the CM and the velocity of the CM system. This conclusion is follow from the 

equality: 2

1

N

ii
N v

=∑ = 2

1
)(∑ =

N

i iv +∑ ∑−

= +=

1

1 1

2N

i

N

ij ijv . So we have: 
12 2

1 1
[ ( / ) ] / 2

N N

N N N iji j i
T M V m N v

−

= = +
= + ∑ ∑  (а). The 

first term in (a) is the kinetic energy of the CM motion. The second term is the kinetic part of the internal energy 

determined by the relative velocities of MP. Let's transform the energy 
NT  by replacement: 

iNi vVv ~+= , where 

iv
~

 is a MP velocities relative to the CM. As 0~
1

=∑ =

N

i iv , then: 
NT = 2/2

NNVM +∑ =

N

i ivm1

2 2~ . Using (a) we will 

find: ∑ =

N

i ivm1

2 2~  = ∑ ∑−

= +=

1

1 1

2
)2/1(

N

i

N

ij ijmvN . Therefore ins

NT =∑ =

N

i ivm1

2 2~ =( Nm / ∑ ∑
−

= +=

1

1 1

2N

i

N

ij ijv )/2. 

Thus, the law of energy conservation for the system can be formulated as follows: the sum of the system’s 

kinetic energy of motion, its internal energy and of the potential energy in the external field of forces always is a 

constant along the trajectory of the CM. The difference of the energy conservation laws for the system and for MP 

leads to a qualitative distinction for their motions. Indeed, the trajectory MP is defined by transformation of potential 

energy of an external field only into the kinetic energy of its motion. But the trajectory of system is defined by trans-

formation of potential energy of an external field both to its kinetic energy and to internal energy. Thus, the natural 

variables that define these types of energy are macro and micro variables. 

 

THE SYSTEM’S MOTION EQUATION. There are basic differences of dynamics of the systems, possessing 

structure and the sizes, from dynamics of MP. The motion of MP is uniquely determined by the point in space. But SP 

motion is determined by the area of space occupied with it and CM position. Therefore for unequivocal definition of 

dynamics of system it is necessary to know, both change of its kinetic energy of the system motion and change of 

internal energy as energy of an external field goes on change of these two types of energy. The system’s motion 

depends from its sizes if the spatial heterogeneity of external forces is exist. 

Another fundamental difference between the dynamics of MP and the dynamics of the system base on the fact that 

for one MP the principle of superposition of forces is valid, while for the different MP it is not so. Indeed, the change 

of the internal energy has a place when the sum of internal forces is equal to zero. Therefore if to summarize the 

equations of motion for each MP, we will lose the terms which determine the change of the internal energy. But the 

system’s motion is determined by the change of two types of energy: the system’s motion energy and internal energy. 

Therefore the motion equation should be submitted in the variables that determine the motion of its CM and motion of 

the MP relative to the CM.  

Differentiating eq. (6) over time we obtain [5, 6]: 
envenv

N

ins

NNNN FVEVMV Φ−−=+ && ,    (7) 

where )~,(
1 iN

N

i

env

i

env rRFF ∑=
= , ∑ =

+=+=
N

i iiiii

ins

Ni

ins

N

ins

N rFvmvrUvTE
1

))~(~(~)~()~( && , 
iNi rRr ~+= , 

iNi vVv ~+= , 
i

envenv

i rUF ~/∂∂= , 

)~,(~
1 iN

N

i

env

ii

env rRFv∑=
=Φ , ,

i i
v r% % , are the velocities and coordinates of MP relative to the CM, ,N NV R  are the velocity and 

coordinates of the CM. The eq. (7) is equation of system’s energy balance. In the left-hand side the first term 
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tr

NT =
N N N
V M V&  is a change of system’s kinetic energy. The second term is a change of system’s internal energy, 

defined in the coordinates and velocities of MPs relative to the CM. The right-hand side defines the work of external 

forces that change the energy of the system. Here the first term defines the change of the 
tr

NT . The second term defines 

the change of the ins

NE . 

Now let us take the external forces which scale of heterogeneity is commensurable with the systems scales. In this 

case we can write: envF = )~( i

env rRF +  where R  is a distance to the CM. If 
irR ~>> , than the force envF  is expanded in 

a small parameter. Retaining in the expansion of the zero and first order, we write: env

iF =
0R

envF +
i

R

env

i rF ~)(
0

⋅∇ =
0

env

i
F  + 

0
( )env

i iF r∇⋅ % . Because 0~~
11 ∑∑ ==

==
N

i i

N

i i rv  and envenv

i

N

i

env

i FFNF 001 0 ==∑=
, we will have: 

)( 0

env

NNN FVMV +& +∑ =
+

N

i iiii rFvvm
1

))~(~(~ & ≈ ∑ =
⋅∇−

N

i iii

env rvF
10

~~)( ,  (8) 

The work of the potentially part of force, 
envF0

, change the system’s motion energy. The term in the right-hand 

side has a first order of smallness as the condition 
irR ~>>  does not mean smallness of the 

ii vr ~~ =& . This term is 

proportional of the gradient of external force and determines the work on change of internal energy. Its variation can’t 

be expressed by the integral of the gradient of any scalar function on the way. It is because the change of internal 

energy is a sum of work of external forces on motion of MP, while the sum of these forces is zero. But these forces can 

be expressed through the effectiveness of the change in internal energy. This can be done so.  

Multiplying (7) on 
NV  and dividing result on 2

NV , we obtain the system’s motion equation: 

0

env

N N N NM V F Vα= − −& ,      (9) 

where 2/)( N

ins

N

env

N VE&+Φ=α .  

The second term in the right-hand side defines a non-potential part of forces whose work changes the internal 

energy. If the external field of force is homogeneous or when the forces between MP are much more of the external 

forces, this term is equal to zero and the eq. (9) becomes the Newton’s motion equation. 

Thus, to obtain the motion equation for the structured body, it is necessary to execute consistently the following 

operations. Firstly, it is necessary to present a body as a system of microparticles. By transition to micro and macro 

parameters we present the system’s energy as a sum of the motion energy and an internal energy. From here we obtain 

the equation of energy streams for these types of energy. From here we will come to a system’s motion equation which 

takes into account non-potential force changing its internal energy. It is important to note that the eqs. (6-9) strictly 

follow from Newton's laws for MP. Therefore, all properties of the dynamics of such systems, which follow from 

these equations, are determined only by these laws. 

 

SYSTEMS OF SP. The above equations are valid for the general case of any systems of potentially interacting 

MP in the external field of forces. In general case due to the nonlinearities they are not integrable. But integration is 

possible if the system represents as a set of equilibrium SP. The equilibrium of SP means that it can be split on the 

rather large equilibrium subsystems which are motionless relative to each other. Therefore the SP internal energy is the 

sum of the internal energies of subsystems. I.e. the collective processes of energy, momentum and mass flows into SP 

are absent. Therefore at feeble enough action on SP not breaking equilibrium, its motion will be determined by the 

change of the motion energy and an internal energy.  

In the approach of the local equilibrium approximation any nonequilibrium system can be represented by a set of 

SP which has a relative motion to each other. In the thermodynamic limit at enough weak interactions, each of the SP 

during the entire process can be regarded as equilibrium [9]. Then the dynamics of nonequilibrium systems can be 

described by the eq. (9). Let us the system consists of two SP: L  and K . Let us L  is a number of MP in L -SP, а K  

is a number MP in K -SP, i.e. L K N+ = . Let us CM for two SP motionless, i.e. 0L KLV KV+ = , where 
LV  and 

KV  

velocities of two SP relative CM of the system. Differentiating energy of system on time we will ob-

tain:
1

N

i ii
v v

=∑ & + 1

1 1

N N

ij iji j i
F v

−

= = +∑ ∑ =0, where 
ijij rUF ∂∂= / . For finding the equation for L -SP, we gather at the left 

hand side only the terms defining the change of kinetic and potential energy of interaction of L -SP elements among 

themselves. All other terms we displaced into the right hand side and combined the groups of terms in such a way that 

each group contained of the terms with identical velocities. In accordance with Newton equation, the groups which 

contain terms with velocities of the elements from K -SP are equal to zero. As a result the right hand side of the 

equation will contain only the terms which determine the interaction of the elements L -SP with the elements K -SP. 

Thus we will have: 
L LL

L

i i iv v∑ & + 1

1 1 1 1L L L L KL L L L K
L K

L L L K

i j i j ji j i i j i j
F v F v

−

= = + = =
=∑ ∑ ∑ ∑ , where double indexes are entered for a 

designation of an accessory of a particle to corresponding subsystem. If we will make replacement 
L Li i Lv v V= +% , 

where 
Li
v%  is a velocity of Li  particle in relative to CM of L -SP then we obtain the equation for L -SP. The equation 

for K -SP can be obtained in the same way. As a result we will have: [6, 11]:  
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Ψ−Φ−=+ LL

ins

LLLL VEVMV && , (10)  Ψ+Φ=+ KK

ins

KKKK VEVMV && , (11) 

where 
1 LL

L K

ii
F

=
Ψ =∑ , ∑ =

=Φ
L

i

K

iiL
L LL

Fv
1

~ , ∑=Φ
K

i

L

jjK
K KK

Fv~ , 
L

K

iF =∑ =

K

j jiK kL

F
1

, 
K

L

jF =∑ =

L

i jiL kL

F
1

, 

1

1 1
[ / ]

L L L L L LL L L

L Lins

L i j i j i ji j i
E v mv L F

−

= = +
= +∑ ∑ && % % , 

1

1 1
[ / ]

K K K K K KK K K

K Kins

K i j i j i ji j i
E v mv K F

−

= = +
= +∑ ∑ && % % , 

L
M mL= , 

K
M mK= . 

The eqs. (13, 14) are the equations of energy exchange. The potential force, Ψ , defines motion of the CM of SP. 

The non-potential forces which determined by the terms 
LΦ  and 

KΦ , will transform the motion energy of SP into 

the internal energy as a result of chaotic motion of elements one SP in the field of the forces of another SP. They are 

dependent on velocities and can’t be expressed through the gradient from any scalar function. These forces are equiva-

lents to dissipative forces. The SP motion equations corresponding to the equations (10, 11) can be written as [6]: 

LLLL VVM
rr&r α−Ψ−= ,  (12)    

KKKK VVM
rr&r α+Ψ= ,  (13) 

where 2/)( LL

ins

LL VE Φ+= &α ; 2/)( K

ins

KKK VE&−Φ=α   

The eqs. (12, 13) are written down for SP which are considered equilibrium during all process of interaction. In 

this case we can neglect by the energy, momentum and mass flows in SP. Due to equilibrium of SP its internal energy 

can’t be transformed into SP motion energy. This follows from the law of conservation of momentum, according to 

which neither any internal MPs motions can change of SP velocity. From here we come to a conclusion about irre-

versibility of SP dynamics. Therefore, coefficients 
KL αα ,  are friction coefficients.  

Dynamics of non-equilibrium systems is determined by the eqs. (12, 13). Consequently the Lagrange Hamilton 

and Liouville equations for the systems, whose elements are the SP, will also be determined by these equations. It is 

well known that the Hamilton principle for MP derived from differential D’Alambert principle using Newton’s equa-

tion [2]. For this purpose the time integral of virtual work ewδ  done by effective forces is equated to zero. Integration 

over time is carried out provided that external forces possess a power function. It means that the canonical principle of 

Hamilton is valid only for cases when ∑ −= VRF ii δδ  (b), where −i is a particle number, and 
iF  - is a force acting 

on this particle. But for interacting SP the condition of conservation of forces is not fulfilled because of the presence of 

a non-potential component. Therefore in the equations of Lagrange, Hamilton and Liouville for systems from SP, the 

terms caused by non-potentiality of collective forces are appeared. The Liouville equation for SP is written as [4, 6]: 

∑ =
∂∂−=

R

L LL VFfdtdf
1

/       (14) 

Here −f  is a distribution function for a set of SP, 
LF  is a dissipative force, LV  is the velocity of −L SP. 

The state of this system can be defined in the phase space which consists of 16 −R  coordinates and momentums 

of SP, where R  is a number of SP. Location of each SP is given by three coordinates and their moments. Let us call 

this space us S-space for SP in order to distinguish it from the usual phase space for MP. The S-space unlike usual 

phase space is compressible though total energy of all MP is a constant. It is caused by transformation of the motion 

energy of SP into their internal energy. The SP internal energy can’t be transformed into the SP energy of motion as 

SP momentum can’t change due to the motion of its MP. Therefore S-space is compressible because the internal 

energy will increase until the relative motion of SP will not disappear. 

