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Abstract: Modified combined scattering rate Monte Carlo technique is proposed.
Electron collisions with phonons, impurities and among themselves are taken into
account. The proposed technique avoids the short-time-step procedure inherent to
conventional ensemble Monte Carlo method. All N modeled electrons move using the
total probability for the scattering of each electron by the thermal bath and mutual
scattering between electrons pairs (“events in the electron system”). The quantitative
fitting to the available experimental data on the spectral density is achieved and the range
of moderate fields is defined for interparticle collisions to manifest themselves in the
noise. In the second part of the presented report a drift velocity correlator is investigated
numerically by Monte Carlo simulation and for the fist time analytically by a
phenomenological approach taking into account electron-phonon and electron-electron
scattering between free carriers. The thermodynamic approach is investigated. The
results of the velocity-to-velocity correlation functions and electron noise spectrum
obtained analytically are in quite good agreement with those given by the Monte Carlo
method.
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1. Introduction

Fluctuations phenomena in semiconductors have been intensively investigated
during the last three decades [1-3]. Fluctuation effects have been conventionally
investigated without an account on the Coulomb electron-electron (e-e)
scattering. However at sufficiently high electron densities, it is necessary to take
into account e-e scattering to the total distribution function and related
correlators.

Interparticle collisions though conserving energy and momentum of the electron
system have an indirect effect on transport and — even more direct — on velocity
correlations. In the presented report the ‘combined scattering method” (CSR)
Monte Carlo method [4] is used to interpret the results of microwave noise.

The important role of e-e collisions is demonstrated, and velocity-velocity cross-
correlation under non-eluilibrium conditions is calculated. In the second part
drift velocity correlation functions are investigated analytically in a
phenomenological approach and numerically through Monte Carlo simulation.
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Thermodynamic equilibrium state is investigated. Analytical results are in good
agreement with those obtained by Monte Carlo method in the GaAs crystals.

2. Electron-electron collisions. Drift velocity fluctuations

It can be shown [4] that the “time of free flight” for independent scattering
events of the N electron system with k; wave-vectors is defined by the combined
scattering rate:

N
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where 4,(k;) and A7 (k,,k ) are conventional integral rates of scattering of the

ith electron by the thermal bath and by the jth electron respectively [5].
Equation (1) reduces to that written down in [6] for N=2. All N electrons move
without scattering for the “time of free flight of the system” between two
successive events of an electron by the thermal bath or mutual collision between
two electrons occurs. The “time of free flight” is defined from the sum of the
each electon scattering rate on the thermal bath and on the all remaining
electrons. CSR technique avoids the short-time step procedure and a large
electron number inherent to conventional ensemble MC simulation.

The time-displaced drift-velocity correlation function is
=Nov,(t,+1)ov,(t,) =D

q) + q)cross > (2)

total auto

where the auto- and cross-correlation functions are defined as:

1 1
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In order to demonstrate the effect of e-e collisions on fluctuations the calculated
velocity correlation functions in heating electric field are shown in Figure 1 for

a model corresponding to n-type GaAs with the impurity scattering neglected. In
our case 7, < 7, strong cross-correlation appears. The equal-time cross-
correlation also appears in non-equilibrium system as it was predicted in [1].
The auto-correlation decreases mainly in time z... The decay of @, is caused

by the electron interaction with thermostat. In thermodynamic equilibrium,

when @ (0) =0, the latter is equalto ®,,,(0)=D_, (0)= VE=kTIm.
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Fig. 1. Drift-velocity correlation functions: total (solid line), auto-
correlation (dashed line) and cross-correlation (dotted line). Phonon
and interelectron scattering is taken into account, impurity
scattering is neglected

The results of the spectral density on the spectral density of drift velocity
fluctuations are presented in Figure 2. The experimental data are obtained from
the current fluctuations data through normalization at zero field by using
mobility data and Nyquist formula [7]. One can see that the most pronounced
effect is obtained at intermediate fields ranging from 5 V/cm to 500 V/cm
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Fig. 2. Dependence of the spectral density of electron drift velocity fluctuations
in compensated n-GaAs. MC with phonon, impurity and e-e scattering: (closed
circles), without e-e scattering (diamonds). Experimental data—open squares [7].
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The nearly constant behavior at fields up to 100 V/cm can be explained by
enhanced energy loss by electrons on optical phonons in the presence of e-e
collisions. The role of e-e collisions diminishes at higher field.

3. Drift velocity correlations in semiconductors in the

thermodynamic equilibrium state.

The values of correlators at the thermodynamic equilibrium have been
calculated for the parabolic model of T valley in GaAs. The material parameters
correspond to these listed in [8]. Electron scattering on non-elastic acoustic and
optical modes of lattice vibrations, as well as e-e scattering (n, = 10" cm™) is
taken into account. Inter-electron collisions are treated in the Brooks-Herring
approximation. Standard expressions for electron scattering rates are used [5].
The calculations are performed by the CSR method.

Let us start with the simplified Boltzmann-Langevin equation for the fluctuation
distribution function. In the state of thermodynamic equilibrium it can be
written as

doF, (1) OF,(1) SF,(t) = 6F,)" ()
a o, ’

Y, (1) “

)4 Tee

Here F,(1) is the instantaneous electron momentum distribution function, FpM ()

is the drifted Maxwellian distribution corresponding to the F,,(z) at time ¢, yp(t)

describes the Langevin random force. In our case the rate of fluctuation
relaxation is governed by the lattice and e-e scattering mechanisms.
The first term on the right-hand side of equation (4) ensures the relaxation of

instantaneous distribution £, (¢) to the equilibrium distribution during lattice

relaxation time z,. The second term is written in accordance with the Gross-
Bhatnager-Krook approach [9]. Its form is based on the property of the
instantaneous electron distribution function to acquire symmetric form (the
drifted Maxwellian distribution) in the e-e scattering time 7., under the influence
of e-e scattering. R. Liboff in his textbook [10] gives considerable attention to
this approach (see also [11]). Electron momentum can be intensively scattered
by impurity centers too, but the energy of eclectrons is conserved in this
scattering process. Even in this simple approach we cannot predict the final
distribution that will result under the influence of impurity scattering. Therefore,
we will omit further the impurity scattering.

The therm oF pM (¢) describes the deviation of a drifted Maxwellian distribution.

E-e scattering does not tend to bring either F pM (t) or F,(t) to the

thermodynamic equilibrium, because the average energy and momentum do not
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change during e-e collisions. So, the drifted Maxwellian distribution is supposed
to relax only under the influence of lattice scattering during the corresponding

scattering time 7,. Therefore, we have used &F," (1) = &F," (0)exp(—t/z,) .
Then, we multiply the equation (4) by the initial distribution function fluctuation
OF,(t), and average the product. Let us denote the correlator

OF,(1,)0F,(t, +1) as OF ,;(0)OF () ). Now we write the dynamic equation:

A, (O)F, (1) _ O, (O0F,(0) &, 00, 0) -, (0F, (O)exptt/7,)

dt T, 7,

(6))

The last term in Eq. (3) representing a random force vanishes because this force
is O -correlated in time. Initial fluctuations of an actual distribution and the
drifted Maxwellian distribution are related in the following way:

SF M (0) = 6F, (0) + AF, (0) ()

where AF (0) is deviation between them. Because of the chaotic behaviour of

AF,(0) we assume that

SF , (0)3F (0) = &F , (0)&F, (0) )

We are interested in the velocity-to-velocity correlators; therefore we multiply
the equation (4) by 0, (1) and sum it up by p; and p. Finally, we obtain
the phenomenological equation describing the relaxation of the total velocity-to-
velocity ~ correlator  coefficient ¢, ,(¢)=c,,, (@) +cC,, () in the

thermodynamic equilibrium:

dcmml (t) - _ Crotal (t) _ Cotal (t) = Crotal (O) exp(—t / Tp ) (8)
dt T T

)4 ee

The first-order linear differential equations for the velocity-to-velocity
correlator coefficients can be then written as
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dcaulo (t) [ caut() (t) _ caut() (Z)

dt 7, T,
©)
dccross (Z) _ Ccross (t) Ccross (Z) + eXp(—Z / TP )
dt 7, T, T,
Taking into account the known initial conditions [1] under equilibrium:
Coro(0) =1, and Coross (0) =0, the correlation coefficients are given as
cauto (t) = e_t/r(v s
(10)

Copes (D) =€ (1= 7).

As it seen the auto-correlation coefficient in equilibrium decreases exponentially
with a combined relaxation time 7, =7 7, /(z, +7,,). This result describes

p " ee
conventionally the relaxation of the probe particle velocity correlator. We obtain
from the second equation that the cross-correlation coefficient tends to increase
during the time 7, , but then decreases to zero per lattice scattering time.
One can see an important result of the total correlation coefficient:

Crotat () = € (1) + € (1) = €Xp(—1/ Tp) > (11)

which shows that it does not depend on e-e scattering.
The analytical dependencies calculated with equation (11) reasonably well
coincide with those from the MC data (Fig. 3).
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Fig. 3. Relaxation of velocity correlation coefficients in n-GaAs. Points - MC,
curves by equations (1).

The characteristic time at which the cross-correlation function reaches its
maximum in the case of 7, < 7,is 1, ~7,In(l+7,/7,). The more details of

the corelation functions bechavior (spectral density, etc.) can be found in [12].
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4. Conclusions

The presented MC procedure was demonstrated to be an efficient tool for
studying electron noise in the presence of e-e scattering. Taking them in
accordance is crucial for explanation of experimental data on microwave noise
in doped GaAs.

The results of analytical approach are in good agreement with the Monte Carlo
simulation, what confirms the usefulness of our simple analytical model. Till
now only the single particle autocorrelation behavior has been describe
analytically in the textbooks of fluctuation phenomena (for example, see [13]).
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Abstract. A quantity formally similar to averaged angular momentum is com-
puted for many chaotic scalar time series with additional Gaussian noise. Consid-
ered time series are constructed using iterative maps, three-dimensional ODEs and
computer generated noise. Using proposed method we can distinguish chaos with
noise from pure noise, if level of noise in time series is low enough. Some types of
chaos can be detected in short time series with very high level of noise. Application
of the method on real time series is demonstrated.

Keywords: Chaos, noise, time series.

1 Introduction

Identifying chaos in time series is a very difficult task arising in physics,
fluid mechanics, astronomy, geophysics, meteorology, ecology, life sciences
and finance. One can try to solve this task using time delay embedding [1,2]
and correlation dimension algorithm [3] or estimating entropies [4] and Lya-
punov exponents [5,6]. There are methods for analysis of irregular time series
(chaotic and stochastic) based on short-term predictability (chaotic systems
follow definite rules), detection of nonlinearity, reversibility, surrogate data
and transportation distance function [7]. It is important for understanding,
modeling and forecasting of complex processes [8].

We compute here a quantity looks like the averaged component of the angular
momentum of a particle. The aim is to develop a new approach in the anal-
ysis of irregular time series in other to have the value of this quantity as an
additional indicator of chaos, in a specific time series, beside other indicators
obtained by different methods. Our mechanical view on time series is similar
to Tuncay’s mechanics of stock exchange, where he introduces potential and
kinetic energies for prices [9].

2 Angular Momentum

For a time series a;; (1 < j < N + 3), we compute

@

T =
J
amaz
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where
Qmaz = maz{|a;|;j =1,2,...,N + 3} (2)

Then we take
=3, 1<j<N (3)

(it is not so important if time delay is 1, 2 or 3) and compute components of
velocity in discrete time

Ugj = L5 = Tj-1, Uyj =Y —Yj-1, 2<J<N (4)
We can now find out values of z component of the angular momentum
sz = TjVy; — YjUzy, 2 S j S N (5)

For a particle of unit mass with coordinates x; and y;, the quantity

1 N
J:

would be the angular momentum averaged in discrete time. We will see that
the level of noise in a time series significantly influences the value of L.

3 Time Series Constructed Using Feigenbaum Map
and Lorenz Equations

We compute here

Q5 = (1 - b)«fj + bgmaa:Gj (7>
where
fj =1- qg]?—l (8)
(Feigenbaum map) and
Emaz = maz{|&l;j =1,2,..., N + 3} 9)

G is computer generated Gaussian noise where distribution mean is zero and
scale parameter is one. The level of noise is denoted by b. For low enough
b, we can distinguish chaotic time series with noise from clean noise if the
averaged angular momentum (L) is computed (figures 1 and 2).

We also use the relations (7) and (9) after replacement

& — £G1) (10)
where £(jh) satisfies equations (Lorenz)
s _ M e e B 8
Eow-¢, T=re-n-g, T=@m-s¢

Again we can distinguish chaotic time series with noise from clean noise, for
low enough noise level (figure 3).
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Fig. 1. Averaged angular momentum (L) of a very short time series (N = 300)
constructed using Feigenbaum map (8) with ¢ = 1.94 and &, = 0.6. For low enough
noise level b, L(b) is different from L(1) (corresponding to clean Gaussian noise).

0 02 04 06 08 I
b

Fig. 2. L of time series with N = 597 constructed using Feigenbaum map (8) with
q =1.67 and & = 0.4.

z %
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b

Fig. 3. Averaged angular momentum of time series with N = 475 constructed using
Lorenz equations (11) with » = 30 and £(0) = 7(0) = ¢((0) = 1. Here h = 0.1.
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4 LM Diagrams

Besides the averaged angular momentum L, the spread of angular momentum
M =max{L,;;j =2,3,...,N} —min{L,;;j =2,3,...,N} (12)

will be of crucial importance in our approach.
Here we consider time series (7) with (10) using three-dimensional ODEs like
(11). We take

N =3000, 0.01<h<0.1, -1<£(0),n(0),¢(0)<1 (13)
Values of h,£(0),n(0),¢(0), restricted in this manner, we choose randomly.

We have computed L and M for 2800 different chaotic time series with
additional Gaussian noise (red circles in figures 4,5,6,7). There are included:

e 200 different time series (o; = (1 —0)&(jh) + b&maxG;) constructed using
Lorenz equations (11) with » = 28 and different values of b, h, £(0), n(0)
and ¢(0) randomly chosen in given intervals

e 200 different time series constructed using Rossler equations

de¢ d¢

dn
— = -1 - — =¢(4+01p, — =01+ -1
It n—=q m £+ 0.1n, It 0 ¢(§ —10)

e 200 different time series constructed using Ueda equations

s dn_ s ~ ¢
3= g = 8 ~hkn+ Bsing, 1

at
with £ = 0.06 and B = 8.1
e 200 different time series constructed using Rikitake equations
dg g

_ dn _ _ a
o= HEE G = pn (¢ — a)§, pri

with p =1 and a =4
e 200 different time series constructed using modified Lorenz equations [10]

E e D o e d 8
o =0 =), =@ —dp) -6 =8 -3¢
where p = 6.4

e 200 different time series constructed using modified Lorenz equations with
another value of p corresponding to chaos
e ctc.