It is necessary to redefine the geometrical concept of an interval [2] for systems whose elements are the SP. In-

deed, we have shown that the dynamics of the SP is determined by two types of symmetry: the internal symmetry and 

the symmetry of the space. Therefore the motion of the system is determined by two types of energy: kinetic energy of 

the SP and its internal energy. Each of these types of energy has its own type of forces. This is reflected in the fact that 

the geometry of motion of the SP, in contrast to the geometry of motion of the MP, is the sum of the squares of the two 

intervals, that can be written as [2, 7]: 
2 2 2

tr insds ds ds= + . Here 
2

trds  is a square of an interval corresponding to SP 

motion energy, 2

insds - is a square of the interval corresponding to SP internal energy. 

Thus, the square of the interval of a nonequilibrium system splits into the sum of the squares of the two independ-

ent intervals. The first one corresponds to the system motion while the second corresponds to its internal energy. These 

intervals are orthogonal since they satisfy the Pythagorean Theorem. 

 

MECHANICS OF SP AND THERMODYNAMICS. Difficulties of substantiation of the empirical laws of 

thermodynamics based on fundamental laws of physics are connected with the reversibility of the Newton’s motion 

equations. The reversibility is due to its constructing on the bases of unstructured body’s models. Acceptance in 

attention of structure leads to occurrence of non-potential component of the collective forces of body’s interaction 

changing their internal energy. For SP this energy can only increase due to the energy of its motion. It is equivalent to 

irreversibility of the SP dynamics. Let us explain this conclusion. 

The presence of reversible dynamics for SP would mean that its internal energy is capable to pass into motion en-

ergy. In turn this would mean the possibility of increasing momentum of SP at the expense of its internal energy. But 

this contradicts the law of conservation of momentum. Indeed, for each of the equilibrium subsystems into which 

splits SP the sum of the velocities of MP in subsystems and sum of their interaction forces are equal to zero. But for 

SP momentum appearing it is necessary that at least in one of subsystems the requirement of equality to zero of the 
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sum of forces has been disrupted. It is impossible because according to a law of momentum conservation any of 

subsystems cannot acquire a relative velocity or due to internal MP motion or forces from unmovable subsystems. I.e. 

internal energy of the SP can’t transform into the energy of its motion. It is equivalent to irreversibility. From the 

mathematical point of view this conclusion follows from the fact that microparameters determining the MP motion are 

not dependent on the macro parameters that determine the SP motion energy. This mechanism of irreversibility is 

deterministic because its follows from the Newton's laws. There is a fundamental difference between deterministic and 

probabilistic mechanisms. For deterministic mechanism the “coarse-grain” hypothesis isn’t required.  

Let us explain how can connect the mechanics SP and thermodynamics [5, 6]. In thermodynamics the work of ex-

ternal forces breaks up on two parts. One part is related to the reversible work. Another part of energy goes into heat-

ing system. According to it the basic equation of thermodynamics looks like: dE dQ Pd= − Υ . Here E  is the energy 

of a system; Q  is the thermal energy; P  is the pressure; Υ  is the volume. As we deal with equilibrium systems, then 

dQ TdS= , where T - temperature, S - entropy. According to the eq. (7), coming into the system energy can be 

divided on two part. There are energy of relative motion of the SP and its internal energy. It was showed [5] that in 

thermodynamics to the change of the SP energy of relative motion there corresponds the value of PdΥ , and to change 

of SPs internal energy there corresponds value, TdS . Thus, we will come to the basic thermodynamic equation if in 

the equation (7) to carry out standard transition to thermodynamic parameters [5, 9, 10]. 

Let us take the system consisting from «R » numbers of SP. Each SP consists from 
LN  number of MP and 

LN >>1, where RL ...3,2,1= , ∑ =
=

R

L LNN
1

- full number MP in system. Then the share of energy, which goes on 

internal energy increasing, is determined by the expression [5, 6]: 

{ }∑ ∑ ∫∑= =
=∆

R

L

N

k Ls k

L

ksL

L

EdtvFNS
1 1

/][     (15) 

Here LE  is the kinetic energy of L -SP; s - is a number of the external elements which interact with elements k  

belonging to the L -SP; 
L

ksF  is a force, acted on k -element; kv  -is a velocity of the k  element. 

The eq. (15) can be viewed as entropy definition. This definition of entropy corresponds to Clausius definition [9, 

10]. Difference consists only that this entropy follows from analytical expression for the change of an internal energy 

obtained by us on the basis of Newton's laws. From the eq. (15), it is possible to obtain the value of the entropy pro-

duction and obtain the conditions which necessary for sustain the non-equilibrium system in the stationary state [6].  

Mechanics of SP leads to statistical physics and kinetics. Indeed, the velocities of SP are determined by average 

values of velocities of MP. The sum of the MP velocities relative to the CM is equal to zero. Thus the internal energy 

is equivalent to the rms fluctuation of the MP velocities relative to the system’s velocity. This means that the dynamics 

of the SP is expressed through the first and second moments of the motion [9]. 

 

CONCLUSION. The key idea of expansion of the Newtonian mechanics allowing to include the dissipative forc-

es into description, consists in replacements of MP on SP. External simplicity of this idea does not mean its 

obviousness. Indeed the dynamical characteristics of the system do not follow directly from simple plurality of 

dynamical characteristics of elements. This is evident from the fact that the structure of the system determines not 

only its motion but also the collective forces of interactions. In connection with the construction of the mechanics of 

the SP requires knowledge of the principles of synthesis of the properties of systems based on the properties of its 

elements [11]. The first question is how to find the SP motion equation on the basis of Newton's laws without attracted 

of some statistical hypotheses. 

It became clear as a result of studying of dynamics of two MP systems that SP mechanics must to be built in space 

of micro and macro variables. In these variables the energy of SP breaks up on the energy of its motion and an internal 

energy. The SP motion energy is expressed through macro-parameters - co-ordinates and velocities of CM. Its change 

is connected with the work of the external force acted on the CM of SP. The internal energy is expressed through 

micro-parameters. The increasing of internal energy is provided by the work of the external forces which change the 

relative motion of MP. The internal and external forces are independent. Therefore the SP motion energy and internal 

energy are independent also. Independence internal and external forces tell us about presence two types of symmetry. 

It is symmetry of space and symmetry of system. According to these types of symmetries the system’s energy 

breaks up on two invariants: the SP motion energy and SP internal energy.  

The major factor causing difference of SP dynamics from MP dynamics is a structure and an internal energy. Tak-

ing SP as a system’s elements we, thereby, have supplied this elements with a new properties – structure and an inter-

nal energy. The change of an internal energy provided by the work of collective forces is a cause’s difference of SP 

dynamics from dynamics of MP. 

Newton's laws were obtained for models structureless bodies. To use them to determine the equation of motion of 

real bodies with the structure, we took a model of SP, consisting of potentially interacting MP. Using the Newton's 

law for MP, we find the equation of motion of such a SP, taking into account changes in its internal energy. This was 

done by using the expression for the energy of the SP by shifting to the variables that characterize its dynamics. Deri-

vation of the SP motion equation is carried out so. We write the SP energy through independent macro and micro-

variables. In these variables, it splits into SP’s energy of motion and the internal energy. Differentiating this energy in 
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time, we obtain the equation for the flux of the motion energy and internal energy. From here we come to the SP’s 

motion equation. Dissipative forces are defined through the relation of this work to the SP’s motion energy. 

Irreversibility is a new property of the SP dynamics. The mechanism of irreversibility is related to the transforma-

tion of SP motion energy into the internal energy and the inability of the inverse transformation due to momentum 

conservation law. Because the SP motion equation obtained on the basis of Newton's laws, the irreversibility of the 

dynamics of the SP is deterministic. If we neglect the change in internal energy, the motion of the SP will be deter-

mined by Newton’s motion equation.  

There are both similarities and differences between accepted today a probabilistic explanations of irreversibility 

[3] and our explanations. In the basis of probabilistic mechanism of irreversibility is a fact of randomization of trajec-

tories of Hamiltonian systems in phase space due to the exponential instability and the hypothesis of “coarse-grain“ of 

the phase space. In the deterministic mechanism of irreversibility both the exponentially instability and mixing in 

phase space determine the efficiency of transformation of the motion energy into the internal energy. But the irreversi-

bility follows from the momentum conservation law and the non-potentiality of the forces which transform the energy 

of motion into the internal energy. The hypothesis about «coarse-grain» of the phase space is not required. In accor-

dance with a deterministic mechanism of irreversibility in classical mechanics the concept of entropy is appeared. This 

entropy corresponds to the empirical entropy offered by Clausius and is consistent with the mathematical form of its 

probabilistic definition proposed by Boltzmann.  
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Abstract 
Hamilton's variational principle is used to derive the nonlinear response of floating roofs 

of cylindrical liquid storage tanks due to harmonic base excitations. The contained liquid is 

assumed incompressible and inviscid. The variational principle accounts for nonlinearity 

caused by large deflections of the floating roofs. Derived nonlinear ordinary differential 

equations has cubic nonlinear stiffness terms similar to Duffing equation. Due to small 

damping of the fluids, storage tanks are subjected to the resonance in the case of 

coincidence of natural frequency with excitation one. It is shown that accounting for large 

deflections of the roof plate, reduces the height of sloshing induced surface waves. 

Evaluating the response of nonlinear model for increasing amplitude of harmonic 

excitations, gives rise to the appearance of sub and super harmonics in the response. 

Further increase of excitation amplitude increases the contribution of sub and 

superharmonics in the response and for some excitation amplitudes the response become 

chaotic. Fractal structure of the Poincare maps is the evidence of the chaotic responses.  

Keywords: Floating roof, variational principle, large deflection, sloshing. 

 

1. Introduction 

Floating roofs are used in the petroleum industries for storage of liquid 

hydrocarbons in atmospheric storage tanks. Noting that serious damages in 

floating roofs due to large deflections could be attributed to the sloshing of the 

contained liquid [1], it will be essential to take into account for interaction 

between floating roof and supporting liquid in the nonlinear analysis of the 

system for base excitation.  

Many investigations have been done on the dynamic response and sloshing 

behavior of the storage tanks. Assuming small surface waves, and using potential 

theory Jacobsen [2] and Senda and Nakagawa [3] studied the sloshing effects in 

cylindrical storage tanks. Nakagawa [4] and Yamamoto [5] considering the 

interaction between rigid massless floating roof and contained liquid studied the 

sloshing effects in the storage tanks. Sakai et al. [6] employing the linear 

potential theory and using the variational principle derived the free vibration 

properties of the system and compared the results with the experiment. Matsui [7] 

developed an analytical solution for the response of cylindrical storage tanks with 

floating roofs under seismic excitations.Due to small amount of damping in these 

models large amplitude oscillation is anticipated for near resonance excitation. 

This indicates that accounting for different sources of nonlinearity in the model. 

Different researcher considered different source of nonlinearity in their 
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investigations. In an static analysis and considering the large deflections of the 

floating roof, the authors studied the importance of the flexural and membrane 

stiffnesses on the stress analysis of deck plate [8]. Frandsen [9] carried out 

extensive investigations on the nonlinear sloshing behavior of rectangular storage 

tanks without roof for vertical, horizontal and combined excitations. Cho and Lee 

investigated the hydrodynamic characteristics of large amplitude sloshing 

response of storage tanks with baffles using nonlinear finite element method [10].   

In this study, using the Hamilton's variational principle for large deflection 

analysis of the floating roofs and contained liquid, the sloshing response of the 

floating roof under harmonic excitation is investigated. Weighted residual method 

is adopted to minimize the error in the integral solution of the coupled field. It is 

shown that the resulting equations are similar to the Duffing equation with cubic 

nonlinearities. The discritized Duffing type equations solved numerically for 

harmonic base excitations with different acceleration amplitudes and frequencies.  

By sweeping the excitation amplitudes, the bifurcation diagrams are plotted at 

different frequencies near the resonance conditions. Presence of sub and super 

harmonics and chaotic vibrations are examined using Poincare maps and 

frequency spectrums.  

                 

2. The Variational principle  
Figure 1 depicts a typical liquid storage tank with single deck floating roof and 

the cylindrical coordinate used in the analysis. Simultaneous application of the 

Hamilton's variational principles on the deck plate and the liquid facilitates the 

problem of imposing the compatibility of deformation between the floating roof 

and the supporting liquid.  

 
Figure 1. Typical liquid storage tank with single deck floating roof. 