We also have computed L and M for 3600 different stochastic time series
(blue circles in figures 4,5,6,7) with N = 3000. There are included:
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e 200 different time series with float random numbers between 6.9 and 25.3

e 200 different time series with rational random numbers between —15/2
and 15/2

e 200 different time series with integer random numbers between —61 and
—4

e 200 different time series with random numbers between other certain
boundaries

e random series with Gaussian distribution (b =1)

e ctc.

0 o1 008 006 004 002 0 0.02

Fig. 4. Averaged angular momentum (L) and spread of the angular momentum
(M) for chaotoc time series (red circles) and stochastic time series (blue circles).
Here we take b = 0 (there is not noise in chaotic time series) and N = 3000.

0 o1 o8 loos o4 w0z 0 0.02

Fig.5. L and M for chaotic time series with noise (red circles) and stochastic time
series (blue circles). Here 0 < b < 0.05 (the level of noise is randomly chosen) and
N = 3000.

Fig. 6. Averaged angular momentum and spread of the angular momentum for
chaotic time series with noise (red circles) and stochastic time series (blue circles).
Here we take 0 < b < 0.15 and N = 3000. Broadening of red area, compared with
the previous figure, is a consequence of the increasing of maximal b.
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0 o1 o0

Fig.7. L and M for chaotic time series with noise (red circles) and stochastic time
series (blue circles). Here 0 < b < 0.3 and N = 3000. If the point (L, M), for a real
time series, is in the overlapping area of red and blue circles, we can not distinguish
chaos from noise.

5 Real Time Series

If o, (1 < n < N+3) is vertical acceleration (nm/s?) of the Kobe earthquake
in nth second [11], recorded at Tasmania University on 16 January 1995, we
find L = —0.01 and M = 0.5. Here N = 3045. The point (—0.01,0.5) is in red
area of figure 5 so we conclude that we have an indication of chaos. We find,
using angular momentum method, that considered real time series is chaotic
one with the noise level b < 0.05. This is in agreement with two results pub-
lished before. First, de Sousa Vieira found out that chaos is present in the
symmetric two-block Burridge-Knopoff model for earthquakes [12]. Second,
according to Iliopoulos et al. [13], the Hellenic lithospheric system appears
to be in a state of early turbulence with a low dimensional universal attractor.

Considering monthly temperatures in England [11] for the yers 1723-1970
(N = 2973), we get L = —0.06 and M = 0.7. One can see the point
(—0.06,0.7) in red area of figure 5. Again we have chaos with noise of level
b < 0.05. It is interesting that Berndtsson et al. [14] analyzed monthly tem-
perature time series observed in Lund (1753-1990) and concluded that there
are indications of a low dimensional chaotic component.

For daily brightness of a variable star on successive midnights [11] (N =
597) it is found L = —0.02. If we use figure 2, we can conclude that there
is a very large amount of noise in this time series. This is in agreement
with the results found by Kiss et al. Power spectra of red supergiant stars
show a single mode resolved into multiple peaks under a Lorenzian envelope,
interpreted as evidence for stochastic oscillations caused by convection and
pulsations. A strong 1/f noise component in the power spectra is also found
[15].

Considering monthly prices of gold in US Dollars from January of 1971
to October of 2010 [16] (N = 475), we find out L = —0.00013. For prices in
Yens we get L = —0.00074. We conclude that these time series are stochastic
both (figure 3). It is often in econometrics that time series are assumed to
be stochastic [17].
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6 Conclusion

The proposed angular momentum method can give us an indication of low-
dimensional chaos in a noisy time series. It is possible sometimes distinguish
chaos from noise in a very short time series. We have analyzed some real time
series using the angular momentum method and our results are in agreement
with the published results obtained by some other methods. We are restricted
here on certain types of chaos and noise so there are time series we can not
analyze using the method. The upgrade of LM diagrams is possible and the
method can be more efficient, but never absolutely efficient.
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Abstract. Aim. This work aims to find evidence of deterministic dynamics in Fi-
nancial Markets combining the advanced spectral method of the Singular-Spectrum
Analysis (SSA) with the classical tools provided by the chaos theory. We focus
on return and realized volatility series of several stock indexes (i.e., FTSE ITALIA
MIB STORICO, DAX 30, CAC 40, FTSE ALL SHARE, S&P500, NASDAQ 100, NIKKEI ALL
STOCKS and EURO STOXX).

Methods. Initially, a Monte Carlo SSA (MC-SSA) tests significance against a
red-noise null-hypothesis (AR(1), first-order autoregressive process) is performed.
Specifically, the error bars computed for each empirical orthogonal function rep-
resent 95% of the range of variance found in the state-space direction defined by
that empirical orthogonal function in an ensemble of 1000 red-noise realizations.
Thus, the bars represent the interval between the 0.5% and 99.5% percentiles, and
eigenvalues that lie outside this range are significantly different (at the 5% level)
from those generated by the red-noise process against which they are tested. Then,
the eigenvalues lie outside this interval are used to reconstruct the time series of
the stock indexes. Finally, we apply the chaotic analysis on the reconstructed time
series.

Results. Despite the extremely complex morphologies observed in the vast ma-
jority of the Financial Markets time series, here we show that the fundamental
dynamic appears to be governed by a well-defined fractal attractor. A universal
strange attractor —underlying the nontrivial financial time structures— suggests that
the mechanism of production of such phenomena is governed by some inherent de-
terministic processes with a few degrees of freedom. In conclusion, we discuss the
stock indexes of FTSE ITALIA MIB STORICO and the NIKKEI ALL STOCKS in which
the Monte Carlo SSA test does not distinguish the signals from a relatively signifi-
cant red-noise.

Keywords: Financial Time Series, Chaos, Singular Spectrum Analysis.

1 Introduction and Purpose

Chaos theory has been applied to many different fields, from predicting
weather patterns to the stock market. However, the stochastic random noise
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present in several physical processes affect the possibility of using this anal-
ysis and, more generally, to treat the system with a relative low number of
dimensions [1]. In this paper, we treat the financial time series as natural dy-
namic process with the purpose of extracting the deterministic signal from a
pure noisy. The de-noise time series is then analyzed with the classical tools
provided by the chaos theory. The experiment is performed by using sev-
eral stock indexes. Excepted in the cases of the FTSE ITALIA MIB STORICO
and the NIKKEI ALL STOCKS indexes, all time series analyzed here show an
universal strange attractor with a correlation dimension, Dy < 2. This fact
point out that the mechanism of production of such phenomena is governed
by some inherent deterministic processes with a few degrees of freedom mak-
ing the financial signal more tractable from a mathematical point of view.
Furthermore, the evidence of small positive maximum Lyapunov exponents
found here, 0.01< Apqe < 0.003, provide an useful constraint on making
prediction. Lyapunov exponents, in fact, are inversely proportional to the
predictability horizon.

In this work, we only present the detailed analysis of the EURD STOXX. The
complete Singular Spectrum Analysis, as well as, the chaotic investigation of
the entire sample will be publish by Romano et al. (in preparation).

2 Data

We focus our analysis on return and realized volatility series of several stock
indexes, FTSE ITALIA MIB STORICO,DAX 30, CAC 40, FTSE ALL SHARE, EURO
STOXX NASDAQ 100, S&P500, and NIKKEI ALL STOCKS. The analyzed fre-
quency is daily for a period ranging from 01/01/1990 to 31/03/2010. All
time series are temporally coincident with the exception of the Japanese index
ranging from 01/01/1991 to 31/03/2010. Before addressing the statistical
chaotic analysis, we test the non-linearity of time series under consideration
using the BDS test. The null hypothesis Hy: the time series are independent
and identically distributed, is rejected for all stock indexes analyzed here.

3 Method

In this work we combining the advanced spectral method of the Singular-
Spectrum Analysis (SSA) with the classical tools provided by the chaos the-
ory. Our analysis is briefly summarized in what follows.

(TI) Initially, a Monte Carlo SSA (MC-SSA) tests significance against a
AR(1) null-hypothesis Hy is performed. Specifically, the error bars computed
for each empirical orthogonal function represent 95% of the range of variance
found in the state-space direction defined by that empirical orthogonal func-
tion in an ensemble of 1000 red-noise realizations. Thus, the bars represent
the interval between the 0.5% and 99.5% percentiles, and eigenvalues that



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

lie outside this range are significantly different (at the 5% level) from those
generated by the red-noise process against which they are tested.

(IT) By using these de-noise eigenvalues we reconstruct the time series of
the stock indexes.

(III) Finally, on the reconstructed time series we apply the classical
chaotic analysis: attractor reconstruction, correlation dimension, Dy and
maximum Lyapunov exponent A;,qz-

3.1 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a recent and alternative time series
method [2].

Based on principal component analysis, the SSA method generates a set of
eigenvalues and eigenvectors from a symmetric covariance matrix obtained by
setting a specified window length M. The window length M should be chosen
to be longer than number of data points. In general, the window length be
less than about N/5 where N is the number of points in the time series.
The choice of window length sets the dimension of the lag autocorrelation
matrix to be constructed and diagonalized by SSA, and thus determines the
computational burden of the application. Larger values of M correspond to
higher spectral resolution, although there is no direct equivalence between
them. Robustness of results to M is an important test of their validity. We
test different settings of the window length (3 < N < 10) without observing
significant changes in our analysis.

The eigenvalues quantify the variance associated with each eigenvector or
empirical orthogonal function (EOF). Projection of the data onto a set of
EOFs allows its reconstruction for selected components, such as those above
the noise floor accounting for most of the significant signal.

The application of SSA in combination with this red-noise test is known
as Monte Carlo SSA [3]. The SSA-MTM TOOLKIT freeware software! was
used for the analysis [4].

3.2 Monte Carlo SSA

The Monte Carlo SSA test (MC-SSA) was used to distinguish deterministic
signals from red noise. Red-noise, is known to be significant relevant in
several natural system. It is dominated by cycles of low frequency (long
period) in its power spectrum and exhibits significant autocorrelations that
decay over time. For red-noise, we specifically consider here a first-order
autoregressive process, AR(1), given by z;=¢x;_1+e; with 0<¢<1 and ¢
independent identically distributed normal errors.

A total of 1000 randomizations were used for the computation of MC-
SSA. MC-SSA estimates the parameters of the AR(1) model from the time
series itself by using a maximum-likelihood criterion [5].

! http://www.atmos.ucla.edu/tcd/ssa/
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Fig. 1. Eigen-spectrum Shape Test of EURO STOXX index. The eigenvalues are
ranked by order of importance according to the variance. The bars specify the
95% confidence intervals generated with Monte Carlo simulations of red-noise.

4 Results

Fig. 1 shows the eigenvalues decomposition (eigen-spectrum) obtained by
MC-SSA for the EURO STOXX index. The eigenvalues are ranked by order of
importance according to the variance. Specifically, the error bars computed
for each empirical orthogonal function represent 95% of the range of vari-
ance found in the state-space direction defined by that empirical orthogonal
function in an ensemble of 1000 red-noise realizations. The 95% confidence
intervals are defined by the values expected for a red noise process with sim-
ilar decorrelation time 7=-1/log(r), where r is the lag-one autocorrelation
value (see §3). Thus, the bars represent the interval between the 0.5% and
99.5% percentiles, and eigenvalues lying outside this range are significantly
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Fig. 2. EURO STOXX index: in red we show the the noise sub-components as reported
in the the eigen-spectrum shape (MC-SSA); in blue the deterministic part of the
signal is reconstructed.

different (at the 5% level) from those generated by the red-noise process
against which they are tested. The first two eigenvalues are dominant and
lie outside this interval and their variances are significantly different from
the noise-variance. These eigenvalues are used to reconstruct the de-noise
time series plotted in blue color inside the original signal (see Fig. 2) The
strange attractors of the EUROD STOXX index is plotted in Fig. 3. In partic-
ular, the Fig. 4 shows the Strange Attractor of the EURO STOXX index from
01/01/1995 to 01/01/2005 in which we perform the research for the max-
imum Lyapunov exponent. The values of the correlation dimension and the
maximun Lyapunov Exponent are Dy = 1.87 and A4, = 0.006, respectively
(see Figs. 5-6). Excepted in the cases of the FTSE ITALIA MIB STORICO and
the NIKKEI ALL STOCKS indexes, all stock indexes reported in §2 show an
universal strange attractor with a correlation dimension, Dy < 2 and 0.01 <
Amaz < 0.003 (Romano et al. in preparation).

5 Conclusion

The advanced spectral method of the Singular-Spectrum Analysis (SSA) with
the classical tools provided in the chaos theory prove largely successful to de-
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Fig. 3. Strange Attractor of the EUR0 STOXX index after removing the noise sub-
components from the eigen-spectrum shape. See text for more details.

scribe and classify the financial time series. Despite the extremely complex
morphologies observed in the vast majority of the Financial Markets time
series, here we show that the fundamental dynamic appears to be governed
by a well-defined fractal attractor. A universal strange attractor underly-
ing the nontrivial financial time structures suggests that the mechanism of
production of such phenomena is governed by some inherent deterministic
processes with a few degrees of freedom.

Clearly our analysis shows two types of markets (i) the financial sig-
nal is separable from a stochastic noise (DAX 30, CAC 40, FTSE ALL SHARE,
S&P500, NASDAQ 100, and EURO STOXX) (ii) the dynamic process of the
time series is completely affected by random phenomena (FTSE ITALIA MIB
STORICO and NIKKEI ALL STOCKS). This in principle gives us the opportunity
to make more accurate econometric analysis because a priori we know the
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Fig.4. Strange Attractor of the EURO STOXX index from 01/01/1995 to
01/01/2005. In this time period we perform the research for the maximum Lya-
punov exponent.

ly

Time

Fig. 5. Maximum Lyapunov exponent of EUR0 STOXX index, Amaqz=0.006. We use
the tseriesChaos package of R software to estimate the largest Lyapunov exponent.
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Fig. 6. Correlation Dimension of EURO STOXX index, D2=1.8. We use the

Grassberger-Procaccia method implemented in Visual Recurrence Analysis Soft-

ware, http://nonlinear.110mb.com/vra/.

underlying process involving in time series under examinantion. This differ-
ent behavior may be a reflection of the various marketing strategies adapted
by different countries during the dynamic financial evolution.
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Abstract. Even if noise titration cannot be used to prove the presence of chaos,
it can still be used to detect nonlinear component in dynamics. Nevertheless, since
the technique is based on nonlinear models for one-step-ahead predictions, it re-
quires an acute choice of modelling parameters, that is the number of terms and
the nonlinearity degree of the models. Based on illustrative examples, we propose
conditions under which the noise titration can be reliably applied to characterize
nonlinearity governing the dynamics underlying the measured time series. More-
over, we found that investigating nonlinear dynamics in the entire phase space or
in a Poincaré section does not necessarily lead to similar results.

Keywords: noise titration technique, time series analysis.