 

The extended Hamilton's principle for coupled fluid-structure system considering 

only the conservative forces reads 
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where T, U and F are the kinetic energy and strain energy of the deck plate and 

fluid Lagrangian, respectively. For incompressible and inviscid fluid it is possible 

to treat fluid flow using potential function. Assuming no separation between fluid 

and deck plate, the fluid Lagrangian will be   
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where Sd is the deck plate area (deck plate-fluid interface), w is the plate 

deflection and Φ is the velocity potential function. Considering the large 

deflection theory and assuming that the in-plane displacements are infinitesimal 

and ignoring associated nonlinear terms in strain-displacement relation, the 

strain-displacement relation can be expressed as 
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where ε denotes the deck plate strains and ur, uθ and w are radial, tangential and 

flexural displacements of the deck plate. Decomposing the displacements into 

flexural and membrane components, we have 
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 (4) 

Where it is assumed that the mid plane displacement in peripheral direction is 

negligible in comparison with flexural and radial displacements. The variation in 
the strain energy of the deck plate can be obtained by integrating on the deck 

plate volume 

dVdtU rr

V

rrrr

t

t

f

i
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Defining time dependent generalized coordinates of Bi and Ci, we decompose the 

flexural and radial displacements in terms of interpolation functions ξi and ηi as 
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Now the with substitutions of Eq. 6 in to Eq. 5 the variation of strain energy can 

be rewritten as  
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Where H, Γ, Q and χ are the coefficients, which can be calculated using 

numerical integrations methods. The kinetic energy of deck plate is 

∫=

ds

ddSwmT 2

2

1
&  (8) 

Where m denotes the unit mass of the deck plate. Rewriting the deck plate 

deflection in terms of interpolation functions and evaluating the variation of 

kinetic energy we arrive at  
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This can be expressed as 
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Where P is two-dimensional coefficient, which can be calculated.On the other 

hand the potential function in the fluid Lagrangian, should satisfy the Laplace 
equation subject to the following boundary conditions 
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where X
&

is the velocity of base excitation and Sd, Sb and Sw are deck plate-fluid 
interface, tank bottom surface and tank wall surface, respectively. Solving the 

Laplace equation subject to the second and third boundary conditions gives the 

potential function as  

θ
ε

ε

εε

cos

)cosh()(

)cosh()(

)(

1 1

1



















+=Φ ∑
=

K

k
k

k

kk

k

H
a

J

z
a

r
a

J

tAXr
&

 (12) 

where J1 is the Bessel function of the first kind of order one, Ak is time dependent 

modal amplitude and εk is the root of 0)( =′
kJ ε . Evaluating the variation in 

the Lagrangian of the contained liquid yields the following compact form. 
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where  S, U, F and T the confidents with integral forms. After evaluation of the 

first variation of different terms and substituting in Equation 1, we conclude first 

variations of an integral form equation. Then by Setting equal to zero the 

coefficient of δA and δC, it is possible to evaluate A and C in terms of B as 
follows  

∑∑ ∑∑∑

∑∑

= = = ==

−

==

−

Ψ=Γ−=

=

I

l

I

k

I

l

I

k

kllkikllkj

J

j

iji

I

i

iik

K

l

lkk

BBBBHC

BTSA

1 1 1 11

1

11

1

][

][ &&

 (14) 

Now equating the coefficients of iBδ  to zero and substituting expressions for A 

and C from Equations 14, the governing nonlinear differential equation for the 

generalized coordinate B becomes  

Xg ff
t

f
&&&& FχBBUQBTTSP

1 ρρρ =++++ − 3
)()(  (15) 

This is the equation of flexural vibration of the deck plate accounting for the large 

deflections in the deck plate and at the same time considering the fluid-structure 

interaction. Accounting for fluid-structure interaction leads to additional mass 

and stiffness matrixes simulating fluid’s added mass and added stiffness.  

Considering the large deflections of deck plate gives rise to the cubic stiffness 

term in Equation 16. Due to similarity between this equation and Duffing 

equation, emergence of rich dynamics including quasi-periodic and or chaotic 

responses are expected. Due to small amount of damping in the fluid, near 

resonance excitation could result in violent response. In this case, the nonlinear 

stiffness term could have a suppressing effect reducing the sloshing induced wave 

elevation. Considering the form of excitation (Equation 12c) and using the shape 

functions of deck plate in air, following interpolation functions for flexural and 

radial deflections are used 

)cos()]()([),( 11 θβαθξ rkIrkJr iiiii +=  

)cos()sin(),( θλθη
a

r
r ii =  

(16) 

where I1 denotes the modified Bessel function of the first kind of order one and ki  

and λi's are wave numbers. The wave number and the ratio of the amplitudes αi 
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and βi can be determined from the requirement of free-edge natural boundary 

conditions (including zero shear and moment) on the deck plates edge.  

 

3. Numerical simulations and results 
The numerical simulation investigates the sloshing response of a liquid storage 

tank with floating roof to harmonic excitations of different amplitudes and 

frequencies. Table 1 gives the tank parameters used in the simulations. Damping 

in the system is considered using a stiffness-proportional Rayleigh damping with 

damping ratio of 0.5% at systems first natural frequency.  

 

Table 1. The values of parameters used in the analysis. 
Parameter Value 

Tank Radius (m)  4 

Tank Height (m) 3 

Mass density of the deck plate (kg/m2) 77 

Mass density of contained liquid (kg/m3) 850 

Poisson’s ratio of deck plate 0.3 

Deck plate thickness (m) 0.01 

Module of elasticity of deck plate (N/m2) 2.1×109 

 

In the following the appearance of quasi-periodic and chaotic response due to 

presence of the nonlinear term in Equation 15 is investigated.Due to presence of 

the cubic nonlinearity in this equation and its similarity with Duffing equation, 

appearance of strange response is expected. To study the nonlinear behavior of 

the system the phase plane, Poincare map and frequency spectrum of the 

responses are employed. To evaluate the emergence of the nonlinear effects due 

to large deflection of deck plate, the strange responses are studied near the 

resonance conditions.  

Figure 2 depicts the phase plane and Poincare map of the response for excitation 

frequency 0.6 Hz and ground acceleration amplitude 2.84 m/s
2
 . Interesting point 

in this figure is the emergence of subharmonics in the response. In contrast to the 

linear case where the Poincare map, includes a fixed point, in nonlinear cases the 

presence of the subharmonics results in the emergence of multiple points in the 

Poincare map. 

By increasing the excitation amplitude to 5.26 m/s
2
, the simulation results are 

shown in Figure 3 where the appearance of the horse show like structure of the 

Poincare map is the evidence of the chaotic motions. To show period doubling 

bifurcation for increasing level of ground acceleration, in Figure 4 the bifurcation 

diagram for excitation frequency of 0.6 Hz is plotted. This figure shows that for 

some ranges of excitation amplitudes, subharmonics are emerged and for some 

other amplitude, the response becomes chaotic. 
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(a) (a) 

  

(b) (b) 
Figure 3. Response of nonlinear model for 

ground motion acceleration amplitude of 5.26 

m/s2 and excitation frequency of 0.6 Hz, a) 

phase plane, b) Poincare map (50000 points), 

c) spectrum.  

Figure 2. Response of nonlinear model 

for ground motion acceleration 

amplitude of 2.84 m/s2 and excitation 

frequency of 0.6 Hz, a) phase plane, b) 

Poincare map, c) spectrum. 

 

To study the effect of frequency variation near the resonance condition (where 

the nonlinear term has significant effects) the bifurcation diagram is also plotted 

for excitation frequency of 0.5 Hz, in Figure 5. Increasing the excitation 

amplitude, different type of the responses emerges, representing period doubling 

rout to chaos.  

 
Figure 4. Bifurcation diagram of the roof 

edge displacement for increasing ground 

accelerations and excitation frequency of 

0.6 Hz. 

Figure 5. Bifurcation diagram of the roof 

edge displacement for increasing ground 

accelerations and excitation frequency of 

0.5 Hz. 
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4. Conclusion 
Using Hamiltonian variational principle the governing equations for sloshing 

response of floating roofs accounting for large deflection of deck plate are 

derived. Similarity is found between nonlinearity of derived equation and those of 

Duffing equation. It is shown that this nonlinearity has suppressing effect for near 

resonance excitation and could substantially reduce the wave height. 

Investigating the response for near resonance excitations results in appearance of 

sub and super harmonics in the response and further increase of the excitation 

amplitude leads to chaotic response. Phase plane diagram and fractal like 

structure of the strange attractors in Poincare map are used to clarify the chaotic 

responses.  
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 Adaptive Backstepping Neural Network Control for 

Mechanical Pumps 

 
Kyriakos G. Vamvoudakis, Manolis A. Christodoulou 

 

Abstract: In this paper, an Adaptive Backstepping Neural Network control approach is 

used for a class of affine nonlinear systems which describe the pump model in the strict 

feedback form. The close loop signals are semi globally uniformly ultimately bounded and 

the output of the system is proven to follow a desired trajectory. Simulation results are 

presented to show the effectiveness of the approach proposed in order to control the pump 

output. 

 

1. Introduction 
Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two principal 

objectives in the scientific study of his environment: he wants to understand and 

to control. The two goals reinforce each other, since deeper understanding permits 

firmer control, and, on the other hand, systematic application of scientific theories 

inevitably generates new problems which require further investigation, and so on. 

 Adaptive control [1], [10] is a powerful tool that deals with modeling 

uncertainties in nonlinear (and linear) systems by on line tuning of parameters. 

Very important research activities include on-line identification [11], [13] and 

pattern recognition inside the feedback control loop. Nonlinear control includes 

two basic forms of systems, the feedforward systems and the feedback systems. 

The strict feedback systems can be controlled using the well known 

backstepping [1], [4], [15] technique. The purpose of backstepping is the 

recursive design of a controller for the system by selecting appropriate virtual 

controllers. Separate virtual controllers are used in order to stabilize every 

equation of the system. In every step we select appropriate update laws. The strict 

feedforward systems can be controlled using the forwarding technique that is 

something like backstepping but in reverse order. Other cases of systems that can 

be converted to the previous forms are part of a larger class of systems that are 

called interlaced systems as described by [17], and [18]. In these systems we 

combine backstepping and forwarding techniques together in order to recursively 

design feedback control laws. Interlaced systems are not in feedback form, nor in 

feedforward form.  These systems have a specific methodology that differs from 

 
K. G. Vamvoudakis is with the Automation and Robotics Research Institute, The University of 

Texas at Arlington, 7300 Jack Newell Blvd. S., Ft. Worth, TX 76118, e-mail: kyriakos@arri.uta.edu; 

 M.A Christodoulou is with the Department of Electronic and Computer Engineering,Technical 

University of Crete, Chania, Crete, GREECE 73100 GR, email: manolis@ece.tuc.gr and 

Dipartimento di Automatica et Informatica, Politecnico di Torino, Piemonte, Torino, ITALIA, 10128 

IT, email: Manolis@polito.it 

589

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 

mailto:kyriakos@arri.uta.edu
mailto:manolis@ece.tuc.gr


  

 

 

 

backstepping and forwarding. We don’t start from the top equation, neither from 

the bottom.  

Other special cases of systems are part of other forms that we call mixed 

interlaced and we introduce their study in the present paper. The methodology is 

based on classical interlaced systems and is developed by the authors. We want to 

make the systems solvable by one of the well known backstepping and forwarding 

methods. This can be reached after some specific steps that convert the system 

into a known form. We start from the middle equation and we continue with the 

top. The previous method is based on classical interlaced forms that are 

introduced by [17] and [18] and can be extended to more complicated systems. 

A lot of researchers developed a series of results that generalized and 

explained the basic idea of nonlinear control. Teel [19] in his dissertation 

introduced the idea of nested saturations with careful selection of their parameters 

to achieve robustness for nonlinear controllers. After Teel [19], [17] proposed a 

new solution to the problem of forwarding that is based on a different Lyapunov 

solution.  

 In this paper we control a pump which is a fifth order nonlinear model, but for 

simplification purposes we use a third order reduced model that exists in the 

literature. The pump has inherent structural uncertainties with high degrees of 

uncertainty, thus we are forced to use our non-linear adaptive control techniques. 

2. Problem Analysis 

A. System Pump Description 

Consider a Pump model found in the literature [20] which is presented by the 

following well known scheme. (The various variables are explained later in the 

paper. Here we give the basic figure) 

 

     

dP
bK

aP
cK

aK

dl

d
aQ

cx

ax

bl pl

 
 

Fig1: Schematic representation of a general Pump mechanical design 

 Assume we have second order dynamics  
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  Where 
cx is the piston linear displacement, a quantity that can always be 

measured. 