Identifying chaotic dynamics from biological data still remains a great
challenge, mainly because it requires a conclusive proof for a global deter-
minism governing the whole system, that was never provided until now (Glass
[1]). To overcome this difficulty, a technique to identify and to quantify chaos
from short time series was proposed by C.-S. Poon and M. Barahona [2].
Unfortunately, the so-called “noise titration technique”, based on the com-
parison between one-step-ahead predictions given by linear and nonlinear
models, is not always able to distinguish some coloured noise from a purely
deterministic chaotic dynamics (Freitas et al. [3]). Thus this method is not
able to provide a conclusive proof of a chaotic behaviour. Nevertheless it can
still be used to detect a nonlinear process — deterministic or stochastic —
which governs the dynamics. In fact, this technique was used to discriminate
healthy subjects from patients suffering from different cardiac failures, by
comparing the strength of the nonlinearity underlying the data (Freitas et
al. [4]). On the other hand, the results obtained with the noise titration ap-
plied to some spontaneous respiratory dynamics (Fiamma et al. [5]), or some
breathing patterns of patients assisted by mechanical ventilation (Mangin et
al. [6]), remains valid if one ignores the references to chaos in the conclusions.
Nevertheless, this technique has to be applied according to some precautions,
relative to the sampling of the data set, the choice of the modelling parame-
ters, the choice of the observable, and so on. These guidelines are described
section 1.
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When the detection of the nonlinear component (Barahona et al. [7])
is applied, the probability p for having better predictions with a nonlinear
model is computed. A p value greater than 0.99 ensure that the dynamics
is nonlinear, while p around 0.50 means there is no gain to use a nonlinear
model. Nevertheless, in the case of p around 0, encountered in the case of
atrial fibrillation (Freitas et al. [4]), it is not so clear which kind of dynamics
can lead to such results. We therefore propose to check whether relaxation os-
cillations could not be a good candidate to understand this case. Relaxation
oscillations were already observed on a cellular scale (Tyson and Kauffman(8],
Guevara et al. [9]) but also on the scale of a whole organism, considering
physiological (Van Der Pol [10]) or biological (Barlow [11]) rhythms, or even
on a collective, behavioural approach (Liu et al. [12]). These oscillations can
present a fast increase of their amplitude, followed by a slow relaxation to
a basis value. Typically, the slow part can be reproduced by a linear pro-
cess, while the fast dynamics is controlled by a nonlinear process, driving
notably the amplitude fluctuations. This type of dynamics is hard to anal-
yse, because of its intrinsic dual behaviour. In order to better understand
the phenomenon, we built a caricature of relaxation oscillations, based on
periodical oscillations whose amplitude is modulated by the logistic function.
The time series provided is a pathological case for data analysis, due to the
fact that the nonlinearity only acts by very brief impulses. We showed that
the nonlinearity detection, proposed in Barahona et al. [7], failed to detect
the nonlinear component of this so-built dynamics.

1 The noise titration technique

The noise titration technique (Poon and Barahona [2]) is conditioned by
a nonlinearity detection based on estimations of one-step-ahead polynomial
predictors (Barahona and Poon [7]). Once this detection achieved, and only if
a nonlinearity is detected (p > 0.99), the noise titration is applied. A white
Gaussian noise is then gradually added to the data, until the nonlinearity
goes undetected according to the predictors. These two steps are detailed in
the following two subsections.

1.1 Detecting nonlinearity

A time series {y,, }Y_, is investigated by comparing one step ahead predictions
obtained with linear and nonlinear parametric models. These models are not
built to reproduce the global dynamics but only to be optimal for one-step-
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ahead predictions. The general form of these models is:

gn(da M) = ap + a1 Yn—1 + az Yn—2 + ...

+ak41 yﬁ_l + Qxi2Yn—1Yn—2 + ... tapm—1 yfb—fg
M—-1

= Z A Zm (1)
m=0

where {z,,(n)}M_,, M € N, is the functional basis made of all distinct com-
binations of delay coordinates {y,—_x};_;, ¥ € N, up to the maximum allowed

degree d. There is thus M = (&Tj;! terms. The models are thus defined by
the two parameters d and M, from which the order s of the model can be
obtained. For a linear model (d = 1), k = M — 1.

Coefficients a,, of model (1) are estimated using a least squares technique

in order to minimize the squared prediction error

(1)

N
(gn - yn)2
== (2)
N
> (n —7)?

1
wherey = — Zﬁle Yn. This error was used to assess the quality of the model

from the one-step-ahead prediction point of view. This error can be also
used for selecting the most important term in the model as follows (Chen et
al. [13]): The maximum squared prediction error max(e?) is achieved when
no terms are included in the model, that is, when M = 0. In this case,
€2 = max(e?) = 1. The inclusion of the nth term in the auxiliary model
(1) induces a reduction in €. Expressing this reduction as a percentage of
max(€?) yields the error reduction ratio (ERR) (Chen et al. [13]). The terms
with large ERR values are thus selected to form the model.

Among each class of models parametrized by (d, M), we retained the best
nonlinear model (8, my,;) where § < d, and m,; < M, which was compared to
the best linear model parametrized by (1,m;) selected among (1, M) models.
Obviously m; < M. Thus, when we assess the performance of a nonlinear
model (d, M), this always means that the performance of the best nonlin-
ear model (4, m,,;) for one-step-ahead predictions is compared to the perfor-
mance of the best linear model (1,m;). For short, we will say that models
parametrized by (d, M) are tested.

Once the best linear (1,m;) and the best nonlinear (§, m,;) models are
selected, the null hypothesis (the best linear model) is then tested against
the alternate hypothesis (the best nonlinear model) using the non-parametric
Mann-Whitney statistical test. So the probability p for the best nonlinear
model to provide better one-step-ahead predictions than those provided by
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the linear model is calculated. When the probability p is around 50%, this
means that there is no advantage to choose a nonlinear model rather than a
linear one. Nevertheless, when p is greater than 99%, a nonlinearity — or a
nonlinear component — is detected among the data, and the noise titration
can then be applied.

1.2 Noise titration

To titrate the noise in a time series, a Gaussian distributed white noise v,, of
the same standard deviation as y,, with increasing amplitude A (0 < A < 1) is
added to the data until its nonlinearity goes undetected (within a prescribed
level of statistical confidence). If the nonlinearity detection persists to be
conclusive, parameter A is increased. This process continues until the p-
value goes under the threshold of 0.99. The corresponding noise amplitude
A defines the Noise Limit (Np).

We would like to insist on the fact that this nonlinearity test is actually
able to detect nonlinear relations between two states of the system delayed
in time, using models which were selected only to ensure good one-step-
ahead predictions. This not necessarily involves an underlying determinism
(Freitas et al. [3]), since one-step-ahead prediction cannot provide such a
proof (Dafilis et al. [14]).

1.3 Recommendations for an optimal use

We showed that the results provided by the noise titration technique could
strongly depend on some modelling parameters on one side, or to the time
series on the other side (Roulin et al. [15]). The modelling parameters d
and M cannot be chosen too small or too big, because it could leads to false
results. We showed some examples where wrong negative and wrong positive
answers can be obtained (Freitas et al. [4]), and such a feature is our main
argument to ban the use of the noise titration to proove the chaotic nature
of a dynamics. The nonlinearity degree has to be at least equal to 3, and the
number of terms at least equal to 20 or 30, but it should not exceed 100, to
avoid over parametrization. On the other hand, the noise limit is sensitive to
the noise realization used for the titration. It becomes necessary to consider
a mean value of several titrations (we recommend at least 5 titrations). We
also showed (Roulin et al. [15]) that the choice of the variable describing the
dynamics may affect the results according to the observability coefficients
(Letellier and Aguirre [16]). Indeed, there are better variables than others
to investigate a dynamics, and the noise titration is sensitive to that choice,
as many other techniques. Moreover, we found that investigating nonlinear
dynamics using a trajectory in the phase space or using a Poincaré section
does not necessarily lead to similar results (Letellier [17]).

Finally, when the probability p is equal to 0.50, this means that the choice
between a linear and a nonlinear model is not obvious, and that the pertinence
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of both types of models is equivalent. When p is above 0.99, the use of a
nonlinear model is required to describe the one-step-ahead dynamics, and we
conclude about the underlying nonlinearity of the system. If p is about 0, in
principle, the dynamics is mainly linear, but this was never proved. So we
wanted to test this last case.

2 Slow/fast dynamics with chaotic amplitude
modulation

The nonlinearity detection applied on cardiac data revealed different kinds of
dynamical behaviour for patients suffering from congestive heart failure (p ~
1), for others suffering from atrial fibrillation (p & 0), and for healthy patients
(p = 0.75) (Freitas et al. [4]). Surprisingly, the nonlinearity detection seemed
to show that the cardiac dynamics was strongly linear in the case of atrial
fibrillation, as revealed by the very low p-values (Fig. 1).

g H;wv\uHmHmmmmmw

Time (hour)

Fig. 1. Probability p calculated from ARR,, = RR,+1 —RR,, for 5 patients suffering
from atrial fibrillation. Modelling parameters: (d, M) = (3,50). From Freitas et al.
[4].

We consider here the time series generated by a periodic behaviour, whose
amplitude is modulated by the logistic function in a chaotic regime. The
periodic component corresponds to a triangular signal, for which the linear
decrease is slow in comparison to the fast increase. Indeed, only one iteration
is sufficient to reach the maximal amplitude of the ith cycle, given by:

n Yi
A= (1+ %) 3
Y20 + 10 ®)
where n gives the number of iterations in one oscillation and y; is a solution
of the logistic function
Ynt+1 = piyn (1= yn) - (4)
The time series {xy} is then built according to
Ai
T —— si x>0

Tg4+1 = n (5)
A; si xp <0.
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where i = [%] To each cycle ¢ corresponds only one A; value; the oscillation

period remains constant, and does not depend on the amplitude value, which
is varying between two successive cycles. A typical time series is shown Fig.
2.
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Fig. 2. Time series of the slow/fast dynamics with chaotic amplitude modulation.
Parameter values: p = 3.9 and n = 20.

o
O T

This time series is mainly governed by the linear behaviour defined by
the first equation of process (5). But, very briefly, a nonlinear component
drives the amplitude of the signal. From the time series point of view, the
system is mainly linear, but a first-return map to a Poincaré section provides
a parabola similar to the logistic function’s hallmark (Fig. 3).
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Fig. 3. First-return map of the slow/fast dynamics with chaotic amplitude modu-
lation. Parameter values: p = 3,9 and n = 20.
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2.1 Results

The nonlinearity detection technique described in section 1 was then applied
to the time series {z)}. The modelling parameters were chosen as (d, M) =
(3,50), and a mean value over 5 detections is computed for each p value. We
observed that the probability p for the best nonlinear model to be better for
the one-step-ahead prediction than the best linear model were always equal
to 0. This value never changed when we varied the number « of relaxation
oscillations in the data’s window considered for the detection. We tested
the nonlinearity for a time series where n = 20 and o > 12, that is, a
window of 240 points for the models estimation. Even if a@ was equal to 30, p
remained around zero. This means that the nonlinear component was acting
too sporadically to be detected on the basis of one-step-ahead predictions.
Typically, a linear model would furnish a bad prediction only during the
stiff increase of the amplitude. But larger n is, less the error weight on the
statistics, and since with n = 20 the technique already failed to detect the
nonlinear component, this remain true for layer n.

The so-built time series is then presented as a “pathological” case: since
the nonlinearity acts on very brief impulses, the noise titration technique
fails to detect the nonlinear component of the dynamics, and only shows its
linear component. However, we noted that if the problem was approached
in a Poincaré section, p values were always equal to 1, as it was observed
with the logistic function, evidencing the presence of a nonlinear component.
This example was certainly a caricature, but it showed the non-equivalence
to work in the phase space, or in a Poincaré section. Such a difference was
already revealed while estimating a Shannon entropy (Letellier [17]).

3 Conclusion

In addition to the guidelines we provided to carefully use the nonlinearity
detection, we showed here that using the nonlinearity detection to search for
a nonlinear component failed when the time series results from a dynam-
ics where the nonlinearity only acts very briefly. Our caricatural dynamics
appeared to be a typical case to test the robustness of any analysis. In addi-
tion, the non-equivalence to analyse a trajectory in the phase space and in a
Poincaré section is once again confirmed here, for the nonlinearity detection
in particular.
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Abstract

We show that the stabilitgondition for the soliton-like wave of nuclear burgiin
neutron-multiplicating medium is determined in gehdy two conditions. The first condition
(necessary) is determined by relationship betwéenequilibrium concentration and critical
concentration of active (fissile) isotope, that asconsequence of the Bohr-Sommerfeld
quantization condition. The second condition (igfnt) is set by the so-called Wigner quantum
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the parameter that describes the squared widthuofingy wave front of nuclear fuel active

component.
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[. INTRODUCTION

In spite of obvious efficiency and allurement oé thuclear power engineering of next
generation, the main difficulties of its perceptiare predetermined by non-trivial properties
which future ideal nuclear reactor must possesdirgt; the natural, i.e. unenriched uranium or
thorium must be used as a nuclear fuel. Secondéyredactivity regulation system of reactor by
traditional control rods is completely absents, foutall that a reactor must possess the property
of so-called inner safety. It means that the a@itistate of reactor core must be permanently
maintained in any situation, i.e. the reactor ndropeeration is automatically maintained not as a
result of operator activity, but by virtue of phgai reasons-laws preventing the explosive
development of chain reaction by the natural wagufatively speaking, the reactor with inner

safety it is “the nuclear installation which neesiplode”[1].

22 (n,p) - 20 08 - 2NpO 8 - °Pu(n, fission) (1)

Strangely enough, but reactors satisfying such wedugquirements are possible in the
reality. For the first time the idea of such reactwas proposed by Feoktistd\2] and
independently by Teller, Ishikawa and Wd&4§l

The main idea of reactor with inner safety congistthe selection of fuel composition so
that, at first, the characteristic tinmgof the nuclear burning of fuel active (fissile) gooment is
substantially greater than the characteristic tohdelayed neutrons production and, secondly,
necessary self-regulation conditions are meet dutie reactor operation (that always take place,

when the equilibrium concentration;, of fuel active component is greater than critical

concentratiomgi; [2]). These very important conditions can practicallyays to be attained, if
among other reactions in the reactor the chain umear transformations of the Feoktistov

uranium-plutonium cycle typg2]

22 (n,p) -0 08 - 2NpO 8 - °Pu(n, fission) (1)
or the Teller-Ishikawa-Wood thorium-uranium cyglpe|[3]

22Th(n, ) - 23Paml £ - 23U (n, fission), )

will be enough appreciable.
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In both cases the produced fissile isotope&*®fu or***U are the active components of

nuclear fuel. The characteristic time of such neacti.e. the time of propef-decays, is
approximately equal tag =2.3/In2<3.3 days for reaction (1) angt =39.5 days and for reaction
(2), that is several orders greater than the tihtkelayed neutrons production.

The self-regulation of nuclear burning processtigutated by the fact that such system
left by itself can not pass from a critical staberéactor acceleration mode, because a critical
concentration is bounded from above by the finig@ildrium concentration of nuclear fuel

fissile component (plutonium for (1) or uranium f(®)), i.e.n;;> neir (Feoktistov's stability

condition [2]). On phenomenological level the selfiulation of nuclear burning is manifested as
follows. The increase of neutron flux due to soraasons will result in the rapid burnup of
nuclear fuel fissile component (plutonium for () wanium for (2)), i.e. its concentration as
well as the neutron flux will decrease, while trewnnuclei of corresponding fissile component
of nuclear fuel are produced with the same gerwmratite during timag. And vice versa, if the
neutron flux is sharply decreased due to exterombm the burnup rate decrease too, and the
accumulation rate of fuel fissile component will inereased as well as the number of neutron
production after a whileg.

However, as is knowr2], the Feoktistov stability condition is only necass but
insufficient condition. Therefore full generalizati of the Feoktistov stability condition for

critical waves of nuclear burning in neutron-multpting mediums is the purpose of this paper.

Il. PROPERTIES OF STABILITY CONDITION FOR CRITICAL WAVE
OF NUCLEAR BURNING ACCORDING TO FEOKTISTOV

Following [2], let us consider the knowlipolygon” system of kinetic equations for

neutrons and nuclei in the reaction chain (1) wébpect to the normalized autowave variable

Z=(x+ut)/L:
EaE :
% = ~[n, = ng =Ny, Jne, (4)
% =(ny =Ny )n, —ny, )
NE ©
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whereu is phase velocity of the steady running wavés the neutron average diffusion length,

n{zt) is the neutron densit=u/3== L% 1 is neutron diffusion constantn”S™; v is neutron
velocity in the one-group approximatioomS™; s is neutron microscopic scattering cross-
section,cm™; 7 =13/u> gL N; is neutron lifetime in mediums; A= uzz /L is dimensionless
constant, n’% =N, /Ng(-) = = Za;ni)/(v -1)o is the plutonium relative critical
concentrationNgi; is the plutonium critical concentratioNg is the #*® concentrationgzand &
are the microscopic neutron capture cross-sectidnfiasion cross-section, respectivety,and

ny are the concentrations of £fand > normalized to &*initial concentration, i.e., tblg(-oo),
vis the average number of prompt neutrons produeeg@lptonium nucleus fission.

Solving these equations Feoktistov was based omrhgy of diffusion equation and
the Schrddinger steady-state equation in quassiciasapproximation [2]. Naturally, in this case
(see Eg. (3)) the stationarity condition of solatie satisfied integrally, because there are points
where np, > Ny and there are points whemg, < nqi.. In this sense, the region &, > Ngit
corresponds as it were to allowed region, whilerggon atnp, < Nyt corresponds to subbarrier
region. In other words, the inverted profile of olnium concentration in thé°U medium plays
the role of potential well (Fig. 1(a) [4]).

In the region at front of wave E—») the approximate solution looks like

n=Cexpz, (7
Ng = ex;{—%expzj, (8)
Ny = expz, 9)
Np, = Mo |1 exg - Cj expz||. (10)
1+A Afiy,

Let us remind that obtaining this solution, we haeglected summanas andnp, whose
values are determined by edge conditighll. Then assuming that the subbarrier region ends at
z=0, we havep, = nyj; at this point. This allows us to determinate theigadf constant C. At the

point z=a, according to the Bohr-Sommerfeld quantization ctodj we have the following

a

Npy T

Do _1g7=7 (1)
|\ om 18275

equality
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where the integral is taken over the supercritieglon Qp>ncit). At the same time condition
(11) plays also the role of condition for findifgetpointa atnp, = Ngit, i.€., When the transition
into subbarrier region happens due to burn-up Fsgel(a) and Fig.2)

Executing the ordinary for quasi-classical approxioralinkage with the supercriticality
region (p,>ngit) we will come to calculation of.

As a critical state is automatically maintaineaat> ngi; [2] (that is the direct
consequence of the Bohr-Sommerfeld quantizationlition), we can use this fact for

generalization of the following inequality:

ﬁPu > Npy > ng?t’ (12)
Thus, Feoktistov shown for the first time [2] thiag tsoliton-like propagation of neutron-

fission wave of nuclear burning is possibléifuU medium only under the condition of a certain

ratio between equilibrium and critical plutonium ncentrations (p, >Nei)), Which is

characterized by the Bohr-Sommerfeld quantizatiemddion. In other words, only in this case
the critical (quasi-stationary) state of systena¢ter core) can automatically maintained without
any external intervention, and, consequently, omly this case the reactor fully and
unambiguously possesses the inner safety properties

It is appropriate here to pay an attention to vergortant Feoktistov’'s parameter, which,
as shown below, is basis for ideology of the siighilf soliton-like wave of nuclear burning:

A =%, (13)

wherea is the width of permitted range of integration e tBohr-Sommerfeld condition (11),
where the inequalitylpy > neit (Fig. 2) andng, > ngit,, respectively,are satisfied;A(a) is
dimensionless coefficient, which appears within fiaenework of simplified diffusion model of
the Feoktistov reactor (3)-(6).

! Note that the model calculations of the Feoktigtoeblem by the system of equations (3)-(6) really
show[4] that at steady-state conditions the Bohr-Somnebdelantization condition is fulfiled with an
accuracy up to a few percents (!!!). Authors [4jenthat there are no grounds to expect the maaete
coincidence because a quantization condition feeldevel is approximate.
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Obviously, Eq. (11) due to its physical meaning kseg factor which predetermines the

phase velocity of soliton-like burning wave. Theref this equation exists regardless of an
idealization degree of reactor core model and gshapbear in explicit or implicit form in any
model whose the system of kinetics equations foitrnas and nuclei has soliton-like solutions
for neutrons. At the same time, as the averagehwaditsoliton wave has an order df,2the
maximum values of the dimensionless coefficiAfi) and wave velocity are determined by

the following approximate equality

1 umaxrﬁ
—N__(a)= =1, 14
b max( ) bl_ ( )

where coefficient i®~2 although a final estimation will be done below.

From analysis of Eq. (14) it follows that the vetgpof stable propagation of soliton-like
wave is not necessarily equal to the diffusion tedle/ 75 . It can be considerably slower or faster
due to very strong domination either of the nordnity parameter or dispersion parameter,
which in its turn reflects the peculiarities of fear transformation kinetics, for example, in the
chain (1) and/or in (2). In practice they maniféself as higher or lower degree of fuel burn-up.

In other words, when the wave velocity and consetiyehe degree of fuel burnup are
low, the wave stops due to the following reasorsuthbns from an external source, which take
place in the initial stage of wave initiation, buont the plutonium on medium bondary and
simultaneously transmute the uranium iRtANp. Neptunium with time starts to produce the
plutonium but it can not create the required higimaentration, while thé**Pu production
decreases due to the uranium burnup. More and tharle layer without bottf**U and *%u
grows on the medium boundary. The neutron diffusfopugh this layer does not provide the
increase of plutonium concentration in next layarg] the wave does not arise evenpg(x,0)=
Nerit-

Conversely, when the wave velocity and degree eff furn-up are high, the wave stops
also because of the scarce (or more exactly, déJgyl@tonium production which takes place
due to another reason. Figuratively speaking, ifoation resembles the fire in the forest under
strong wind, when only tree crowns burn. When tiedvepeed increases, it could extinguish the
fire at all. We have the similar situation, whemr#h is a velocity, at which in the early stage
(whenx=0) the front of neutron soliton wave outruns thenfrof plutonium production wave,
and this advance exceeds the neutron diffusiontterithis leads, in fact, to transformation of
fast wave into slow wave or to its full stop. Itirgeresting to note that this case not studied in

the literature (with the exception of [4,5]), buitis possible to postulate that it corresponds to
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some hypothetical situation, when the nuclear mgmvave forms in highly-enriched fuel which

has the ultra-low critical concentration of fuedsile component.

Thus, the lag (Fig. 1(b)) or advance of neutron wiawet relative to the plutonium wave
front for a distance considerably exceeding thetmeudiffusion length will leads to stop and
total degradation of these waves. This means thgitadation of waves with very low or very
high initial phase velocity will exhibits as thentkency to zero of Eq. (11) at very low or very
high values of. Therefore taking into account Eq. (14), we can amtelthat Eqg. (11) is true in
the range 8(1/b)\(a)<1. Based on this generalization, we can make arrtapt assumption
that the expression (I)/\(a) means the certain probability density distribntaga) with respect
toa

Uty _

oL p(a). (15)

Let us consider and substantiate the type and praperties of such a statistics, and also
show the results of its verification based on thevkn computational experiments on simulation

of nuclear burning wave in theBu (1) and ThU (2) fuel cycles.

[ll. CHAOS AND INTEGRABILITY IN NONLINEAR DYNAMIC
OF REACTOR CORE

In order to solve the assigned task we use the Rnamalogy between the neutron
diffusion equation and the Schrodinger steady-staggation in quasiclassical approximation.
We would remind that this analogy was used eatdiesolve the system of kinetics equation for
neutrons and nuclei (3)-(6) in the reaction chanaf the U-Pu fuel cycle. Since the system of
equations for neutrons and nuclei in the-Uhfuel cycle (2) is structurally identical to the
system equation for the {Pu fuel cycle (1), the computed “quantum mechahisalution,
which describes the statistics (15), will be gehfmaboth fuel cycles, except for a few details.

Now, let us remind that earlier we have used thérrEBommerfeld quantization
condition which in the case of the one-dimensi@yastems determines in the explicit form the

energy eigenvaluds,
§ POk = §2m(E, -V (x)dx = 2m(n+%j, n=012., (16)

wherem andp(x) are the mass and momentum of particle in thel fidélsome smooth potential
V(X).
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For the Feoktistov nearly integrable system ofdhaations (3)-(6) or for the anologous

Teller system of equations, for which it is assurttedm=1/2,V(x)=1 andn=0, this condition is

applied in the form

17

where indexfis denotes the fissionable isotope, for example,*tfeu in the Feoktistov £Pu
fuel cycle (1) or thé*U in the Teller TRU fuel cycle.

However, in describing the real evolution of fastator core, the corresponding systems
of equations for neutrons and nuclei are nonintagralmost without exception. This, in its turn,
means that according to the Kolmogorov-Arnold-Mostereorem [6,7] quasiclassical
quantization formulas are inapplicable for the sggtwhere the motion in phase space is not
limited by multidimentional tori. This is stipulatedy the fact that in the Hamiltonian
nonintegrable systems the more and more numberomfcbllapse in phase space with
perturbation (nonintegrability) growth. As a resuhe trajectories of majority of bound states
gets entangled, the motion becomes mainly chaatid, bound states themselves and their
energies, can not be described by the rules oficaasical quiantization, for example, such as
the Einstein-Brillouin-Keller (EBK) quantization mulfor multidimentional case [7,8], which
generalizes the Bohr-Sommerfeld quiantization riNete that nowdays a notion “quantum
chaos” is included the circle of problems relatedjtiantum-mechanical description of systems
chaotic in a classic lim[®9, 10].

Since the results of random matrices theory wilubed for research of chaotic properties
of the statistics (11), we first give an overvieftloe main concepts of this theory.

First, following [9,10], let us shortly considernature of so-called universality classes
and the Gaussian ensemble types. As is known, #miltdbn operator matrix in possession of
any kind of a symmetry can be reduced to the btbagonal form. At the same time, matrix

elements in each block are specified by a certaantym number set. For the sake of simplicity

we assume that the Schrodinger equatidqdy/ot) = I—]zp is expressed for states belonging to

the one block. At the same time the size of theraipel—] matrix is finite and equal to an integer.
As shown in [9,10], these universality classes s#paphysical systems into groups
according to their relation to orthogonal, unitamysimplectic transformation, which leave the

A

H matrix invariant. In other words, as it postulatedo]:
» the Hamiltonian of spinless system possessingyranmgetry with respect to time

inversion is invariant under orthogonal transforiorad and can be represented by real matrix;
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inversion is invariant under unitary transformasoand can be represented by the Hermitian
matrix;

 the Hamiltonian of the system with spin of 1/Zpessing a symmetry with respect to
time inversion is invariant under simplectic tramsfiations and can be represented by
guaternion real matrix.

Now let us talk about the Gaussian ensembleselfhtrix element distribution function
is invariant under one of indicated transformatjadhss means that the sets of all matrices with
elements described by these distribution functioren the Gaussian orthogonal ensemble
(GOE), the Gaussian unitary ensemble (GUE) and@hassian simplectic ensemble (GSE),
respectively.

At the same time it should be noted the one vebgstsntial detail. The matrix element
distribution function of the Gaussian ensembles cam be directly measured, since the
experiment can give us information about the enérggls of investigated quantum-mechanical
system only. In other words, just the energy eigims distribution function is of greater
interest from the practical point of view.

Derivation of corresponding equations for the cdesed types of the Gaussian
ensembles can be found in [10]. At the same tilme cbrrelated distribution function of energy

eigenvalues it is possible to write down in thdisigntly universal form for all ensemble types :

P(E;,-Ey) = [](E. ~Ey)’ expCAY EZ), (18)

n>m n

wherev is an universality index, which takes on the valti¢, 2 and 4 for GOE, GUE and GSE
statistics, respectively. Ar=0 energy eigenvalues are not correlated. In thgecthe energy
level spacing distribution function is describedtbg Poisson statistics, and the matrix ensemble

itself is called the Poisson ensemble.

So long as the energy level spacing distributiarcfion is the most studied property of
chaotic systems, following [9], we give a calcwationly for relatively simple case of the
Gaussian ensemble with matrixes22in size. Let us calculate the energy level sgacin

distribution functionpw(s) substituting the functioR(E;, E) in (18):

Pu () = [dE, [dE,P(E,,E,)3(s~|E, ~ E,)) =
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=C [ dE, [dE,|E, - E,|" expt-AY_ E2)d(s~|E, - E,)). (19)

Constant® andC are defined by the two normalization conditions:

T py (s)ds=1, (20)

Tspw(s)dszl. (21)

The first condition is normalization of the totalopability, and the second condition is
normalization of the average energy level spacintegration of (19) gives us the so-called
Wigner energy level spacing distribution functiondyich correspond to the different Gaussian

ensembles:

Vid T,
—sexp—s°), v =1GOE);
> p(4 ) 1( )

— 32, P - :
Py (S) = ﬂs expf 45 ), v =2(GUE); (22)

8 Vw64,
(m) s" exp( 9_7TS ), vV =4(GSE).

Despite the fact that these functions were obtaiftgdthe Gaussian ensemble with
matrixes X2 in size, they describe with sufficient accurdoy spectra of arbitrary size matrices
[9].

Note that random matrix theory at first was devebbpo find some regularities of heavy
nucleus energy spectra [10,11], but it attracteenkimterest after the Bohigas, Giannoni and
Schmit conclusion [12] that this theory can be ggapto any chaotic system.

We now turn to our problem of determination of istats (15) type and will try to use the

considered statistics properties of the Gaussiaaraehles.