 Consider certain volume within the hydraulic actuator 

   0 tana d a a d dV V S l   ; the dynamics of pressure within the control actuator 

are: 
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where the actuator ingoing/outgoing flow is 
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Remark 1: The outgoing actuator flow has been assumed to be positive, i.e., 

0 0c ax Q   . 

Remark 2: The valve stroke is modelled as 

  2

1 2c c cf x a x a x  .                                                                                          (4) 

The dynamic behaviour of the disc is governed by the following torque equations: 

 
     

     

21
, tan

,

d d

d T d d c d d

d

d d d d d a c d d a a p d d

K f
J

f P l K x l S P f P

 

     


   



   

      

                                      (5) 

with 
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 
 

 
 

 

 
 

 

 
 

 
 

02

2

4

2

4

2 2

2 2

2

2

4

;
2 cos

,
2cos

tan ;
cos

,
2cos

2cos

p p

p d

d

p p

d d d d d

d

p p

c d d

d

p p

T d d a b b

d

p p

d d

d

NA l
f

NC l
f P K P

NM l
f

NM l
K l K K l

NM l
J J

 
 




 



 








 



  

 

                                                               (6) 

 The output flow of the pump is given by: 

 

   

     

tan , 0

tan , 0

p p d d c

p p d d a c c

Q K l x

Q K l Q x x

 

 

 

  
                                                          (7)   

       

    The mechanical link between the disc and the actuator is provided by the 

following equation (assuming that the angle is small, we linearize the tangent) 

 

  tana d d d dx l l   ,                                                                                    (8)    

 

 Under all the above assumptions the fifth order nonlinear model for the pump is 

given by: 

 

  

   

2 2 2

0

1

1

;

c c

c c c a a a c c s s

c

a a

a T a c a a d a d a c d a a p d

oil

a a c a a

a a a

x v

v x K K K x f v i
m

x v

v K x f x v f v l K x l S P f P
J

P t Q x S v
V S x







     



          

     

         (9) 

with 
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   

 

2

0

2 2 2

2 2

2

2

;
2 2

; ;
2

2

p p d p p

p d d d d

p p p p

c T d a b b

d

p p

d

NA l l NC l
f f P K P

NM l NM l
f K l K K l

l

NM l
J J








    

   

 

                                (10) 

 Assuming negligible valve dynamics we may get a reduced third order model as 

follows: 

   

2 2 2

0

1

;

a a

a T a c a a d a d a c d a a p d

oil

a a c a a

a a a

x v

v K x f x v f v l K x l S P f P
J

P t Q x S v
V S x





          

     

                            (11) 

and  

s s a a

c s s a a

c a

i K x
x b i b x

K K

 
  


                                                                          (12) 

The pump is commanded assuming action on the actuator flow, and then we 

get: 

   

2 2

0

1

;

a a

a T a c a a d a d a a p d

oil

a a c a a

a a a

x v

v K x f x v f v l S P f P
J

P t Q x S v
V S x





         

     

                                          (13) 

and 
c s sx b i . 

  

Equation  (11) can be expressed in (or transformed to) the following nonlinear 

state space form: 

 

1

1

( ) ( ) ,1 1

( ) ( ) , 2

i i i i i i

i i i n n

x f x g x x i n

x f x g x u n

y x

    

  



                                                                    (14) 

 

where 1 2[ , ,... ] , 1,... , ,T i

i ix x x x R i n u R y R        are state variables, input and 

output respectively. More accurately for the pump model (11) we have 1 1( ) 0f x  , 
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1 1( ) 1g x  ,  2

2 2

1
( ) T a c a a d af x K x f x v f v

J
    , 

 2

2 2

1
( ) d a a p dg x l S P f P

J
     , 3 3

0

( ) oil

a a

a a a

f x S v
V S x





, 

 3 3

0

( ) oil

a s

a a a

g x Q b
V S x


 


. 

Our purpose is to construct a specific adaptive Neural Network controller (the 

proof is omitted due to space) such that: 

i) all the signals in the close loop remain semi globally ultimately 

bounded 

ii) the output signal y follows a desired trajectory signal yd, with 

bounded derivatives up to ( 1)m th  order. 

In order to approximate some unknown nonlinearities we use Neural Networks 

[2], [3], [5], [9], [16]. This approximation is guaranteed within some compact sets 

Ω. 

Since (.)ig , 1,...i n  are smooth functions, they are therefore bounded within 

some compact set. According to the previous we can make two assumptions. 

Assumption 1: The signs of (.)ig  are bounded for example there exist 

constants 
1 0(.) (.) 0i ig g   such that, 1 1 0(.) (.) (.)i i ig g g  , n

nx R  .  

Assumption 2: There exist constants (.) 0idg   such that 

(.) (.)i idg g n

nx R  . 

 

B. RBF Neural Networks 

 

      Dynamical Neural Networks are well established tools used in the control of 

nonlinear and complex systems. We use RBF Neural Networks [6] in order to 

approximate the nonlinear functions of our systems [14], [15]. The idea behind 

this is described fully at [2], [3], [7], [8], [9], [15]. The RBF NN we use are of the 

general form (.) (.)F   , where pR  is a vector of regulated weights  and 

(.)  a vector of RBF’s. It has been shown that given a smooth function 

F: R , where   is a compact subset of mR  ( m  is an appropriate integer) 

and 0  , there exists an RBF vector mξ: R pR  and a weight vector * pR   

such that *ΤF(x)-θ ξ(x) ε .x    Here ε is called the network reconstruction 

error. The optimal weight vector is chosen as an appropriate value that minimizes 

the reconstruction error over  . 
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Fig2: Schematic representation of RMF Neural Networks 

 

C. Controller Design 

In [15], a desired feedback control law was initially proposed for system (13) 

and Neural Networks are used to parameterize the desired feedback control law. 

Finally adaptation laws are used to tune the weights of neural networks for closed 

loop stability. In our paper we use the controller designed by Kaynak et al. [4]. 

The design procedure is described in 3 steps because in the pump model above we 

have 3 states. Each backstepping stage results in a new virtual control design 

obtained from the preceding design stages. When the procedure ends, the 

feedback design for the control input is obtained, which achieves the original 

design objective. 

Step1: In this step we want to make the error between x1 and  1   d dx y as 

small as possible. 

The previous is described by the following equation: 

 

1 1 1de x x                                                                  (15) 

 

We take the derivative of
1e . After that we have: 

1 1 1 1 1 1 1 1 2 1( ) ( )d de x x e f x g x x x                                                               (16) 

 

by using 2x as the virtual control input. The previous equation can be changed by 

multiplication and division with 1 1( )g x  to the following form: 

 1 1

1 1 1 1 1 1 1 2 1 1 1( )[ ( ) ( ) ( ) ]de g x g x f x x g x x                                                         (17)    

 

We choose the virtual controller as: 

 
1 1

2 2 1 1 1 1 1 1 1 1 1( ) ( ) ( )d dx x g x f x g x x k e                                                          (18) 
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where k1 is a positive constant. In order to approximate the unknown 

nonlinearities (functions  1 1f x and  1 1g x ) we use RBF Neural Networks. A 

Neural Network based virtual controller is used as follows: 

 

2 1 1 1 1 1 1 1 1 1( ) ( )d dx x n x x k e                                                                         (19) 

 

where we have substituted the unknown nonlinearities     
1

1 1 1 1  g x f x


and 

 
1

1 1  g x


with the RBF Neural Networks 
1 1 1( )x   and 

1 1 1( )n x   respectively 

based on Lyapunov stability [2]. 

 

 

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

1 11 1 1 1 1 1[ ( ) ]e x       

1 12 1 1 1 1 1 1[ ( ) ]de n x x                                                                        (20) 

 

with 
1 1,    small and positive constants and

11 11 0    , 
12 12 0     are the 

adaptive gain matrices. 

 

Step 2: In this step we make the error between x2 and x2d as small as possible. 

The previous is described by the following equation: 

 

2 2 2de x x                                                                                                         (21) 

 

We take the derivative of e2. After that we have:  

2 2 2 2 2 2 2 3 2

1 1

2 2 2 2 2 2 3 2 2 2

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x x x

g x g x f x x g x x 

    

  
                                                      (22) 

By taking the 3dx as a virtual control input and by substituting the unknown 

nonlinearities 1

2 2 2 2( ) ( )g x f x  and 1

2 2( )g x   with the RBF Neural Networks 

2 2 2( )x   and 
2 2 2( )n x   respectively based on Lyapunov stability [2], we have: 

 

3 1 2 2 2 2 2 2 2 2 2( ) ( )d dx e x n x x k e                                                                (23) 

 

 

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

2 21 2 2 2 2 2[ ( ) ]e x       
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2 22 2 2 2 2 2 2[ ( ) ]de n x x                                                                     (24) 

 

with 
2 2 ,    small and positive constants and 

21 21 22 220, 0          are 

the adaptive gain matrices. 

 

 

Step 3 (Final): In this step we make the error between 
3  x and 

3  dx as small as 

possible. 

The previous is described by the following equation: 

 

3 3 3de x x                                                                                                         (25) 

 

 We take the derivative of e3. After that we have:  

 

3 3 3 3 3 3 3 3

1 1

3 3 3 3 3 3 3 3 3

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x u x

g x g x f x u g x x 

    

  
                                                        (26) 

 

Where u is the control input and by substituting the unknown nonlinearities 
1

3 3 3 3( ) ( )g x f x  and 1

3 3( )g x   with the RBF Neural Networks 
3 3 3( )x   and 

3 3 3( )n x   respectively, we have: 

 

2 3 3 3 3 3 3 3 3 3( ) ( ) du e x n x x k e                                                                    (27) 

 

 We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

3 31 3 3 3 3 3[ ( ) ]e x       

3 32 3 3 3 3 3 3[ ( ) ]de n x x                                                                                  (28) 

with 3 3 ,    small and positive constants and 31 31 32 320, 0          are 

the adaptive gain matrices. 

 

 

3. Simulation 
 

     In order to show the effectiveness and apply the above approach a simulation 

is presented for the pump model: 
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 

   

1 2

2 1 1 2 2 3

3 1 2 3

1

,a a a

a a

x x

x x f x x x a x

x x x q x u

y x







   

   



 

where 
1 2 3 ,  ,  x x x and y are states and output of the system respectively. The initial 

conditions are
0 10 20 30[ ,  ,  ] [0.3,  0.2,  0.1]  T Tx x x x  and the desired output signal 

of the system is   ( 10* 10 / ) 0.5dy atan t    .  These selections are not based 

on any experiments in the lab. 

We make the assumption that all the basis function of the NNs [12] have the 

form 
2

( ) ( )
( ) exp[ ]

T

i i i i

i

i

x u x u
G x

v

 
   (as described in [6]) where 

1 2,  ,  ,  
T

i i i iju u u u    are the centers of the receptive field and vi are the widths 

of the Gaussian function. 
The Neural Networks 

1 1 1( )x  and 
1 1 1( ) x  have 5 nodes with centres uj 

evenly spaced in [-6, 6] and widths 2 2 21,  ( )jv x  and 
2 2 2( )x  have 25 nodes 

with centres uj evenly spaced in [-6, 6] x [-6, 6] and widths vj=1 and
3 3 3( )x  , 

3 3 3( )x  have 125 nodes with centers uj evenly spaced in [-6, 6] x [-6, 6] x [-6, 

6] and widths vj=1. We select the  design parameters of the above controller 

as  1 2 1 2 1 2 1 23.5,  2 ,  0.2k k diag              . The initial weights 

θ1, θ2, θ3 are arbitrarily taken in [-1.2, 1.2] and δ1, δ2, δ3 in [0, 1.2].  

Figs. 3-8 show the simulation results of applying the controller for tracking the 

desired signal yd. From figure 3 we can see that good tracking performance is 

obtained. Figure 4 shows the trajectory of the controller. Figure 5 shows the phase 

plane of the system. Figure 6 shows the error 1e , Figure 7 shows the error 2e  and 

finally Figure 8 shows the error 3e . 
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Fig. 3: The output of the system under adaptive controller. 

 
Fig. 4: The trajectory of the adaptive controller. 
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Fig. 5: The phase plane plot of the system. 

 

 

 

 
Fig. 6: Error e1. 
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Fig. 7: Error e2. 

 
Fig. 8: Error e3. 

 

 

 

4. Conclusion 
In this paper, we apply a backstepping controller scheme to control the output 

of the pump model to reach a specific pressure behavior without knowing the 

dynamics. The tracking error is bounded and is established on the basis of the 

Lyapunov approach. Simulation results show the effectiveness of this algorithm in 

controlling the mechanical pump. Future research will be focused on 

implementing this algorithm in the real experimental model.           
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Adaptive Control of Mixed-Interlaced forms 

 
Kyriakos G. Vamvoudakis, Manolis A. Christodoulou 

1
  

Abstract: In this paper we combine forwarding and backstepping techniques to stabilize 

mixed interlaced systems. All the signals in the close loop remain semiglobally ultimately 

bounded the output signal y follows a desired trajectory signal yd, with bounded derivatives 

up to mth order. We also present simulation examples that prove the adaptation of mixed 

interlaced forms, using a backstepping controller. 

1. Introduction 
Recent technological developments have forced control engineers to deal with 

extremely complex systems that include uncertain and possibly unknown 

nonlinearities, operating in highly uncertain environments. Man has two principal 

objectives in the scientific study of his environment: he wants to understand and 

to control. The two goals reinforce each other, since deeper understanding permits 

firmer control, and, on the other hand, systematic application of scientific theories 

inevitably generates new problems which require further investigation, and so on. 

Nonlinear control includes two basic forms of systems, the feedforward systems 

and the feedback systems.  

The strict feedback systems can be controlled using the well known 

backstepping technique. The purpose of backstepping is the recursive design of a 

controller for the system by selecting appropriate virtual controllers. Separate 

virtual controllers are used in order to stabilize every equation of the system. In 

every step we select appropriate update laws. The strict feedforward systems can 

be controlled using the forwarding technique that is something like backstepping 

but in reverse order. Other cases of systems that can be converted to the previous 

forms are part of a larger class of systems that are called interlaced systems as 

described by [9], and [3]. In these systems we combine backstepping and 

forwarding techniques together in order to recursively design feedback control 

laws. Interlaced systems are not in feedback form, nor in feedforward form.  

These systems have a specific methodology that differs from backstepping and 

forwarding. We don’t start from the top equation, neither from the bottom.  

Other special cases of systems are part of other forms that we call mixed 

interlaced and we introduce their study in the present paper. The methodology is 

based on classical interlaced systems and is developed by the authors. We want to 

make the systems solvable by one of the well known backstepping and 

forwarding methods. This can be reached after some specific steps that convert 

the system into a known form. We start from the middle equation and we 

continue with the top. The previous method is based on classical interlaced forms 
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that are introduced by [9] and [3] and can be extended to more complicated 

systems. 

A lot of researchers developed a series of results that generalized and 

explained the basic idea of nonlinear control. Teel [10] in his dissertation 

introduced the idea of nested saturations with careful selection of their parameters 

to achieve robustness for nonlinear controllers. After Teel , Sepulchre, Jankovic 

and Kokotovic [9] proposed a new solution to the problem of forwarding that is 

based on a different Lyapunov solution.  
The paper consists of four sections including the current one. The next section 

introduces the meanings of Adaptive Control, Backstepping and Forwarding 
techniques. In Section 3, the main body of this paper, the mixed interlaced forms 
are analyzed. Finally section 4 draws some concluding remarks. 

2. Background in Adaptive Control 

The history of adaptive control began from the early 1950’s. With the 

passing of the years a lot of papers and books have been published. These 

research activities have proposed solutions for basic problems and for broader 

classes of systems. Especially the interest for nonlinear adaptive control began 

from the mid-1980’s. A lot of great scientists, such as Kokotovic et al [2], Lewis 

et al [4], Ioannou and Sun [7], Christodoulou and Rovithakis [5] have studied 

adaptive control and its applications extensively. 

Adaptive control is a powerful tool that deals with modeling uncertainties in 

nonlinear (and linear) systems by on line tuning of parameters. Very important 

research activities include on-line identification and pattern recognition inside the 

feedback control loop.  

Through time, adaptive control has existed big development (Sepulchre et al 

[9]) in order to control plants with unknown dynamics that appear linearly. 

Adaptive control is based on Lyapunov design. 

In order to make it clear, a short example will be reported. Let us consider 

the nonlinear plant: 

 
2x u x        (1) 

And select the control law as: 

  
2ˆu qx x       (2) 

 

which, if the estimated θ ( ̂ ) is equal to real θ such that ̂  , then the result is a 

close loop system of the form: 

 

 x qx       (3) 

 

The filtered version of the signals x is: 

        21

1
fx x

s



    (4) 
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The prediction error e is: 

 

ˆ ˆˆ ( ) f fe x x x x          (5) 

 

We use the commonly normalized update law: 

 

2

2
ˆ

1
f

f

x
x


  


    (6) 

The previous update law is linear. It can be proved that   does not converge to 

zero faster than exponentially and the easiest case is: 

 

(0)te        (7) 

 

 Finally the close loop system has the following form: 

 
2x x x                                                                     (8) 

 

where for simplicity q substituted with 1 and by substituting   from the previous 

equation is obtained: 

 
2(0)tx x e x       (9) 

 

where for simplicity γ substituted with 1. 

It is easy to see that the explicit solution of the previous is determined by the 

following equation: 

 

2 (0)

(0) (0) [2 (0) (0)]t t

x
x

x e x e  


 
                            (10) 

 

From the previous it is clear that if (0) (0)x  <2 then it is obvious that x converge 

to zero as t∞. At the case that (0) (0)x  >2, at the time: 

 

1 (0) (0)
ln

2 (0) (0) 2
esc

x
t

x







 

 

the difference of the two terms of the exponential in the denominator becomes 

zero, that is: 

 

| ( ) |x t   as esct t  
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The previous model is unstable (x goes to infinity at tesc) and Lyapunov design 

models must be specified in order to achieve stabilization. 

Let choose the following Lyapunov function: 

 

2 21 1 ˆ( )
2 2

V x         (11) 

 

The derivative of the Lyapunov function for our nonlinear plant is: 

 

2 2ˆ ˆ( ) ( )V x u x        

 

In order to find a control and an update law we must specify: 

 

2 2 2 2ˆ ˆ( ) ( )V x x u x x             (12) 

 

From the previous equation in order to remove the unknown θ we use the update 

law: 

 

3ˆ x   

 

And the control law is: 
2ˆu x x    

 

Both control law and update law yield 2V x   such that stability maintains in 

opposition to the previous approach without Lyapunov. 

 

Adaptive control in most cases has tracking error that converges to zero. 

 

i) Adaptive Backstepping Design 

 

Backstepping ([1], [2], [4], [7]) is a recursive design for systems of the form: 

 

1 2 1 1 2

2 3 2 1 2 3

3 3 1 2 3

( , )

( , , )

( , , )

x x x x

x x x x x

x u x x x

 

 

 







 

 

 

 

 

with state x=[x1
T
, x2

T
, x3

T
] and control input u. The value θ is a p x 1 vector which 

is constant and unknown. The function φ1 depends only to x1, x2 function φ2, φ3 

depends only to x1, x2, x3. 

The purpose of backstepping is the recursive design of a controller for the 

previous system by selecting appropriate virtual controllers. The virtual controller 
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for the first equation of the system is x2 and is used to stabilize the first equations, 

the virtual controller for the middle equation is x3 and is used to stabilize the first 

two equations, and finally the controller for the last is u. We use separate virtual 

controllers in order to stabilize every equation of the system. In every step we 

select appropriate update laws. 

In classical backstepping, the output is selected as the state x1 and the purpose 

of adaptive control is to make this state to follow a desired trajectory x1d. 

Adaptive backstepping design is a Lyapunov based design [4]. The previous 

procedure can be applied only to systems that have (or transformed to) the 

previous form (strict feedback).    

 

ii) Adaptive Forwarding Design 

 

Forwarding ([9]) is something like backstepping but for strict feedforward 

systems. Let us introduce forwarding technique with an example such as: 

 
2

1 2 3 2

2
2 3 3

3

x x x x u

x x x u

x u

  

 



 

 

In the previous example we do not have feedback paths.  

Firstly we stabilize the last equation ( 3x u ). We take the following Lyapunov 

function:  

2
3 3

1

2
V x  and a feedback to stabilize the system is 3u x  . With the previous 

we augment 3 3x x   by the middle equation, and write our system in the 

cascade form: 

 

2 2 3

3 3

( )x x

x x



 
 

 

where 3
2 3 3 3( )x x x    is the interconnection term. 2 0x   is stable and 

3 3x x   is GAS and LES. The next step is to construct Lyapunov function V2 for 

the augmented system when V3 is given. 

After some specific steps we reach the following control law: 

 
3

23
3 2 3 3( )(1 )

3

x
u x x x x           (13) 
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3. Mixed Interlaced Forms 

a. Introduction and Linearization Method 

To begin with we consider the following third order mixed interlaced system 

and via an example we will introduce mixed interlaced forms [12]: 

 

1 3 1 32 3 1 2 31 3 1 3

2 2 2 23 2 2 1 21 2 2 3

3 1 3 1 3

( ) ( )

( ) ( )

( ) ( )

x x a c x x a c x x

x x a c x x a c x x

x x c x u t







     

     

   

 (14) 

 

The previous system is not in feedback nor is it in feedforward form because 

of specific terms such as x1x2, x1x3, x2x3. The Jacobi linearization of the previous 

system is a chain of integrators.  

Instead from starting on top, we start from the middle equation and treat x3 as 

virtual control and we want 2 2x x   for stability. There exists a Lyapunov 

function of the form 
2

1 2

1

2
V x  and a stabilizing feedback is 

2 2 23 2 1 23 2 1 2
3

21 2 21 2

x a c x a x x x
x

a x a c

   



 which is x3=a(x1,x2). We employ one step of 

backstepping to stabilize the middle equation augmented by the top equation of 

our system:  

 

 

1 3 1 32 3 1 2

2 2 23 2 1 23 2 1 2
31 3 1

21 2 21 2

31 3 1

2 2

( )

( )( )

( )

x x a c x x

x a c x a x x x
a c x

a x a c

a c x v

x x v





    

   
  



 

  

 (15) 

 

where the control x3  has been augmented to x3=a(x1,x2)+v. With v=0, the 

equilibrium (x1,x2)=(0, 0) is globally stable and forwarding yields the following 

Lyapunov function: 

 

 

2 1 1

2 2
2 1

2 3
2 2

lim ( )

1 1
,

2 2

1 1

2 31 1 2

V V x s

x

x xx x





 

 

  

   (16) 
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Dynamics 

e10 

y=x

1 
Plant Output 

Reference 

signal 
x1d 

 

The feedback law: 2
2 1(1 )v x    maintains the system globally stable and the 

augmented control is 

 

 

2 2 23 2 1 23 2 1 2
3 1 1 2

21 2 21 2

2
2 1 2 1 2 1

( , )

(1 ) ( , , )

x a c x a x x x
x a x x v

a x a c

x a x x



 

   
  



  

 (17) 

 

 

 
In order to stabilize our system we apply the backstepping technique. 

b. Mixed Interlaced Forms, Adaptive Control and Simulations 

Adaptive Control of dynamical systems has been an active area of research 

since the 1960’s. The system is described by the following figure: 

  

 

 

 

 

 

 

 

 

 

 

 

Because we have 3 states our controller design is described with Kaynak et al [1] 

controller in 3 steps. 

Step1: In this step we want to make the error between x1 and x1d (=yd) as small 

as possible. 

The previous is described by the following equation: 

 

1 1 1de x x       (18)   

      

 

We take the derivative of e1. After that we have: 

 

1 1 1 1 1 1 1 1 2 1( ) ( )d de x x e f x g x x x              (19)       
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by using x2 as the virtual control input. The previous equation can be changed by 

multiplication and division with ( )1 1g x  to the following form: 

 

 1 1
1 1 1 1 1 1 1 2 1 1 1( )[ ( ) ( ) ( ) ]de g x g x f x x g x x            (20)              

 

We choose the virtual controller as: 

 
1 1

2 2 1 1 1 1 1 1 1 1 1( ) ( ) ( )d dx x g x f x g x x k e             (21)   

   

 

where k1 is a positive constant. In order to approximate the unknown 

nonlinearities (functions f1(x1) and g1(x1)) we use RBF Neural Networks ([11]). A 

Neural Network based virtual controller is used as follows: 

 

2 1 1 1 1 1 1 1 1 1( ) ( )d dx x n x x k e                       (22)          

   

 

where we have substituted the unknown nonlinearities  g1(x1)
-1

f1(x1) and g1(x1)
-1

 

with the RBF Neural Networks 1 1 1( )x   and 1 1 1( )n x   respectively based on 

Lyapunov stability ([6], [8]). 