IV. THE WIGNER QUANTUM STATISTICS AND GENERALIZED
STABILITY CONDITION

Now, in the framework of nearly integrable systdmwhich the system of equations

describing the nuclear burning kinetics of the Risbév U-Pu fuel cycle (1) or the Taylor Hu
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fuel cycle (2) belongs, we formally introduce thenérgy” eigenvalue of stationary state as

fis
crit

fis

(N0 / nl®)=Eo and "energy” eigenvalue of quasistationary state(rge / Ny )=Esemi (Where

Eoc>Esni and ny, is the current equilibrium concentration of fissisotope limited from above

by its initial equilibrium concentration, i.en,, <n..). In general case, to describe the wave

mode of nuclear burning, when the reactor is maieth in the near-critical state, we can
consider thaEgsm — 1. Then in the framework of quantum-mechanical @pgl this means that
the evolution of nuclear burning “energy” spectrimnallowed region is described by some
quasi-equivalent two-level scheme (Fig. 3).

Then, for the nearly-integrable system which déssithe nuclear transformation
kinetics for the Feoktistov (1) or for the Tell@) fuel cycle in general case we can use the Bohr-

Sommerfeld approximate condition in the form

£/n—ﬁ'j—1dz-~~ap/E0—Esemi -5 (23)
crit

It follows that, we can postulate one obvious amgartant assertion: by virtue of the
Bohr-Sommerfeld condition (23) the type of the Wignenergy level spacing statistics
unambiguously predetermines the analogous statigpe of parameter, which characterizes the
squared widthd?) of concentration wave front of active (fissile) teral.

Note that we have not any information about theueabf energyE, before the
experiment, whereas it is possible to considerBat = 1. If to add also, that in the steady-state

mode all wave kinetic parameters are predeterminethe initial equilibriumn, and critical

fis
crit

n.. concentration of active (fissile) isotope (whosdues are known before experiment), the

physical meaning and the necessity of followingngea

By —Egn =y |[— -1 24y

become apparent.

It is obvious that the conditions (23) and (24) makpossible to obtain the expression
for parameten;
(25)

u crit

The next step for determining the statistjg&) of Eq. (15) type consists in the

experimental validation of proposed hypothesis. Bat we have compared the Gaussian
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ensemble statistics (22) with the calculated ddtavell-known computational experiments

[4,13-17] and have obtained a good accordancelofileéion data with theoretical dependence,
which is described by the Gaussian simplectic ebgestatistics (see Table | and Fig. 4).
Thus, we can conclude that the wave velocity (¥5predetermined by the following

approximate equality

6
ur, — o \_(_8 4{64zj2n2n§:21

—= 0 =|—=| ajexp ——a’ |, O— 00—, 26
2L pW(a'D) 3\/7_7_ O 9]7_ (| a‘D 4 nPu _ncprlijt ( )
where coefficiento = 2 (see Eq.(15))7z is the delay time caused by active (fissile) isetop
production, which is equal to th@-decay time of compound nuclei in the Feoktistovddjhe
Teller (2) fuel cycle;py, (a, )is the Wigner symplectic statistics.

Thus, based on the verification results of Eq.(2@) can make a conclusion, which
generalizes the physical conditions of existence~@bktistov’'s wave mode: the velocity of
soliton-like wave propagation in neutron-multiplicg mediumin must be determined in general
case by two conditions. The first condition (neeegpis predetermined by relationship between

the equilibrium concentration and critical concatitm of active (fissile) isotopﬁpu / Ngi) >1)

or, more exactly, by the Bohr-Sommerfeld quantaaticondition. The second condition
(sufficient) is set by statistics of the Gaussiempsectic ensembles with respect to the parameter
a, which describes the burning concentration wawtlwof active (fissile) component of nuclear

fuel.

V. COMPUTATION 3D-EXPERIMENT AND VERIFICATION
OF THE WIGNER QUANTUM STATISTICS

Let us consider the simplified diffusion model @utrons and nuclei kinetics in the chain
(1) in the one-group approximation (neutron enasgy 1 MeV) and cylindrical geometry. Then,
taking into account delayed neutrons, the respecdistem of differential equations, which
describes the kinetics of Feoktistov's U-Pu fuelley i.e., the kinetics of initiation and

propagation of neutron-fission waméx, t), is as follows [13]:

an(xt)
ot

= DAnN(xt)+q(xt), 712

where
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a0 ) = [v@- p) - Dt B, TP Ny () + L2
i=1 12

-n(x,t) [, EE > o, IN;(x1) +ia; N, (x,t) + > o, N, (x,t)},

8,9,Pu i=ockonku

GNS_(IXJ) = 0, t(x )& Ny (x.1). (28)
IN,(xt) Ns (x,t) =u, h(xt) &? D\lg(x,t)—iNg(X,t)’ (29)
ot Ts
ONm(xt) _ 1 No (% 1) - v, B(x t) o + 0™ )N, (x,1) (30)
ot Ty
oN; _ p, W, h(xt) P IN,, (xt)- In2MN, , 1=16- (31)
ot Ty

To determine the last terg(x, t) on the right-hand-side of Eq.(27), we use theative

additional neutron absorber approximation:

n(x,t) W, 0 > o, IN; (x,t) =n(x.t) W, g IN(Xt)- (32)

i=ockonku

Taking into account the fact that fission with tivagment formation is most probable,

the kinetic equation foN (x,t) becomes

_ . o
% - 2[1_2 Pi ]Eﬂ(xf[) W, Eﬂ'fu N, (X, t) + N, Iin 2. (33)
i=1

i=1 Y2

Here n(x,t) is the neutron density) is the diffusion constant of neutrons; is the neutron
velocity E, =1 MeV in the one-group approximatiorﬁ; are the concentrations of neutron-rich
fission fragments of th&°Pu nuclei; Ng, No, Np, are the”®U , 2%, #%u concentrationsN,
are the concentrations of rest fission fragmentshef>*Pu nuclei; g, is the neutron-capture

microcross-sectiony; is the fission microcross-sectioryis the nucleus life time with respect to

6
the S—decay;pi( p=2_ p, ) are the parameters characterizing delayed negooups for main
i=1
fuel fissionable nuclides [18].
The boundary conditions for the system of differ@réquations (27)-(31) are
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N(xt) = Po/U,, DX =0, (34)

where®, is the neutron density of plane diffusion souréseutrons which is located on the
boundaryx=0; | is the uranium block length.
An estimation of the neutron flux densty from the external source on the boundary

can be obtained from an estimation of the Pu atitoncentration which is of order of 10%:

A1, 07 Ng(x,txtzoz 01N, (X, t) = (35)

and therefore
D, = 01/47,40%. (36)

Here we note that Eq. (36) is only an estimationgf The results of computational
experiment show that it can be substantially smalleeality.

In general, different boundary conditions can bedusiepending on physical conditions
under which nuclear burning is initiated by the reeuneutrons, for example, the Dirichlet
condition of (36) type, the Neumann condition oe 8o-called third-kind boundary condition,
which summarizes the first two conditions. Use bé tthird-kind boundary condition is
recommended in neutron transport theory [18]. Heeeuse this condition in the simple case
which is known as Milne’s problem, or more pregysélis the linear combination of the neutron

concentratiom(x,t) and its spatial derivativ@n/ox(x,t) on the boundary:
n(0t) - 0.7104n"? (0,t) = 0, 7§13

where) is the range of neutrons and®(0, t)=0n/dx (0, 1).

Although the behavior of the "neutron source-nuclagl" system depends on the
boundary conditions near the boundary, computatierperiments show that in reactor core,
I.e., far from the boundary, the system is asyniqgatly independent of the boundary conditions.
This confirms the independence of wave propagationmeactor volume on the boundary
conditions and parameters of nuclear fuel "ignitidn this sense the problem of determining the
optimum parameters of nuclear fuel "ignition" inelriron source-nuclear fuel” system is a
nontrivial and extraordinarily vital issue, whiobquires a separate examination.

The initial conditions for the system of differealtequations (27)-(31) are
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n(x,t)|x’t:O = dbo/un, n(x,t)|xyt:0 =0; (38)
19
Ns(xlt)tzozﬁzNAzz_gSNA, 139

Ng(xt),0=0, Np,(xt)]_, =0, Ny(xt) =0, N(xt)

t=0

t=0 =0. (40)

wheregs is the density, which is expressed in the unitgl@f>; N4 is the Avogadro constant.

The following values of constants were used forusation:

ot =200 cm*; g} =55010 cm?; (41)
ol =g, =g ™™ = 538107 cm?*; oF =0 = 212110 cm?; (42)
v= 297,083 daysy, =10° cm/s; D = 28010° cn's. (43)

The system of equations (27)-(32) with boundarydations (37)-(35), initial conditions
(38)-(40) and the values of constants (41)-(43poised numerically using the software package
Fortran Power Station 4.0. At the same time wetieeDMOLCH subprogram from the IMSL
Fortran Library. The DMOLCH subprogram solves atexysof partial differential equations of
the formu=f(Xxt,uy,Ux) by the method of straight lines [13, 19]. Theusiohs of diffusion model
of neutrons and nuclei kinetics in the chain (1jha one-group approximation and cylindrical
geomerty are presented in Fig.5.

Verification of the Wigner symplectic statistics ngists in comparison of the
experimental velocity of nuclear burning wave obeal by a computational 3D-experiment with
its theoretical value obtained by Eq. (26). Fos thiurpose we at first find the plutonium critical

fis

concentrationn,; from the profile of space-time evolution of itspeximental concentration
distribution (Fig. 5). It is obvious, that the ahge value of critical concentration approximately
is N7 O 810° cmi®(see Fig. 6(b)). It follows thathe plutonium normalized critical
concentration is

nfis — NPu

crit crit

/Ng4(x,0) = 0.0167, 44}
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where by virtue of Eq.(39) the initial uranium centration isNg(x,0)= 4.7910°? cmi*and the
value ofagis equal to 0.704 by virtue of Eq. (25). In othesrds, the important case whenr<l
takes a place (see Fig. 4).

Taking into account the plutonium normalized edmilim concentratiom . = 0.1, by

virtue of Eq. (26) we have the theoretical valughaf Wigner symplectic probability:
1 s
EA(aD) = py (ay) =0.9303, 54

which corresponds to the velocity of nuclear bugnimave ofumer =2.82 cm/day at known
parameter§=5 cm andrp=3.3 days.

Now we can simply determine the experimental vabhfaesuclear burning wave velocity
and, accordingly, the Wigner symplectic probability Fig. 6(a) the profile of space-time
evolution of experimental concentration distribatiof neutrons is shown. We can see that the
wave crest has covered the distance of 600 cm gltral7 days. So, the velocity of nuclear
burning neutron wave is
=6002170 277 cm/day . (46)

usimul

This, in its turn, corresponds to the value of YAM2p) = p;, (a,)=0.9141.
Thus, the approximate equality of the experimeatad theoretical velocity of nuclear

burning wave e[ Usmi) makes it possible to conclude that the Wignemgua (symplectic)
statistics verified by computing 3D-experiment (&g 4) satisfactorily describes experimental
data characterized by the paramétér).

Here we note that computing experiments show thatconditions of wave blocking,
which describe the degradation and subsequenio$twpve, are predetermined by the degree of
burn-up of the main nonfissionabl@®U) and fissionable?{®Pu) components of nuclear fuel in
front of the wave by neutrons from external sourcéhe initial stage of wave “ignition”. This
process is very important, since the high degrefaelfcomponent burn-up in front of the wave
will inhibit the wave from overcoming this regionst as fire in the steppe can not cross the
plowed in advance stripe of the land. It is obvithet in the initial stage of wave initiation the
degree of fuel burn-up is determined first of allthe energy spectrum and intensity of neutrons
from the external source and by the properties udiear fuel. The most important of these
properties is the delay time of active (fissile) isotope generation due to jfedecay of

compound nuclein the Feoktistov U-Pu fuel cycle (1) or the Telldr-U fuel cycle (2).
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In spite of the general understanding of physiceuwaflear burning wave blocking, it is

% Proceedings, 4™ Chaotic Modeling and Simulation International Conference

obvious that indicated above difficulties in thesdgbing this process testify to nontriviality of
given problem. Unfortunately, the solving of thi®iplem exceeds the scope of this work, but it

will be a subject of future research.

CONCLUSIONS

The solutions of the system of diffusion type edret for neutrons and concomitant
kinetic equations for nuclei obtained by numeri@&-simulation persistently point to the
regions where the stable soliton-like solutionsrfeutrons and solitary wave solutions for nuclei
are existed. This is no wonder for nearly intertgaystems, to which the investigated system of
equations for neutrons and nuclei belongs, whetteagxistence of stable soliton-like solutions
in three spatial dimensions causes a surprisénéofailowing reason.

As is known, the derivation and solution of intdgea nonlinear evolution partial
differential equations in three spatial dimensidres been the holy grail in the field of
integrability since the late 1970s. The celebrdfedteveg-de Vries and nonlinear Schrodinger
equations, as well as Kadomtsev-Petviashvili andeR<Stewertson equations, are prototypical
examples of integrable evolution equations in the and two spatial dimensions, respectively.
Do there exist integrable analogs of these equaiiothree spatial dimensions?

As it has turned out, quite recently, in 2006, thethod for finding of an analytical
solutions of indicated above partial differentiajuations in three spatial dimensions was
developed [20]. Therefore, the natural questioreati “To which from this equations does the
diffusion equation for neutrons correspond, or, beayhis is perfectly a new type of soliton

partial differential equations in three spatial dmsions?”
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TABLE I. The parameters of nuclear burning wave

U-Pu cycle Th-U cycle
Parameter.
References
Present [14] [15] [15] [16] [4] [17] D
paper
ﬁegs_l 0.100 2.585 0.145 0024 0240 010 0071 0.070
nfis 0.017 1.75C 0.08C 0.01t 0.10t 0.05 0.03z 0.03t
crit
an 0.704 2.274 1.743 2.028 1.385 1571 1423 1571

Uneor/Usmi  1030/1012 2.9/3.1 125/130 21/22 622/62@93/331 46/~50 25
[cm/yeaf

“Forecast for the TFHU fuel cycle in infinite medium at 10% enrichmeft&U.
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FIGURE CAPTIONS

FIG. 1. Time dependence of neutron concentralBoopagating wave (a) and locked wave (b):
a segment of the curve p§(z) above the, line is the reactor core; the scalesygfandnp, are

given withax10 magnification [4].

FIG. 2. The schematic view of permitted and sul@sagray colored) region corresponding to
the conditionsnpy > ngit and npy < N, respectively. The delineated by square region is
considered more particularly in Fig. 3.

FIG. 3. Schematic description of the permitted doxbidden region boundaries of nuclear
burning according to the Borh-Sommerfeld conditi@hand the corresponding quasi-equivalent

two-level scheme (b).

FIG. 4. The theoretical (solid line)) and experitan(points) dependence df(a<) on the

parameteps.

FIG. 5. Concentration kinetics of neutrofi&, 2**U and®**u in the core of cylindrical reactor
with radius of 125 cm and 1000 cm long at the twh40 days. Here is transverse spatial

coordinate axis (cylinder radiug)is longitudinal spatial coordinate axis (cylindiemgth).