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

1 11 1 1 1 1 1[ ( ) ]e x          (23) 

1 12 1 1 1 1 1 1[ ( ) ]de n x x                                     (24)   

  

 

with σ1, γ1 small and positive constants and Γ11=Γ11
Τ
>0, Γ12=Γ12

Τ
>0 are the 

adaptive gain matrices. 

 

Step 2: In this step we make the error between x2 and x2d as small as possible. 

The previous is described by the following equation: 

 

2 2 2de x x               (25)                                                      

     

 

We take the derivative of e2. After that we have:  

 

2 2 2 2 2 2 2 3 2

1 1
2 2 2 2 2 2 3 2 2 2

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x x x

g x g x f x x g x x 

    

  
      (26)              
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By taking the x3d as a virtual control input and by substituting the unknown 

nonlinearities 1
2 2 2 2( ) ( )g x f x  and 1

2 2( )g x   with the RBF Neural Networks 

2 2 2( )x   and 2 2 2( )n x   respectively based on Lyapunov stability ([6], [8]), we 

have: 

 

3 1 2 2 2 2 2 2 2 2 2( ) ( )d dx e x n x x k e                 (27)   

             

 

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 

 

2 21 2 2 2 2 2[ ( ) ]e x       

2 22 2 2 2 2 2 2[ ( ) ]de n x x                      (28)               

              

 

with σ2, γ2 small and positive constants and Γ21=Γ21
Τ
>0, Γ22=Γ22

Τ
>0 are the 

adaptive gain matrices. 

 

Step 3(Final): In this step we make the error between x3 and x3d as small as 

possible. 

The previous is described by the following equation: 

 

3 3 3de x x                                                        (29)            

              

 

 We take the derivative of e3. After that we have:  

 

3 3 3 3 3 3 3 3

1 1
3 3 3 3 3 3 3 3 3

( ) ( )

( )[ ( ) ( ) ( ) ]

d d

d

e x x f x g x u x

g x g x f x u g x x 

    

  
         (30)              

 

Where u is the control input and by substituting the unknown nonlinearities 
1

3 3 3 3( ) ( )g x f x  and 1
3 3( )g x   with the RBF Neural Networks 3 3 3( )x   and 

3 3 3( )n x   respectively, we have: 

 

2 3 3 3 3 3 3 3 3 3( ) ( ) du e x n x x k e                         (31)                                                     

 

              

We take the following adaptation laws (σ-modification) in order to avoid large 

values of the weights: 
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3 31 3 3 3 3 3[ ( ) ]e x       

3 32 3 3 3 3 3 3[ ( ) ]de n x x                         (32)                                                                     

with σ3, γ3 small and positive constants and Γ31=Γ31
Τ
>0, Γ32=Γ32

Τ
>0 are the 

adaptive gain matrices. 

In order to prove the stabilization of mixed interlaced systems we apply the 

previous described by [1] and we perform the following simulations: 

We make the assumption that c1>>x1, c2>>x2, c3>>x3 and 

a21=a32=β1=β2=β3=1, c1=9.99, c2=6.66, c3=3.33. Also we want our desired 

output to be yd=sin(t). 

Figs. 1-6 show the simulation results of applying the controller for tracking the 

desired signal yd. From figure 1 we can see that good tracking performance is 

obtained. Figure 2 shows the trajectory of the controller. Figure 3 shows the 

phase plane of the system. Figure 4 shows the error 1e , Figure 5 shows the error 

2e  and finally Figure 6 shows the error 3e . 

 

       
Fig. 1: The output of the system under adaptive controller. 
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Fig. 2: The trajectory of the adaptive controller. 

 
Fig. 3: The phase plane plot of the system. 
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Fig. 4: Error e1 

 
Fig. 5: Error e2 
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Fig. 6: Error e3 

 

4. Conclusion 
In this paper, we recognize a new form of systems that we call mixed 

interlaced form. We apply the well known backstepping and forwarding 

techniques via specific steps. Also Lyapunov functions can be selected to approve 

convergence and stability. A lot of systems have the mixed interlaced form. For 

example we can think systems in biological models that have many terms from 

different states. After the appropriate selection of the controller we can apply 

adaptive control to make the systems follow a desired trajectory. 

The tracking error is bounded and is established on the basis of the Lyapunov 

approach. Finally, only the states of the unknown plant which are related to the 

reduced order model are assumed to be available for measurement. 

The authors hope that the proposed approach would serve as a promising tool 

to analyze more complex systems. 
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Abstract. Generalization of the inversive congruential generator of pseudorandom
numbers with prime-power modules is considered and the exponential sums on se-
quence of pseudorandom numbers are estimated. Also we obtained the estimate
of the average value of exponential sums over initial value y0. The estimates for
discrepancy of s-dimensional ”overlapping” points are obtained.
Keywords: inversive congruential pseudorandom numbers, exponential sum, dis-
crepancy.

1 Introduction

Nonlinear methods of generating uniform pseudorandom numbers in the in-
terval [0, 1) have been introduced and studied during the last twenty five
years. The development of this attractive fields of research is described in
the survey articles (Chou[1], Eichenauer and Lehn[2], Eichenauer-Herrmann
and Topuzoǧlu[3], Niederreiter Shparlinski[5]) and in the Niederreiter’s mono-
graph[4]. Inversive congruential generators employ the particular place among
nonlinear generators by virtue of simplicity of the realization of calculations.
In the case of an odd prime-power modulus the inversive congruential gener-
ator is defined in the following way:

Let p be a prime, p ≥ 3, m be a natural number. For given a, b ∈ Z
we take an initial value y0, and let y−1

n denotes a multiplicative inverse for
yn in Z∗pm

if (yn, p) = 1, and y−1
n = 0 if m = 1 and yn ≡ 0(mod p). Then the

recurrence relation
yn+1 ≡ ay−1

n + b(mod pm) (1.1)

generates a sequence y0, y1, . . . which we call the inversive congruential se-
quence modulo pm.
The case p ≥ 3, m = 1 studied in [2].

In sequel we will account that m ≥ 3. In such case the generated sequence
{yn}, n ≥ 0, may exists only if (yn, p) = 1 for all n = 0, 1, 2, . . .. In the work
[1] indicated the conditions at which the sequence {yn} does not break.
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Let {yn} be an infinite sequence generated by the congruence (1.1).
By the normalization

xn =
yn

pm

we obtain a sequence of numbers in the interval [0, 1).
The sequence {xn} calls the sequence of pseudorandom numbers in [0, 1)

(denoted as PRN’s) if it satisfies the requirements of equidistribution and
unpredictability (statistical independence). The property of statistical inde-
pendence is a very important requirement of cryptography to PRN’s.

The next important description of the sequence of PRN’s {xn} is its pe-
riod τ . Clearly that τ ≤ pm−1(p− 1).

In the works of Chou[1], Eichenauer and Lehn[2], Eichenauer and Topu-
zöglu[3], Niederreiter[4] have been studied the problem of when the sequence
of PRN’s (generated by (1.1)) has the maximal period.

In the present paper we study a nonlinear generator similar to (1.1):

yn+1 ≡ ay−1
n + b + cyn(mod pm), (1.2)

moreover, (a, p) = (y0, p) = 1, b ≡ c ≡ 0(mod p).
Note, that the conditions (a, p) = 1, b ≡ c ≡ 0(mod p) guarantee infinite

of the process of generation.
The generator (1.2) with the conditions a ≡ b ≡ 0(mod p), (c, p) = 1, can be
study similarly. The generator (1.2) we call the linear-inversive congruential
generator of PRN’s.

It is purpose of the present work to demonstrate that the sequence of
PRN’s {xn} =

{
yn

pm

}
, n = 0, 1, . . ., generated by the recursion (1.2), satisfies

the requirements of equidistribution on [0, 1) and passes the serial test on
unpredictability.

Notation. Variables of summation automatically range over all inte-
gers satisfying the condition indicated. The letter p denotes a prime num-
ber, p ≥ 3. For m ∈ N the notation Zpm(respectively, Z∗pm) denotes the
complete(respectively, reduced) system of residues modulo pm. We write
gcd(a, b) = (a, b) for notation a great common divisor of a and b. For z ∈ Z,
(z, p) = 1 let z−1 be the multiplicative inverse of a modulo pm. We write
νp(A) = α if pα|A, pα+1 6 |A. For real t, the abbreviation e(t) = e2πit is used.

2 Auxiliary results

We need the following statements.

LEMMA 1. Let p be a prime number and let f(x), g(x) be polynomials
over Z

f(x) = A1x + A2x
2 + p(A3x

3 + · · · ),
g(x) = B1x + +p(B2x

2 + · · · ),
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and let, moreover, νp(A2) = α > 0, νp(Aj) ≥ α, j = 3, 4, . . ..
Then we have the following estimates∣∣∣∣∣∣

∑
x∈Zpm

e

(
f(x)
pm

)∣∣∣∣∣∣ ≤
2p

m+α
2 if νp(A1) ≥ α,

0 else;
(2.1)

∣∣∣∣∣∣
∑

x∈Z∗
pm

e

(
f(x) + g(x−1)

pm

)∣∣∣∣∣∣ ≤


(N · p)
m
2 if (B1, p) = 1

2p
m+α

2 if νp(A1) ≥ 0, νp(Bj) ≥ α, . . . ,

0 if νp(A1) < α ≤ νp(Bj), j ≥ 1,
(2.2)

where N = N(A1, B1; p) is the number of solutions of the congruence A1 −
B1u

2 ≡ 0(mod p) in Z∗p.
(This assertion is corollary of the estimates of the Gauss sum and the Kloost-
erman sum).

Let {yn} generated by the recursive congruence (1.2). Using the argu-
ments as in Varbanets and Varbanets[6] we obtain the following results.

LEMMA 2. Let {yn} is the sequence of PRN’s generated by the recur-
sion (1.2) with conditions (y0, p) = (a, p) = 1, 0 < νp(b) < νp(c). There exist
the polynomials F0(u, v, w), G0(u, v, w) over Z, F0(0, v, w) = G0(0, v, w) = 0
such that for any k ≥ 2m + 1:

y2k = kb + kacy−1
0 + (1− k(k − 1)a−1b2)y0 + (−ka−1b)y2

0+

+ (−ka−1c + k2a−2b2)y3
0 + pαF0(k, y0, y

−1
0 ),

(2.3)

y2k+1 = (k + 1)b + (a− k(k + 1)b2)y−1
0 + (−kab)y−2

0 +

+ (−ka2c + k2ab2)y−3
0 + (k + 1)cy0 + pαG0(k, y0, y

−1
0 ),

(2.4)

where α := min (νp(b3), νp(bc));
F0(u, v, w), G0(u, v, w) ∈ Z[u, v, w], F0(0, v, w) = G0(0, v, w) = 0.

COROLLARY 1. Let the conditions of Lemma 4 satisfy. Then for
p > 2 the sequence {yn} is purely periodic with period 2pm−`, where

(i) ` = νp(b) + νp(a− y2
0) if νp(a− y2

0) < νp(b) ≤ 1
2m;

(ii) ` = 2νp(b) if νp(a− y2
0) > νp(b), νp(b) ≤ 1

2m.

For p = 2 we can obtain the similar assertion and the following corollary.

COROLLARY 2. Let p = 2, m ≥ 3. Then the sequence {yn} defined
by recursion (1.2) is purely periodic, where b = 2νb0, (b0, 2) = 1, c = 2µc0,
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(c0, p) = 1, µ > ν > 0; ν2(a− y2
0) = ν0 ≥ 1. And its period τ is equal

(i) 2m−2ν+1 if m ≥ 2ν, ν0 > ν;
(ii) 2m−2ν−β0+1 if m > 2ν, ν0 = ν, β0 = νp

(
y2
0−a
2ν0 + b0

)
;

(iii) 2m−ν−ν0+1 if m ≥ ν + nu0, ν0 < ν.

3 Exponential sums on sequence of PRN’s

In this section we get the estimates of certain exponential sums over the
linear-inversive congruential sequence {yn} which was defined in (1.2).

For h1, h2 ∈ Z we denote

σk,`(h1, h2; pm) :=
∑

y0∈Z∗pm

e

(
h1yk + h2y`

pm

)
, (h1, h2 ∈ Z). (3.1)

Here we consider yk, y` as a functions at y0 generated by (1.2) (see, formulas
(2.3)-(2.3)).

THEOREM 1. Let (h1, h2, p) = 1, νp(h1 + h2) = β, νp(h1k + h2`) = γ.
We have the following estimates

|σk,`(h1, h2; pm)| ≤



N(h1, ah2; p)
m
2 p

m
2 if k 6≡ `(mod 2);

0 if k ≡ `(mod 2)
and β < γ + ν, m− β − ν > 0;

pm−1(p− 1) if k ≡ `(mod 2)
and β ≥ γ + ν, m− ν − γ ≤ 0;

2p
m+ν+γ

2 if k ≡ `(mod 2)
and β ≥ γ + ν, m− ν − γ > 0.

PROOF. We consider two cases:
(I) Let k and ` be non-negative integers of different parity, for example,
k := 2k, ` := 2` + 1. By (2.6), (2.7) we have

h1y2k + h2y2`+1 = A0 + A1y0 + A2y
2
0 + A3y

3
0+

+ A−1y
−1
0 + A−2y

−2
0 + A−3y

−3
0 +

+ pαH(y0, y
−1
0 ) := F1(y0, y

−1
0 ),

where
A1 ≡ h1(mod pν), A2 ≡ −h1kab(mod pν+1),

A−1 ≡ ah2(mod pν), A−2 ≡ −h2ab`(mod pν+1),
A3 ≡ A−3 ≡ 0(mod pµ), µ = νp(c) > νp(b) = ν.
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Applying Lemma 1 we at once obtain the assertion of Theorem 1 for k 6≡
`(mod 2).
(II) Let k and ` be integers of identical parity. Then for k := 2k, ` := 2`, we
have modulo pm:

h1y2k + h2y2` = B0 + B1y0 + B2y
2
0 + B3y

3
0 + B−1y

−1
0 + pαK(y0, y

−1
0 ) =

:= F2(y0, y
−1
0 ),

where
B1 = h1 + h2 + p2νB′

1

B2 = −ab(h1k + h2`) + pαB′
2

B3 = −a−2b2(h1k
2 + h2`

2)− a−1c(h1k + h2`) + pαB′
3

B−1 = ac(h1k + h2`) + pαB′
−1,

moreover, B′
1, B′

2, B′
3, B′

−1 and coefficients of K(y0, y
−1
0 ) contain multipliers

of form h1k
j + h2`

j , j ≥ 0.
Now, in order to apply the estimate of complete linear exponential sum

to the sum ∑
y0∈Z∗pm

e

(
h1y2k + h2y2`

pm

)
=

∑
y0∈Z∗pm

e

(
F2(y0, y

−1
0 )

pm

)

we must define the values νp(B1), νp(B2), νp(B3), νp(B−1).
For νp(h1 + h2) = β ≥ ν, νp(h1k + h2`) = 0 we obtain

|σk,`(h1, h2, p
m)| ≤ 2p

m+ν
2 .

For νp(h1 +h2) = β ≥ ν, νp(h1k +h2`) = γ > 0 we denote δ = min (β, γ).
Moreover, in such case we have

h1k
j + h2`

j = (h1k
j−1 + h2`

j−1)(k + `)− k`(h1k
j−2 + h2`

j−2)

and then by induction on j we infer

νp(h1k
j + h2`

j) ≥ δ, j = 2, 3, . . .

Thereby we can apply the estimate of complete linear exponential sum.
Hence,

|σ2k,2`(h1, h2; pm)| ≤


0 if β < γ + ν, m− β − ν > 0,

2p
m+ν+γ

2 if β ≥ γ + ν, m− ν − γ > 0,
ϕ(pm) if β ≥ γ + ν, m− ν − γ ≤ 0,

where ϕ(n) is the totient Euler function.
For k ≡ ` ≡ 1(mod 2) we have the analogous result.
This finishes the proof of Theorem 1.
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2

Let h be integer, (h, pm) = ps, 0 ≤ s < m, and let τ be a least period
length of the sequence of PRN’s {yn}, n = 0, 1, . . ., defined in (1.2). For
1 ≤ N ≤ τ we denote

SN (h, y0) =
N−1∑
n=0

e

(
hyn

pm

)
. (3.2)

The sum SN (h, y0) calls the exponential sum on the sequence of PRN’s
{yn}.

THEOREM 2. Let the linear-inversive congruential sequence generated
by the recursion (1.2) has the period τ , and let νp(b) = ν, νp(a − y2

0) = ν0,
2ν ≤ m. Then we have the following bounds

|Sτ (h, y0)| ≤


O(m) if p > 2 and ν0 < ν, νp(h) < m− ν − ν0

or p = 2, ν0 < ν, ν2(h) < m− 2ν;
4 · p

m+νp(h)
2 if ν0 ≥ ν, νp(h) < m− 2ν;

τ else,

PROOF. By analogy with the proof of theorem 1 we have

|Sτ (h, y0)| =

∣∣∣∣∣
τ−1∑
n=0

e

(
hyn

pm

)∣∣∣∣∣ =

∣∣∣∣∣∣
p`−1∑
n=0

e

(
hyn

pm

)∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣∣
p`−1∑
k1=0
k=2k1

e

(
hy2k1

pm

)∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
p`−1∑
k1=0

k=2k1+1

e

(
hy2k1+1

pm

)∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
p`−1∑
k=0

e

(
hF (k)

pm

)∣∣∣∣∣∣ +

∣∣∣∣∣∣
p`−1∑
k=0

e

(
hG(k)

pm

)∣∣∣∣∣∣ + O(m).

(3.3)

In the last part of the formula (3.3) we into account that the representa-
tion yn as a polynomial on k holds only for k ≥ 2m + 1.

By the Corollaries 1 and 2 and Lemma 1 we easy obtain

|Sτ (h, y0)| ≤


O(m) if p > 2, ν0 < ν, νp(h) < m− ν − ν0,
O(m) if p = 2, ν0 < ν, ν2(h) < m− 2ν,

4p
m+νp(h)

2 if ν0 ≥ ν, νp(h) < m− 2ν,
τ else.

The constants implied by the O-symbol are absolute.

2
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THEOREM 3. Let a, b, c be parameters of the linear-inversive congru-
ential generator (1.2) and let (a, p) = 1, 0 < ν = νp(b) < νp(c), 1 ≤ N ≤
2pm−1, νp(h) = ps, s < m. Then the average value of the SN (h, y0) over
y0 ∈ Z∗pm satisfies

SN (h) =
1

ϕ(pm)

∑
y0∈Z∗pm

|SN (h, y0)| ≤ N
1
2 p−

m
4

(
2(εp(a))

m
4 +

√
10p

ν+s
4

)
,

where s = νp((h, pm)), h = h0p
s,

εp(a) =

{
1 if p = 2
1 +

(
−a
p

)
if p > 2,

((
−a
p

)
be the Legendre symbol

)
.

PROOF. First we will consider the case s = 0, i.e. (h, p) = 1. By the
Cauchy-Schwarz inequality we get

|SN (h)|2 ≤ 1
ϕ(pm)

∑
y0∈Z∗pm

|SN (h, y0)|2 =

=
1

ϕ(pm)

N−1∑
k,`=0

∑
y0∈Z∗pm

e

(
h(yk − y`)

pm

)
≤

≤ 1
ϕ(pm)

N−1∑
k,`=0

|σk,`(h,−h; pm)| =

= N +
1

ϕ(pm)

m−1∑
γ=0

N−1∑
k,`=0

νp(k−`)=γ

|σk,`(h,−h; pm)|.

Next

|SN (h)|2 ≤

≤ N +
1

ϕ(pm)

m−1∑
γ=0


N−1∑
k,`=0

k 6≡`(mod 2)
νp(k−`)=γ

|σk,`(h,−h;pm)|+
N−1∑
k,`=0

k≡`(mod 2)
νp(k−`)=γ

|σk,`(h,−h; pm)|


Using Theorem 1 after the simple calculations we obtain

|SN (h)|2 ≤ N
(
4εp(a)

m
2 p−

m
2 + 8p

−m+ν
2 + 2pν−m

)
≤

≤ Np−
m
2

(
4(εp(a))

m
2 + 10p

ν
2
)
,

Thus, we infer for (h, p) = 1:

|SN (h)| ≤ N
1
2 p−

m
4

(
2(ε(a))

m
4 +

√
10p

ν
4

)
(3.4)
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Now an argument similar to the one used to prove (3.4) leads to general
bound

|SN (h)| ≤ N
1
2 p−

m−s
4

(
2(εp(a))

m
4 +

√
10p

ν
4

)
.

2

The estimates of exponential sums obtained in this section can be used
to study the properties of the sequence PRN’s {yn}.

From our sequence {xn} we derive the sequence {X(s)
n } of points in [0, 1)s

putting X
(s)
n := (xn, xn+1, . . . , xn+s−1). From the theorems 1 and 2 and in-

equality for discrepancy ( see, Niederreiter[4], ch.8) we have

THEOREM 4. The discrepancy D
(s)
N , s = 2, 3, 4, of points constructed

by linear-inversive congruential generator (1.2) with parameters a, b, c, which
satisfy the condition

0 < νp(b) = ν, 2ν < µ = νp(c), a 6≡ y2
0(mod p),

has the following bound

D(s)
τ ≤ s

2pm−ν
+ p−

m−2ν
2 logs pm. (3.5)

Finally note that Theorem 3 shows that for almost all y0 ∈ Z∗pm the esti-
mate of discrepancy can be improved.

The estimate (3.5) of discrepancy D
(s)
τ means that the sequence {xn}

generated by recursion (1.2) passes s-dimensional serial test on indepen-
dence(unpredictability) (for s = 2, 3, 4).
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3.J. Eichenauer-Herrmann and A. Topuzoǧlu, On the period of congruential pseudo-
random number sequences generated by inversions, J. Comput. Appl. Math.,
31:87-96, 1990.

4.H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, 1992, Philadelphia,Pa.

5.H. Niederreiter and I. Shparlinski, Exponential sums and the distribution of in-
versive congruential pseudorandom numbers with prime-power modulus, Acta
Arith., 90:89-98, 2000.

6.P. Varbanets and S. Varbanets, Exponential sums on the sequences of inversive
congruential pseudorandom numbers with prime-power modulus, Vorono’s Im-
pact on modern science, Proceedings of the 4th International Conference on
Analytic Number Theory and Spatial Tessellations, Book 4, Volume 1, Kyiv,
Ukraine, September 22-28, pages 112-130, Kyiv, 2008.

624

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



Study of complex dynamics in an pH-oscillatory 
chemical reaction 

 
T. Veber, I. Schreiber, and L. Schreiberová 

 
Institute of Chemical Technology Prague, Department of Chemical Engineering 
and Center for Nonlinear Dynamics of Chemical and Biological Systems, 
Technická 5, 166 28 Prague 6, Czech Republic 
E-mail: tomas.veber@vscht.cz 
Telephone: +420-220443033, fax: +420-220444320 

 
Abstract: The reaction system hydrogen peroxide-thiosulphate-sulfite in acidic solution 
belongs to the extensive family of pH-oscillators marked by significant pH variations in 
time implying autocatalytic nature of hydrogen ions. This system is known to display 
nonlinear behaviour in a continuous-flow stirred tank reactor. Dynamical regimes 
occurring in this system depend on external constrains such as temperature, flow rate or 
inlet concentrations of reactants. The hydrogen peroxide-thiosulphate-sulfite system 
displays strongly nonlinear dynamics as the flow rate k0 is varied. The observed 
dynamical regimes of this reaction are periodic and aperiodic oscillations, chaotic 
behaviour and various stable steady states coexisting over a range of operating 
conditions. Presented work is focused on experimental study of aperiodic dynamics of 
the system and subsequent time series analysis. The analysis is based on the 
reconstruction of the attractor from the measured time series. 
Keywords: Chemical reactor, aperiodic oscillations, time series analysis 

 
1. Introduction 
Nonlinear chemical dynamics represents an interdisciplinary branch of science 
that is specified by studying and understanding complex biological and natural 
processes through the chemical reaction observations [1]. These chemical 
reactions with appropriate chosen initial conditions, input parameters and well 
designed equipment for carrying out of chemical reactions can provide strange 
dynamical regimes which are closely associated with processes in human body 
or functions in plant and animal kingdom. Oscillations and other nonlinear 
phenomena in chemical reactions are can be studied particularly in special types 
of systems in which this dynamical behaviour can occur. One of them is open 
system represented by continuous-flow stirred tank reactor in which the reaction 
is kept far from equilibrium and thus give rise to complex behaviour indicated 
by a monitored quantity. As the dynamic system is specified by evolving in 
time, the monitored quantitity of interest is measured in time. The observed 
output signal can be then analyzes using the method of time series analysis. 
Analyze of dynamics of the system is based on phase space reconstruction from 
time series data points. Phase space reconstruction was first introduced to 
nonlinear dynamic theory by Packard [2] and Takens [3] involving building 
multidimensional phase space from scalar time series using time delay 
coordinates.  
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In this contribution, the phase space reconstruction based on singular value 
decomposition according Takens theorem is presented. In our study the time 
series analysis is applied to the experimental study of chaotic behaviour of 
inorganic pH-oscillatory reaction carried out in continuous stirred tank reactor. 
The observed quantity is the concentration of hydrogen ion, which plays an 
important role in the nature and living systems. The reaction between hydrogen 
peroxide-thiosulphate and sulfite ions is interesting in oxidation of sulfur 
solutions by hydrogen peroxide, many intermediates or complex reactive 
network with positive and negative feedbacks which leads to nonlinear 
dynamics such as oscillation or chaotic behaviour [4]. The reaction provides 
temperature sensitivity [5,6] as well as strong sensitivity to the presence of 
carbon dioxide in the ambient air [4]. Both influences also present possible ways 
to chaotic behaviour. In our experimental study we focused on finding array of 
chaotic dynamics if the influence of carbon dioxide is completely eliminated. 
The applied methods of time series analysis are based on delay reconstruction of 
matrix from measured timeseries and consequently important features from 
geometry interpretation of the measured behaviour are obtained. Decomposition 
of that matrix by calculation of eingevalues and eingevectors yields modes. 
 