FIG. 6. (a) - The neutron concentration distribatat the cylinder axis at= 217 days. The wave

velocity iSUsimu = 2,77. (b) - Thé**Pu concentration distribution at the cylinder &gis

Ny, = 0.In7% np, = 0.0167 at = 217 days.

crit
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CHAOTIC MODELING OF INTELLECT

Nikolay Serov *

In chromatism, the definitions are based on their classical (non-cognitive)
interpretation in science. Thus for example, under ‘intellect’ (Latin: ‘intellectus’ — a
sensation, perception, understanding) we mean the informative model of the personality. In
chromatism, intellect is subdivided into definite “atomic” components in correspondence
with its principal functions: biological (unconsciousness), psychological (subconsciousness)
and social (consciousness). Each of these components of the intellect is characterized by the
definite functions and formalized ontological plans of the system: consciousness is a M-plan,
subconsciousness is an Id-plan and unconsciousness is a S-plan. As far as in the history of
global culture each of the functional “atoms” in the intellect was archetypal linked with a
definite color (M — white, Id — grey and S — black), we had called our model an archetypal
model of intellect (AMI).

Syndrome of
development M

Bw

S

1bw

Color solid * Intelligence by Freud Development by Fromm AMI by Serov

Fig. 1. Transition of the twentieth century concepts from the color solid to AMI.

Methodology of chromatism is based on ancient Greek notion ‘chroma’. We shall
represent the meanings of this notion: 1) Color image as something psychic, unobjectified,
ideal, i.e. an Id-plan of AMI. 2) Tint as an object of outer space, being something physical and

material relatively color and intellect. This is an M-plan of the “outer space — AMI” system.

! Faculty of Applied Psychology, St.Petersburg State Institute of Psychology & Social
Work 199178-St.Petersburg (Russia) Corresponding author: nserov@gmail.com
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3) Color designation objectified in a word is more material than a color image. This is an M-
plan of AMI. 4) The pigmentation of a human body as something physiological, syntonic, i.e.
S-plan of AMI. 5) Emotions as an informative-energetic correlation of the plans mentioned
above. Objectively, this correlation manifests itself in such idioms as “to become red from
shame”, “to have a red face”, “green with envy”, “to become white as a sheet from fear” etc.
These idioms show us in particular, the meaning of emotional relations between the psychic
(color) and the physiological (the coloring of skin pigment), as between something ideal and
material. Thus, the close link between given definitions and plans clearly show that neither
the problem of color nor the problem of intellect can be solved independently by isolate
scientific disciplines. That is why we have listed in short the possible stages in the intellect of
processing color information about the outer environment from the point of view of
chromatism. *

In the AMI-system these components are linked semantically with subdivision of
individuals according to their gender (psychological sex) and, at the same time, with the
definite colors that were canonized by world culture.! In accordance with such statement of
the problem, it appeared to be necessary to experiment the link between gender distribution
of “atomic” components in the AMI and preferred colors. From here came the principal task
of the investigation: to verify the link between the ideal (a perception, a color concept) and
the material (i.e. tests, objectivized in words, on one hand, and tints of stimulus samples as
well as verbal color designations, on the other hand).

2. ONTOLOGICAL RELATIVISM OF THE COLOR CIRCLE AND INTELLECT

Similarly, one can imagine the reflection of colors in the color circle. As far as |
know, Newton, Lambert, Young, Helmholtz, Maxwell, Munsell, Judd, and Wyszecki
arranged the transition from red through green to blue clockwise. As a rule, these colors were
stimuli. As for Goethe, Runge, Hegel, Schopenhauer, Hering, Kandinsky, Steiner, Ostwald,
and Itten, all of them gave the same disposition of colors but in the opposite direction. They
had dealt with perceptive colors.

Remarkably, that all over the world people calls the “red” those who share the “left”
ideas (extremists, communists, etc). Hence, the world (not only of subconscious context, but
entirely conscious text) uses percepts according to Goethe, i.e. unconscious image-percept
rather than stimuli (where red in the color circle according to Newton, positioned to the
right).
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Psychology studies a human soul and spirit, i.e. in essence the ontologically ideal
phenomenon. The functions of color concept are also ideal. ** ? That’s why we suppose that
color is an optimal instrument for studying intellect and its digital simulation. The dynamic
functional model of a personality is based on the dynamic model of intellect (from Latin
word ‘intellectus’ — ‘sensation’, ‘perception’, ’unders‘canding’).1

In chromatism the archetypal model of intellect (AMI) is subdivided into the
following “atomic” functional components that are formalized in the plans of AMI (see
Tabl.1). Consciousness (M-plan of AMI) deals with arbitrarily comprehended functions of
social conditionality, verbal thinking, principles of formal logical processing of information
and its understanding (in science, philosophy, etc). Subconsciousness (Id-plan of AMI) is
characterized by unconscious and / or partially (e.g. arbitrary in the insight) conscious
functions of cultural conditionality, image-logic operations and ‘perception’ (in art, creative
activity, etc), as well as esthetic (non-pragmatic) perception of creative activity, games, in
general, ‘ideal’.! Unconsciousness (S-plan of AMI) included principally uncomprehended
functions of natural conditionality, of ‘sensation’ (color phenomena in retina, nervous system,

affects, etc) and genetic coding of information.
3. “FEMININE” AND “MASCULINE” LOGIC

To analyze ‘gender’ as spiritual (unlike sexual, bodily) dimorphism, it is necessary to
give its definitions. ‘Sex’ is a physiological and juridical (passport) notion. ‘Gender’ is
principally a psychological notion. According to our estimation, correlation between sex and
gender quantitatively amounts to no less than 85 +5% of individual, of both sexes. For
instance, men and masculine women usually overestimate their knowledge, while women and
feminine men underestimate one. Everything depends upon proportions between the intellect
dominants (i.e. plans of AMI) because a human personality results from permanently
changing phases of psychosexual development. That’s why both feminine intellects on
definite stages of its development pass through the ones where masculine components
dominants, and a male intellect pass through stages of dominants feminine components. In
chromatism they are simulated by definite plans of AMI and/or an AMI with gender
opposition (AMIGO, see below) and definite colors, canonized by global culture.® [l ask
readers to excuse me for the mistakes in tables 4 and 5 (ref.1) in which instead of gender
(feminine and masculine) characteristics the sexual (male and female) ones for color canons
were given.] So, representatively, all components of AMI are linked with chromatic functions

of intellect and depend upon gender dominants. Nevertheless in publications on gender
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psychology we may sometimes meet two diametrically contrary opinions about one and the
same problem: logic of men and women either is being opposed or identified. But how are

the things in reality?

Intellect by Aizenk and Jung Basic values by Schwarz AMIGO by Serow

ndepen-

dence Universalism

Neuroticism H

Secumny

_ Unconsciousness Subconsciousness
Extraversion <> Introversion Consciousness 5—Body M-—Soul 1d—Spirit

Fig. 2. Transition from the models of intelligence by Jung, Aizenk, Luscher and Schwartz to AMIGO *,

The equation for AMI was obtained by three independent ways, but within the limits

of the given report this equation follows from the Ostwald’s achromatic equation:

Grey = White + Black. (@)
From (1) it follows (see Table 1) that
=M +A, (2)

where A =S/ M d — total quantity of absorbed (bound, uncomprehended) information; M —
total quantity of reflected (free, comprehended) information.

From here, equation (1) may be written for the AMI-plans as follows:

| =M + S/Md. 3)

Here | = Id / U — quantity of objective information about outer environment, where potential
U is equal to the one of intellect d in optimal condition of adaptation (for polychrome color
ld=ch/4o and 1=iLo; [i]=byte-candle™®-m?; luminance Lo=¢; (12-41); [&;]=candle m?nm™, A,
and 1, — complementary wavelengths).

In chromatism the equation (3) links the plans of the outer and inner world. The
solution of this equation for variable A gives two values: M; (feminine legal consciousness)
and M, (masculine self-consciousness). The experience shows that M, and M are really

distinct for both men and women in 85+5 % cases. Strictly speaking, AMI-plans represent a
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quantity of information that is processed on the levels of feminine and masculine components
in AMI.

In Figure 3 the curves describe the dependence of comprehensible (M-plan)
information upon color modelling components of the AMI. According to the legend, in the
diagram we provide designations similar to the ones in the equation (2). We take the middle

part of spectrum (green shades in M-plan) with linear development of logic M as being the

200 -

150
100 -+

50 g

-100 A

Information (conv. units)

-150 A

-200 A

-250

410 450 490 530 570 610 650 690 730
Wavelength (nm)

Figure 3: Estimation of gender function in AMI, obtained according to equation (3).

conventional standard for comprehending information | by M; and M, plans. Then, the
interval from -50 to +50 cbyte (conventional information units) will be the standard for
information perception.

First of all, it strikes our eyes that all over the spectrum area the curves of Mpy-plan
and objective information | develop parallels. It may be explained by the relatively high
content of ferric ions in men’s blood, which, consequently, have to be more empathic to
change in information about the outer environment. At the same time, the curve of M-plan
stays within the limits of conventional standard (0+50 cbyte) independently of information |
about outer environment. From the diagram it follows that logics of M; and My, plans appear
to be similar rather than opposite and mutually complement each other to obtain optimal
quantity of “transparent” M-plan information: M + My= | . This is confirmed by the
development of curve of M¢-plan that is similar to (Mf=A) all over the spectrum area except
green, where it “reflects” (Mi=M) information I. My-plan “absorbs” information only in the

green area (Mp=A), while in other parts of the area it “reflects” information (My=M). For all
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this, the equation (2) keeps true. The gender characteristics were distinctly modeled by a
color and demonstrated a polar nature on the diameters of a color circle: (red Sy, — blue Ids,
purple M¢ — green Mp,; violet Id,, — yellow S, and deep-blue 1d, — orange S, , where index ‘a’
is androgyny; ‘f* is feminine and ‘m’ is masculine component in AMI ).

The reproduction of gender semantics in color canons during many thousands of
world history was, in essence, the objectivism of subjective manifestation of the intellect

(exceptions amount to less than 15% from total data base).

4. EXPERIMENTAL DATA

Figure 4 gives the preliminary results of experiments on visual choosing the stimulus-
preferred colors (270 women and 58 men of 20-25 years of age). The given equations were
obtained from equation (3) and represented in a legend where C~1 was a color concept. From
Fig.2 we can see that within a warm area the necessity of S-plan N(S) dominated actually,
within a cold one the necessity of 1d-plan N(Id) did (as it followed from color canons ).

The experiments were held to confirm the atomic nature of AMI. The identification of
atomic components in the AMI (that had been defined by completely different approaches)
had to be found experimentally. Thus, on the one hand, choosing preferred colors in a visual
test, as well as in a verbal one, could do it. On the other hand, the same results had to be

obtained in answers to

« ’ . . 003

transparent” test-question In s N(S) = S/ (M*C) . =
0,02 4 _

verbal tests MMPI and AMI. NM) =M*d/C .

= = =NId)=1d/C
In other words, ideally, all 4

tests had to enable each person

under test to choose the same ~ 1

0,02 \ <
AMI- components. The

-0,03 . . . . . . . .
preliminary results enable to p R o Y G s8 B V P
think that  AMI is reaIIy Figure 4: Experimental assessment of necessity for “atomic”
atomic. as far as colors of its AMI-components in choosing color stimuli. Abscissa axis is

' first letter of color designations; axis of ordinate is necessity

“atoms” had been correlated (conventional units).

(r=0.840.1) with relevant choice of color both in visual tests or verbal color designations, and
in verbal question of the AMI-test, characterizing gender functions of each AMI-component.
The experimental data obtained during 2001-2004 and given in Fig.2 showed that a

contemporary keeps in himself the archetypal properties of our far ancestry.
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Table 3. The parameters of information in “atomic model of intellect (AMI)

Type of Semantic characteristics Branch Linkage of
information | of information (plans of AMI) of science formulae
Total I(OE) Objective information about Physics: c=at+tp|A=al
(Flux 1o) outer environment (OE) Informatics A+M=|M=pl

I
Freel, Subjectively conscious, C,=M
(reflected, verbalized in OE, Psycholinguistics: C,=pCy
external) objectified in the past — (M- Ci=Cy+C,|C,=1d/U
plan)
Image- Objectifying of information in M=S/Ad
concept uncomprehended image of OE Chromatism: | = i(la — A1)
(database for adaptation in the present — I= M +S/Md | 1d=Md+S/
AMI about (I1d-plan) M
OE)
Bound I, Subjectively unconscious , a=C,/IC,
(absorbed, unobjectified in OE, Psychophysics: p=1-a
internal) demanded in the future — (S- Gio=ali+piy| S =400k
plan)
CONCLUSION

In conclusion, by using the experimentally checked equations (1)-(3) we have got a

chance for context dependent representing the information on all levels of digital coding.

Taking into account heterogeneous data of multispectroscopy we may link the “archetypal”

properties of color with objective parameters for digital processing of color information. The

possibility is given for context dependant representation of information on all levels of digital

coding. The equations for digital representation of a color concept are given as well. To my

estimation the exceptions of the rule of archetypal properties of image-concept in color

canons are no more than 15 % of all data obtained on color canons in various cultures.
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The chromatic approaches to the information processing enabled to represent an
archetype as a psychophysical formation that had been canonized by world cultures in the
process of thousand of years and on the basis of which the archetypal model of intellect
(AMI) of the atomic type was obtained. The link between the dominant character of “atomic”
components in the AMI and choice of preferred colors was confirmed experimentally.
Primary concordance with the experiment enabled to consider the established principles of
AMI to be the basis for color simulation of gender aspects of a personality.

We have shown that “atomic” components in the AMI-system (M-, 1d-, S-plans) are
linked with relevant parameters of a color concept in psychophysics, chromatism,
psycholinguistics, and informatics in tabl.3.Triad logic of a complex information system may
be actually revealed only if we take into account the boundary that separates, and at the same
time, combines complementary colors 1, and A;0f the components, forming this system Ao.
The principles, established for the AMI, become the basis for digital representation of all
stages for color information processing from spectral components of the outer environment

to the forming of a color concept.
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Abstract

Electrostatic torsional micro-mirrors have wide spread use in different industries for
diverse purposes. This paper investigates the development of superharmonics and
chaotic responses in electrostatic torsional micro-mirrors near pull-in condition.
Appearance of nonlinear phenomena is investigated in models accounting for and
disregarding coupling of torsional and flexural deflections. Analysis of the system
response to step and harmonic excitation reveals the appearance of DC and AC
symmetry breaking. Increasing the amplitude of harmonic excitation the response in
the form of distinct superharmonics changes to a broad band response, where there is
loss of periodicity and the response becomes chaotic. Accounting for flexural
deflections in coupled model reduces the voltage thresholds corresponding to
symmetry breaking and chaotic responses. It is also shown that damping has a
regularizing effect and introduction of damping changes the chaotic undamped
response into quasi-periodic one.

Keywords: Micro mirror, nonlinear vibrations, chaotic vibrations.

1. Introduction

Electrostatic torsional micro-mirrors are devices which are used for reflecting the light
beams to specific directions. They are used in projection display systems, optical
scanners for projection display, optical switches (In telecommunications), and optical
cross-connects. For these applications, the performances of the torsional micro-
mirrors depends on the mirror size, natural frequency, operating voltage, rotation
angle, linearity range, and some surface specifications. Many investigations have been
done on the analysis of the electrostatic torsional micro-mirrors. Static analysis of the
mirrors was reported by Zhang et al. [1], where the pull-in conditions are extracted.
Fischer et al. investigated the static and dynamic behavior of micro mirrors using
finite element analysis and clarified the dependency of natural frequency on the
squeeze film conditions [2]. Large deflection analysis of MEMS structures was
examined by Chaterjee et al., where beside the electrostatic nonlinearity the structural
nonlinearity is also considered and dynamic pull-in conditions was studied [3]. The
effects of intermolecular forces (Van der Waals and Casimir forces) on the static and
dynamic responses of torsional actuators have been investigated by some researchers.
Gusso et al. studied the effects of Casmir force on the response of micro mirrors [4].
Guo, and Zhao. considering the Van der Waals and Casimir forces, studied the effects
of these forces on the static and dynamic behavior of electrostatic torsional micro and
nanoelectromechanical actuators [5, 6]. In a separate study, they also considered the
effect of Casmir and capillary forces on the stability of the micro-mirrors [7]. In the
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analysis of micro mirrors in addition the torsional mode the bending mode may also
be affects the response. The static coupling effects of bending and torsional modes of
micromirrors have been studied by Huang et al. [8]. Rezazadeh et al. also investigated
the effect of the coupling between bending and torsional modes on the static and
dynamic behavior of micro mirrors [9, 10]. The main emphasis in the previous studies
on the behavior of micro-mirrors is on the eigenfrequency analysis or developing the
response of the system to step excitation [11] or mechanical shock. But the behavior
of the system in nonlinear regime of the response are not clarified in details.

In this paper the emergence of nonlinear behavior in electrostatic torsional micro-
mirrors are investigated with emphasis on the effect of bending deflection on the
behavior of the system. Evidence of the nonlinear behavior for step and harmonic
excitations appears when the amplitudes of the excitations exceed some specific
thresholds. The behavior of the systemwith and without taking into account for
bending deflection as excited by step and harmonic excitation are investigated

2. Mathematical modeling

A schematic 3D view of a torsional micro-mirror and its cross-sectional view
are shown in Fig. 1, where the micro-mirror plate is suspended by two
torsional micro- beams with length I, width w, and thickness t. The length
and width of the micro-mirror plate are L and a, respectively, and h denotes
the initial gap between the micro-mirror and electrode. The position and size
of the electrodes are conEroIIed by a; and a,.

Initial position

Anchor
Torsion beam

RS =F Lcccmnccseseapedbecscmeenl
Micromirror i - y Ai?nalinn

.......................

Electrode.

Substrate

(b)
Fig. 1. Schematic diagram of torsional micro-mirror, a) 3-D isometric view, b) cross-sectional
view [11].

In the micro-mirrors modeling it is customary to ignore the deflection of the
micro-mirror plate, by assuming rigid micro-mirror plate. Ignoring the plate
deformation, the micro-mirror becomes a system with two torsional and
flexural degrees of freedom. When a potential voltage is applied between the
micro-mirror and the electrodes, the micro-mirror rotates about its centerline
(with angle of rotation #) and also displaces in vertical directions (as denoted
by &). Assuming a proportional damping and also linear elastic
restoring torque and bending forces for micro-mirror beams, the governing
equations become.

m§' + Cbé + k86 =F, )
LO+CO+kO=T,

Where m is the micro-mirror mass and I; is the mass moment of inertia about
the axis of rotation and C, and C, are the bending and torsional damping
coefficients, respectively. The torsional and bending stiffness of the micro-
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beams are denoted by k; and ky, respectively, and F, and T, are the
electrostatic force and torque imposed to micro-mirror due to applied voltage.
By introducing the following non dimensional parameters

S5 afb kp 2 k¢ aq a,
Y:—’(p:—"[:wot'/’{b:—' wWo" =—,a=—, =_;R1=

h 2h m It a a (2)
b opo— G
mwo' 2 Itwol

the governing equations of the system can be rewritten in non dimensional
form as

dy ay 21 B,V? 1 1

LS L I [ _ ] (3a)
dr? dt = wy? o l1-Y—-Bp 1-Y—ap

d? d B,V? -Y 1-Y 1-Y-—

19 g4, B [ _ ln( B<p)]

dt? dt > l1-Y—-Bp 1-Y—ap 1-Y—agp

(3b)
where | and I, are the cross-sectional and polar moment of the torsional
micro-beams, respectively and ¢ is the permittivity of air and B, and B, are
defined as following

1= ﬁ;hﬁ H Bz = Lea3/161th3 (4)
Expanding the right hand sides of Equation 3 in terms of nondimensionalized
displacements gives rise to the appearance of these displacements with
different powers. This means that the equation has a general form of Duffing
equation. Therefore, it is anticipated that for excitation near the pull-in
conditions, the forcing frequency multiplications (superharmonics) appears in
the response, which is investigated in this paper.

3. Simulation results
The parameters of the micro-mirror used in the simulations are listed in Table
1. Using these parameters, frequencies of the torsional and vertical free
vibration of the undeflected micro-mirror are calculated as 40 and 67 KHz,
respectively.

Table 1. Parameters of the electrostatic torsional micro-mirror

Items Parameters Values
Material properties Shear modulus, G (Gpa) 66
Young’s modulus, E (Gpa) 170.28
Density (Kg/m3) 2,330
Micro-mirror Width, a (um) 100
Length, L (um) 100
Torsional beam Length, | (um) 65
Width, w (um) 2
Thickness, t, (um) 1.5
Electrode Width a; (um) 6
Width a, (um) 84
Gap h (um) 2.75

To evaluate the effect of flexural deflections on the system response, two
models are considered in the simulations. The first uncoupled model
disregards coupling between flexural and torsional deflections, while second
coupled model accounts for coupling between torsional and flexural
deflections. Due to importance of the step and harmonic response of the
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micro-mirrors in real world applications, in the following sections the
response of the coupled and uncoupled micro-mirror models with and
without damping to step and harmonic excitations is investigated.

3.1. Step response

When the micro-mirrors used as optical switches the transient response
determined by settling time, overshoot and also pull-in voltage due to step
excitations (stepped DC voltage) will be important. For uncoupled undamped
case, the mirror has two equilibrium positions, a stable center one and an
unstable saddle node. For DC step excitation voltages lower than 21 V the
response is linear and the trajectories in the phase plane have symmetric
forms (Figs. 2a). Increasing the voltage of the step excitation, the trajectories
in the phase plane shows symmetry breaking for voltages between 21 and
23.22 V. For higher voltages a divergent response develops and the tilting
angle increases abruptly until the mirror touches on the substrate. The voltage
corresponding to the separatrix on the phase plane (trajectory crossing the
saddle node) is called dynamic pull-in voltage, Vpp. Frequency spectrum of
the response for different voltages (Fig. 2b) reveals the development of the
multiply of natural frequency in the response for voltages near dynamic pull-
in, which is an indication of the nonlinear oscillation.

Saddle node

Ampituda(dB)
8 B8 b8 o8 8 8 8

400

0 10 20 3 4 S @ 70 & 0 100 110 120 130 140 150
Fraqenay(Hz)

0 01 02 03 04 05 06 07 08 09 1

@) (b)
Figure 2. Symmetry breaking and pull-in conditions in undamped step response of
uncoupled model, a) phase plane, b) FFT plot.

o08 o 008 01 0.18 02 0 w0 2 & H & @ 70 @ 0 10
5 Frequencyi<Hz)

]

(a) (b)

Figure 3. Undamped response of uncoupled model due to step excitations of 15
volt, a) phase plane, b) FFT plot.
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Foner(d)

- B 8 B8 B 8 B

(a) (b)
Fig. 4. Undamped response of coupled model due to step excitations of 19.8 volt,
a) phase plane of torsional mode, b) FFT plot of the torsional and bending modes.

Considering the response of coupled undamped model, there is a decrease in
the threshold voltage corresponding to the symmetry breaking and at the
same time the pull-in voltage decreases from 23.22 to 20 V. Fig. 3 depicts the
step response of the coupled undamped model due to 15 V DC step
excitation, where in spite of nearly symmetric response, FFT plot of the
torsional and flexural responses reveals the emergence of superharmonics
(Figs. 3a and 3b). By further increase of the excitation voltage to 19.8 V, in
addition to symmetry breaking, there is loss of the periodicity in the response
(Fig. 4a, b).

3.2. Harmonic excitation

For harmonic excitations the micro-mirror is excited with an AC voltage
superimposed on a DC one. To study the nonlinear behavior, the DC
excitation level is set near the pull-in voltage at 16 V.

Figs. 5 and 6 depict the response of the uncoupled model for harmonic
excitations. In these simulations the damping ratio is set equal to 0.1 and
forcing frequency is one tenth of the system undeflected torsional free
vibration frequency. For small values of AC voltage the response is linear
and the micro-mirror oscillates with the same frequency as the forcing
frequency and ignoring the transient part of the response, the phase portrait
has elliptic shape (Fig. 5a). However as AC voltage increases the response
losses its symmetry and AC symmetry breaking occurs (Oval shape in Fig.
5b).
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Figure 5. Damped harmonic response of uncoupled model a)for AC voltage

of 1V, b) for AC voltage of 3V



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

By further increase of AC voltage a cascade of period doubling bifurcations
appears. Emergence of period doubling is shown in Figs. 6 where the
amplitudes of harmonic excitations is 9 V. As discussed in the earlier section,
the form of nonlinear excitation in Equation 3 leads to the appearance of
different powers of rotational and translational displacements. This explains
the appearance of superharmonics in the response.
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Figure 6. Damped harmonic response of uncoupled model for AC voltage of 9 V, a)
phase plane of torsional deflection, b) FFT plot of torsional deflection.

Increase of AC voltage results in the loss periodicity and appearance of
quasi-periodic and chaotic responses. At harmonic excitation amplitude of
9.5 V, some evidence of loss of periodicity emerges and the response
becomes quasi-periodic. The phase portrait and Poincare map are shown in
Figs.7, which clearly show that the response is quasi-periodic.
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Figure 7. Damped harmonic response of Figure 8. Undamped harmonic response

torsional deflection of uncoupled model of torsional deflection of uncoupled

for AC voltage of 9.5V, a) phase plane, model for AC voltage of 9.102V, a)
b) Poincare map. phase plane, b) Poincare map.
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Removing the damping from the system, which has a regularizing effect on
the response, chaotic response emerges even at lower voltage at about 9.102
V, as is depicted in Fig. 8.

To develop the response of coupled model, again AC voltage superimposed
on a DC voltage of 16 V and a damping ratio of 0.1 is used in the
simulations. Increasing the AC amplitudes to 1.5 V the symmetry breaking is
taking place which is not shown here. Further increase of the AC amplitude
to 5 and 5.78 V, increases the number and strength of superharmonics and at
the same time the response in the phase plane becomes increasingly complex.
By further increasing the amplitude of excitation to 5.93 V, the Poincare map
of the torsional response reveals the emergence of the quasi-periodic
response, Fig. 9. Similar to the uncoupled case, in the coupled model the
presence of the damping has a regularizing effect on the response and
removing the damping from model, the quasi periodic response changes to
chaotic ones (Fig. 10).
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Figure 9. Damped harmonic response of  Figure 10. Undamped harmonic response
of torsional deflection of coupled model of torsional deflection of coupled model
with AC voltage of 5.79 V, a) phase for AC voltage of 4.93 V, a) phase plane,
plane, b) Poincare map. b) Poincare map.

5. Conclusion

Due to the structure of the electrostatic force, it is anticipated that the micro
electromechanical systems such as micro-mirrors should have rich nonlinear
dynamics near pull-in condition. It was shown that for voltages near pull in
condition, DC symmetry breaking in step excitations and AC symmetry
breaking in harmonic excitations occurs. Also for wide range of harmonic
excitation amplitudes, decomposition of the response to its frequency
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components reveals the existence of superharmonics. Further increase of
excitation amplitude the response becomes quasi periodic or even chaotic. It
is shown that damping regularizing the response turns the chaotic undamped
response into quasi-periodic one.
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Nomenclature

Velocity of flight in body frame
Angle of attack
Sideslip angle
Velocity vector roll angle
Flight path angle
Body axis Roll,Pitch, Yaw angle respectively (Euler angles)
=[p,q,r]  Body axis Roll,Pitch,Yaw rate respectively (Angular velocities)
,06,0r Aileron,Elevator,Rudder deflection respectively

Thrust command

HODE TR L
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Abstract : This paper presents a robust technique to design the flight controllers
for the aircraft to fly under turbulent atmosphere as well as to perform
maneuvers incorporating the whole highly nonlinear dynamics of the aircraft
system.Aircrafts have a number of degrees of freedom (DOF) and so
translational as well as rotational motion can be performed by the aircrafts in all
those directions of freedom. Aircraft flight controller is required for the aircraft
to undergo various flight conditions and to perform various types of maneuvers
in a desired and controlled manner. In this study, completely nonlinear set of
equations defining whole dynamics of the aircraft have been used for simulation
and Nonlinear Dynamics Inversion (NDI) control technique has been used to
design the controller of the flight vehicle. NDI control technique is a highly
emerging time domain control methodology used to design the controllers for
various types of highly nonlinear systems.

Keywords : Nonlinear dynamics inversion (NDI), Aircraft flight controller,
Flight envelope.

1. Introduction :

In the field of aerospace vehicles, flight vehicle control law design methods
have gained a lot of attention due to advancements in the theoretical concepts as
well as exponential improvements in the hardware technologies over past
decades. Any sort of flight vehicle designed i.e aircraft,rocket,missile is required
to perform its intended task and alongwith that is an essential requirement for
the vehicle to perform the task in a well controlled and desired manner and to
implement that, there is requirement of a controller which would ensure that the
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desired task is done in the controlled manner even if there is sudden turbulence
caused by wind gusts. It is extremely important that these vehicles undergo any
of the flight condition in a controlled manner. Several attempts have been made
to design the controllers for all sort of flight vehicles. There are a number of
control techniques to design controllers for nonlinear dynamics systems like
aircrafts. In this study, NDI technique is discussed and implemented to design
the controller of an aircraft. The advantage of preferring NDI control technique
over other linear control methods is that the linear control methods linearize the
nonlinear system about the equilibrium points to approximate it into a linear
system and then design a control law, In this manner the approximated
linearized equations can predict the actual system performance only in a very
small flight envelope i.e. in a small range of operations and if the system goes
beyond that range then these equations do not simulate the actual behavior of
the system and so the linear controllers stay no more effective, whereas the NDI
control technique does not linearize the system about any equilibrium point,
rather it incorporates all the system nonlinearities while developing the control
law and so NDI controllers stay quite efficient over a wide flight envelope.Thus
NDI is a very efficient control technique to design controllers for the nonlinear
systems.

In the field of control of aerospace vehicles, NDI control technique has gained a
lot of attention and it has been applied to many of aircraft applications, such as
F-16[1], F-18 HARYV [2], F-117 [3] for designing the control law.