2. Dynamic system 
Dynamic of the system (evolution process) is described with autonomous 
system of ordinary differential equations (ODEs) in an n-dimensional state 

(phase) space nRG , where nR  represents a set of all arranged tuplet real 

numbers which can be identified with e.g. a number of elements in a chemical 
reaction 

  xf
td

xd 
 , nRx  . 

An expression on right side of the equation denotes a vector field. The solution 
of the equation can be interpreted as a function of two variables, a discrete time 

variable Rt  and state (phase) variable 
nRx  and thus mentioned solution 

can be called as a phase flow  x,t   of the system. Each state (phase) point is 

influenced by an abstract force causing a motion. The time evolution of real 
system is then described by motion of the state point along a trajectory 
considered as a smooth curve passing through the state point x . The vector field 
constitutes a driving force of the phase point along the trajectory and 
consequently determines the time evolution from the initial point. The system of 
all trajectories is consequently referred as phase portrait. The phase portrait can 
be interpreted as a geometry representation of a qualitative behaviour of all 
solutions of the system. The phase space reconstruction techniques by time 
delay embedding are most commonly based on embedding techniques according 
to Takens. Based on Takens’s embedding theory, an attractor may be 
reconstructed with the embedding dimension 12  dn .The embedding 
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dimension n  is the lowest possible dimension of n-dimensional space nR  into 
which an attractor can be projected. d marks the dimension of the attractor.  
 
2.2 Method of delay 
Let us consider real data points        

TN321 tx,...,tx,tx,tx , Rt  

obtained from experimental time measurements. The data points can be 
arranged in the sequence of m vectors in an n-dimensional embedding space 

 m2,...,1,jR n
j   (delay coordinate vectors) 

  
d

 1-njτjjj x,...,x,x
d   

 
where n constitutes the dimension of the embedding space and m is defined as 

  dT τ1N  nm  and is number of points in the phase space. dτ  

corresponds to a time delay in seconds and can be expressed as a multiple of 

sampling time Sτ  and sampling frequency fS of a time series. 

 

 SSd fττ   

 
2.2.1 Singular value decomposition 
In the singular approach of this problem according to Broomhead and King [7], 

the corresponding time delay value 1τd   is considered and such sequence of 

vectors in the n-dimensional space is used to generate m x n trajectory matrix X, 
whose components in the columns have same relationship to one another as do 
the rows [7]. Then introduce transpose matrix XT of trajectory matrix X.  If 
matrix X has the property X = XT, then matrixes are symmetric. The m x m 
matrix Θ = X XT and n x n matrix Ω = XT X are real symmetric matrices, called 
structural and covariance matrix consequently. Let trajectory matrix X be a m x 
n, where nm  . 
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The matrix X can be factorized using singular value decomposition (SVD) 
based on decomposition its eingevalues and eingevectors into a product of three 
matrices as fallows 

 TVΣUX   
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where U and V are orthogonal matrices, i.e., UT U = I and VT V = I, whereas I is 
a unit matrix. The matrix U is m x m matrix containing eingevectors of structural 
matrix Θ and V is n x n matrix consists of eingevectors of covariance matrix Ω. 

The column vectors of the matrix U denoted by  muuuu ,,, 21 

  represent 

left singular vectors of originally trajectory matrix X, while the column vectors 

of the matrix V denoted by  mvvvv ,,, 21 

  are the right singular vectors 

of X. The m x n diagonal matrix Σ carries corresponding singular values σi in 
the order of monotonically decreasing magnitude along its diagonal and all of 
them are nonnegative numbers 
 

  ndiag  ,,, 21   where 0σσσ n21    

 
Because of close relation to eigenvalue decomposition, singular values σi are 
simply the square roots of eingevalues of the structural matrix Θ and the 
covariance matrix Ω according to 

 uu i

 2    vv i

 2  

Note, that trajectory matrix X can be written as a sum goes from 1 to n, where n 
is the rank of X 

 



n

i

T
iii vuX

1

  

 
3. Experimental setup and conditions 
3.1 Reactor. An experimental estimation was performed in cylindrical-shaped 
plexiglass cell under the conditions of the continuous stirred tank reactor 
experiments. The reactor was closed to air with plexiglass cap. This upside cap 
was equipped with holes for the inlets and outlet for tubing and the input for pH-
electrode probe. RTD probe (RTD-860) for measuring temperature was inbuilt 
in the reactor side. A liquid in the flow cell was change through four inlet teflon 
tubes connected to the flexible silicon tubes (ID 1.30 mm) for peristaltic feeding 
(Ismatec IPC N).  The cell was thermostated on required temperature of 26 ± 
0.2°C from the bottom by circulating water from RM6 Lauda E103 thermostat. 
The liquid volume of the reactor was 17.6 mL. A teflon-covered magnetic 
stirred (1 cm long) was used to ensure a uniform mixing. The waste liquid was 
removed using canted position of the reactor. Two quantities were measured 
inside the reactor during the CSTR experiments. The pH-time data during the 
reaction were measured by a semi-micro combined pH-electrode (Theta ´90, 
type HC 139) connected to an Orion 525A pH-meter and an A\D converter and 
collected on a hard-disk of computer (Octek, Intel Pentium 200Mhz). The 
temperature inside the reactor was measured by RTD-860 probe connected to 
A\D converter and storaged on a hard-disk of computer. The computer also 
controlled pump speed change and recorded its actual value on a hard-disk. 

628

            Proceedings, 4th Chaotic Modeling and Simulation International Conference 

            31 May – 3 June 2011, Agios Nikolaos, Crete Greece  

 

 

 



3.2 Solutions. H2O2 (30% aqueous solution, Penta, Chrudim), Na2SO3 (Penta, 
Chrudim), NaS2O3 (Sigma-Aldrich) and H2SO4 (Lachema a.s., Neratovice) are 
chemicals used in this study. Two reactant solutions were prepared daily from 
fresh demineralized water and commercial available chemicals. One solution 
contained diluted hydrogen peroxide and the other contained the mixture of 
thiosulphate with sulfite and sulfuric acid. Input concentrations of the reactants 
were: [H2O2]0=0.0135 mol/L, [Na2S2O3]0=0.005 mol/L, [Na2SO3]0=0.0025 
mol/L, [H2SO4]0=5.10-4 mol/L. The initial concentration ([ ]0) is defined for each 
species to be the concentration of the species on the entrance to the reaction cell. 
Both reactant solutions were bubbled with nitrogen for at least 12 hours before 
the experiment for elimination of carbon dioxide impurities. 
3.3 Procedure. Maximum pumping rate was used to fill the reactor with the 
input solutions. Then the pump speed was reduced to the desired lower speed k0 
= 0.0028 s-1 for the experiments and thermostated on required temperature at 26 
± 0.2°C. The rate of flow (proportional to reciprocal residence time) is 

conveniently characterized by k0 = V / V (s-1), where V (mL s-1) is the total 
flow rate and V (mL) is the volume of the reaction mixture in the cell. 
Residence reciprocal time k0 is the average time that a molecule spends in the 
reactor and presents that fast flow rate through a large reactor is equivalent to a 
slow rate through a small reactor [8]. The flow rate was systematically increased 
up in regular time steps by to the higher flow rate. Sufficient time was allowed 
at each flow rate for the system to keep the dynamical behaviour. By increasing 
the flow rate gradually until the maxium desired flow rate was obtain chaotic 
behaviour. Throughout the flow experiments reactant solutions were bubbled 
with nitrogen.  
 
4. Results and discussion 
The system at the flow rate k0 = 0.0035 s-1 exhibit chaotic behaviour as is clearly 
shown in Fig. 1. Presented time series is characterized by occurrence of 
irregular large amplitude peaks with considerably smaller peaks. This figure 
represents interesting feature of the system when stock solutions are bubbled by 
nitrogen and the influence of carbon dioxide is eliminated. This feature reveals a 
complex nature of the reaction system in a short range of flow rate. Undesirable 
effect of carbon dioxide was suppressed for reasons of creating reaction 
intermediated leading to activation more closely unspecified secondary 
oscillators in reaction mechanism. This secondary oscillator may be a source of 
period-doubling or complex oscillations as is noted in [4, 9]. Our attention was 
focused on finding a region with aperiodic dynamic and obtaining geometric 
visualization of trajectories in phase space. For this purpose collection of many 
data points was necessary. The experimental data shown in Fig.1 provided 7200 
data points which are used at the present analysis. For the reconstruction of the 

attractor using singular value decomposition the minimal time delay dτ =1 

(corresponding to 0.333 s) is applied to the original measured data. The main 
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concept of this method is to extract minimum embedding dimension Sn of 

embedding space.  
 

 
Fig. 1 Seguence of a time series measured at a flow rate k0=0.0035 s-1. 

 
For the calculations we created am Matlab program. Measured time series in the 
form of column data points in Excel program were loaded to the Matlab m-file 
project and a decomposition of trajectory matrix was realized using Matlab SVD 
toolbox. For the reconstruction we chosen initial embedding dimension 

Sn =200. Figure 2 illustrates spectrum of corresponding 200 singular values, 

where horizontal axis corresponds to ordinal number of singular values and on 
the ordinate axis is a logarithm of the normalized singular value is plotted. The 
gradual decline of the dependence is evident and thus no distinct sudden change 

for determination of minimum embedding dimension Sn  is clearly discernable. 

However, a slight jump in plotted singular values at the ordinal number about 13 

may be taken as an indicator of the minimum embedding dimension Sn . 

Singular values above this break point constitute information about all essential 
parts of decomposed signal. These values are significant for the reconstruction 
of attractor. Singular values below the break point are associated with minor 
modes and may indicate either small-scale deterministic or noise level of 
measured signal. Such values are insignificant. When replaced by zero value 
and modified diagonal matrix is multiplied with original matrix U and VT a 
filtrated version of originally trajectory matrix is created.  
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Fig. 2 Spectrum of normalized singular values. 

 
Fig. 3 Reconstructed attractor from singular value decomposition using first three modes. 

 
The importance of each significant singular value is interpreted in the form of 
corresponding modes.  
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Modes are determined by columns of left singular vectors u


 representing 
directions and significant singular values representing the lengths of principal 
axes of an ellipsoid [7]. When the first three modes of singular value 
decomposition are plotted in 3D phase space, the reconstruction of atrractor 
obtained as is shown in Fig. 3 
 
 
5. Conclusions 
The autonomous dynamics of our chemical system of hydrogen peroxide-
thiosulphate-sulfite was experimentally investigated in the continuous stirred 
tank reactor under the constant temperature. The flow rate k0 was used as a 
bifurcation parameter in our experiments. Our intention was to find a region 
with aperiodic oscillations and successive time series analysis based on singular 
value decomposition. From measured experimental data of pH value in time a 
preliminary geometric structure of the dynamic was illustrated. Singular 
decomposition of measured signal was used to determine a minimum 
embedding dimension, but there is problem with clear indication where to cut 
off the modes used for the reconstruction of attractor. In future work, other 
methods of determination of embedding dimension, appropriate time delay or 
determination of Lyapunov exponents are object of interest.  
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