2. The Aircraft Model :
The modeled aircraft used in this study is McDonnell Douglas F-4 which is a
highly maneuverable fighter aircraft. An attempt has been made to control the
various flight conditions of the aircraft using NDI. The aircraft 6 DOF equations
of motion are given by the following set of differential equations which explain
the translational and rotational dynamics of the aircraft model[4,5].

V = (f, cos acos B + f, sin B +f, sina cos B) /m

(’x = [(f, cos a — f; sina)/(mV cos B)] —pcosaTan B + q— rsinaTan B

[(f cos B — sin B(f, cos a + f, sin a))/(mV)]+ psina —rcosa

9 = [I]7 M - Q= ([1]Q)]

o 1 TangSing, TangCos,,

6l=10 Cos, —Sin, [ ]

L] 0 Sin,Secy Cos Sece
t = py + (qy SinpTany) + (r,,CosuTany )
¥ = (qwCosp) — (rySinw)

X1 VCos,Cosg

Vel = C1((P)C2 (9)C3 W) VSinB

1Z, ] VSin,Cosg

where Pw = (pCosa + rSina) (Cosp + TanBSinf) + (M) Tanf3

mV
_ (fX sina—f, cos oc)
Qw = v
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Iy = [fy cos B — sin B(f, cos a + f, sin )]/ (mV) --Eq.Set (1)

Here f,, fy, f, represent the net forces along X,Y,Z axes of the aircraft. Matrix
[1] represent the moment of inertia matrix and M consists of the rotational
moments about X,Y,Z axes of the aircraft and Xe,Ve,Z. represent the spatial
position of the aircraft with respect to the earth axis system.

3. NDI Control Law :
In the implementation of NDI control law, the control commands are generated
based upon the error signal generated from the desired state and current state
received from the sensors via feedback path. In the NDI technique, generally a
robust 2-scale separation method is used which allows the order of the controller
to be smaller[6,7]. The NDI law used in this study uses time scale separation
between slow variables and fast variables and correspondingly generates the
control commands. Any aircraft system can be represented by the following
nonlinear vector form dynamics equation

x=f)+gGu ~(2)
x represents the vector representing state variables,f(x) represent nonlinear
state dynamic function and g(x) represent the control distribution function.NDI
control law inverts the dynamics equation and then replaces the inherent rate of
change of state variable by the desired rate of change of that variable to generate
the required command which is fed to the system. Inverting eq. (2) we get

u=g0) - f)] ~(3)

Applying NDI control logic, above equation is converted into a form as
ug = g0k — f()] ~(4)

where, Xg=k(xs —x) -(5)

X4 in eq.(5) represents the vector consisting of the desired values of state
variables and x represents the vector consisting of the measured values of
corresponding state variables obtained via feedback path.k represents state gain
matrix whose elements are design parameters of the controller and u,; represents
the vector consisting of the control commands generated i.e. elevator, aileron,
rudder deflections and thrust command which are to be fed to the aircraft system
as control input.

4. Applicaton of NDI under various flight conditions :

The purpose of this study is to control the various parameters of the aircraft for
different flight conditions like cruise flight, steady sideslip flight, co-ordinated
turn, pull-up maneuver, velocity vector roll maneuver etc.

Table 1 shows all the flight conditions studied in this paper and shows the
corresponding variables to be controlled in each flight condition so that the
flight vehicle performs in the desired manner. For each case, NDI control law is
implemented on the concerned set of governing nonlinear equations of the
aircraft system and control commands corresponding to the desired states are
generated.
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Flight conditions Control variables
Cruise flight o, B,u,y
Steady sideslip flight a,B, P,y
Co-ordinated turn a,B,y,‘i’
Pull-up maneuver p.q.5,V
Velocity vector roll maneuver o, By,

Table 1.Various flight conditions and corresponding control variables

N NDI on ¥
i d

‘.’d Dynamics lT
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3" NDI [4] NDI | [Gustl»| Aircraft N
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Ud d L _Ym

Sensors

Figurel. NDI control approach for control variables a,p,u,y.

Figurel explains the implementation of NDI control law for the cases in which
control variables are o,B,u,y.The desired states are represented by(a’,p%,u’, v°).
Similarly other variables can be controlled in the similar fashion for other cases.
In present case, (a,f,1,y) act as slow state variables whereas (p,q,r) act as fast
state variables.NDI is applied on slow state variables as well as fast state
variables as explained in equations (2)-(5) and control surfaces deflection
commands (Sad,Sed,Srd) are generated. These command values are passed through
the actuator dynamics system so as to ensure that the commands generated are
well within the control surfaces deflection limits as well as within the maximum
rate of deflection of control surfaces.Thrust command (T%) is generated by
applying NDI on y dynamics equation in case of various flight conditions
except pull-up and pull-down maneuvers as in these maneuvers, the thrust
command is generated by applying NDI on dynamics equation of velocity.

5. Simulation, Control and Results :

The 6 DOF equations of motion of the aircraft explain its translational and
rotational dynamics.The equations were simulated using numerical method
Runge kutta-4 (RK-4) algorithm.For simulation,completely nonlinear set of
aerodynamic data of McDonnell Douglas F-4 aircraft has been used [8].Results
have been shown for different flight conditions as following.
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Note : For all the following figures,the values of all the angles are in degrees,
distances are in meters, time is in seconds, angular velocities (p,q,r) are in

radian/sec, velocities are in meter/sec and acceleration is in meter/sec?.

Case 1. Cruise flight control under effect of wind gusts :

In this case, Cruise flight is controlled under turbulent atmosphere as sudden
gust comes and aircraft trim condition is disturbed and the controller has to
control the aircraft and bring it back to the trim condition. As shown in figure 2,
Aircraft is cruising at o= 4 deg and a sudden gust comes to disturb the trim
condition of the aircraft and the controller acts to bring the aircraft back to the
trim condition.
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Figure 2. Cruise flight control under turbulent atmosphere

Case 2. Steady sideslip flight under effect of wind gusts :

In this case, aircraft is undergoing steady sideslip flight and suddenly a wind
gust is introduced to disturb the aircraft states and the controller has to control
and bring the aircraft states back to the desired values. As shown in figure 3,
aircraft is flying at a = 4 deg, § =2 deg and the aircraft is holding W= -2 deg for
proper steady sideslip and then a sudden gust is introduced but the aircraft
controller still performs in the desired manner.
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Figure 3. Steady sideslip flight control under turbulent atmosphere

Case 3. Steady co-ordinated turn :
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Figure 4. Aircraft states and control commands for co-ordinated turn
In case 3 as explained by figure 4, the aircraft has to undergo steady co-
ordinated turn i.e. the sideslip angle should be zero during the turn. Here in this
case, aircraft is turning at the rate of change of ¥ as 2.5 deg/sec at o= 6 deg.

Case 4. Pull-up maneuver :
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Figure 5(a). Aircraft states and control commands for pull-up maneuver

In this case, aircraft performs a continuous pull-up maneuver in vertical XZ
plane. In this case, maneuver is done at pitch rate of 0.1 rad/sec as shown by
figure 5(a). Figure 5(b) shows the trajectory in XZ plane during this flight
condition.
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Figure 5(b). Aircraft trajectory in XZ plane during pull-up maneuver




Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

Case 5. Velocity vector roll maneuver :
Aircraft performs a continuous roll maneuver about the velocity axis at high o.
During it aircraft should not lose altitude. In this case, aircraft performs this
maneuver at a=12 deg as shown in fig. 6.
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Figure 6. Velocity vector roll maneuver at a =12 degree
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Abstract: Software engineering is known as a problem solving activity and modeling.
All the principles in software engineering are emphasized on the conditions for software
producers are unpredictable because of the interactions and mutual relationships between
all the factors involved in creating and those conditions never allow full control over this
process. Since the emergence of software engineering processes, models and processes
focus on reducing non-forecasting in the process model due to provide available software
in a certain period with predicted cost, but it cannot be out of this complexity, and the
simplicity would not lead by imposing a ssimple model to process model. The aim of this
paper is design of a software process based on chaos theory.

In this article, software production process assumed as a honlinear dynamic process, and
hence it islocated in the ordination complex systems. It would continue with using chaos
techniques to analyze software production process and fractal structure of process models
is presented.In particular, preparation of a model based on chaos theory can show close
relationships between many of the facts contained in software development and reflect
complex patterns that occur during the project, with ahelp of flexible and variable fractal
structure.

Keywords: Software engineering, Chaos theory, Process model, Fractal , Problem

1. Introduction

The linear loop is not complete with solving a software problem. The
complexity of software development causes chaos in project. Development is a
continuum from the whole project down to each line of code and involves both
human and technical issues on all level§[3].

Developers need to describe the structure between different parts of a software
development process. They wants a flexible structure which reflects the intricate
patterns that occur in real projects.

The problem definition can be very different such as a new program for solving
an application or use the latest technology, or port a program to a new platform.
Some of them are simple and some of them are complex.

During problem definition, developers choose a problem to solve it. The
problem definition needs the ability of people to describe their problems and
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solution-integration need the ability of development to find a solution.
Developers must decide where the system should be in five and ten years[ 3].
Software project manager expects exact estimated processes. So clearly we need
to improve the estimates and measurements in software engineering. However,
so far few attempts form to identify and apply exactly the appropriate approach
to software systems, while this action could influence in software costs.

2. Nonlinearity in softwar e engineering

The study of nonlinear dynamical systems is caled nonlinear science.
Nonlinearity in software engineering is the rule rather than the exception. For a
linear system, we can combine two solutions, and the result is also a solution for
the system. The above property is called linearity, and it makes the linear
systems mathematically tractable.

This is not true for nonlinear systems such as the process model . We cannot
break up a software problem into little pieces, solve each piece separately and
put them back together to make the complete solution.

Many nonlinear systems such as the process model are approximately linear for
small perturbations about points of equilibrium, and if we consider that
problems are linear, then we can solve all of them. In the other hand Nonlinear
problems are seldom exactly solvable. Before the advent of computers, almost
nothing could be said about the behavior of nonlinear systems.

3. Chaosin the process model

Before answering to the question of the applicability of chaos in software
engineering, we must define the concept. How is chaos theory used exactly in
software engineering? According to one definition of chaos, "Chaos theory is
the qualitative study of unstable aperiodic behavior in deterministic nonlinear
dynamical systems."[2] ,so with this definition, we can find the characteristics
of chaos in software engineering.

First, that the system is dynamical, means that it changes over time. The
software project scheduler are very fragile and sometimes the most pressure is
applied to project staff.

Second, that the behavior of the system is aperiodic and unstable means that it
does not repeat itself. Software industry was faced with the fact that the
estimates do not have enough precision. None estimated models is generaly
superior than other models and experimental results are often contradictory in
software engineering.

Third, although the chaotic behavior is complex, it can have simple causes.
Many software development organizations do not have real data about software
costs, and more estimates are made by inadequate descriptions of user
requirements.

Fourth, because the system is nonlinear, it is sensitive to initial conditions. The
output of the software development process is not proportional to the input and
the process model does not conform to the principle of additivity. The structure
of asimple problem is different from the structure of a more complex problem.
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In general, we cannot break complex problems into simpler sub problems. In the
other word in software complex problem the whole is not equal to the sum of its
parts. So cannot use this reductionist approach to deal with problems.

The software development has a partial decision-making problem, and risk
assessment is difficult. All this shows the non-linear features in software
engineering.

Fifth, because of the instability, aperiodicity, and sensitivity to initial conditions,
the behavior of chaotic systems is not predictable even though it is
deterministic.

Common software development process is a sequence of decision problems that
attempts to convert a fuzzy set of expectations to requirements, specification,
design and ultimately code and documentation. So it is not predictable, too.
Even though it is deterministic.

A final feature of chaos, although not included in the above definition, is that of
iteration or feedback, in which the output of the system is used as the input in
the next calculation.

Usua cascade approach has been rejected in creating software to achieve its
goals, because it is a method for resident and almost unchanged problems. This
assumption is far from reality.

4. Fractal process model

For at least 200 years, the branch of mathematics , known as Analysis, is not
only the richest of al the branches, but aso by far the most useful for
applications to quantitative science, from physics to engineering. Theoretical
scientists became applied mathematicians. Software project manager expects
exact estimated processes. So clearly we need to improve the estimates and
measurements in software engineering.

Integrals, differential equations, series' expansions, integral representations of
special functions are the tools that calculus has provided and that are capable of
solving an amazing variety of problemsin al areas of quantitative knowledge.
however,The mathematicians were telling us al along that smooth curves were
the exception, not the rule[4].

Analysisis not the appropriate approach to software systems and chaos theory
solves a wide variety of scientific and engineering problems, which do not
respond to calculus.

The software development process provides a structure for problem solving.
Common approach is suitable for smple problems, but it cannot solve any
complex problem in software engineering.

To add the necessary complexity, the process model can combines with itself.
Sequential design and parallel design are common mode.

Sequential design means the end of one complete problem solving cycle with
the start of another. Parallel designisidentified by many instances of start state,
in other words problem solvers can solve problems in paralel[1],but none of
them describe full connection between whole of a development beginning from
problem definition until coding.
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Fractal design structures are self-similar. It is chaos in space and fractal shows
chaotic in space. There are many possible definitions of the word fractal. A very
loose and general definition is this. a fractal is a geometric figure that does not
become simpler when you analyze it into smaller and smaller parts. Which
implies, of course, that it is not smooth. However, ssmple examples of fractals
have been known to mathematicians for along time[4].

Process model that is drawn in fractal mode, meaning that they do not become
simpler when you examine them with an increasingly powerful microscope.
Fractal design in the process model actually has a high degree of self-similarity
when examined on finer scales.

As we said, the process model is a dynamical system because it is capable of
changing with time. The process model such as a dynamical system consists of
some “variables” and some “equations of motion” or “dynamical equations”.
Developer can find variables in the process model. There are any things, which
can vary with time. In other words, two similar process model with the same
values of all the variables are in identical configurations now, and will evolve
identically.

Time-chaos in the process model is the rule rather than the exception. The
connection between time-chaos and space-chaosis very close.

We let time flow in process model base on chaos. As each area of the process
model follows its tragjectory, the process model itself moves and changes shape.
During its evolution, slowly but surely the region will turn into a fractal. The
fractal builds up as time progresses and becomes complete with an infinite time.

5. Conclusion

Chaos Theory solves a wide variety of engineering problems, which do not
respond to calculus. Problem and the solution is thought as a component of the
process model. Software problem cannot be broken up into little pieces and
solved separately. They have to be dealt with in their full complexity. Chaos in
the process model is the rule rather than the exception. To add the necessary
complexity, we introduced fractal design in the process model.That was no
reason for the lack of interest in these chaotic-looking phenomena at software
engineering after known the fractal process model.
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Abstract: Before making effort to analyze systems, we should identify the exact type of
system and determine that we consider our system in which categories of systems. Rapid
changes in technology are created the double problems in the field of planning and
organizing the structure of manufacturing software engineering projects. Detailed
industry estimates is impractical for preparing a software application. In such an
environment, a new way of thinking is required.

Introduction of complex systems is discussed here as aternatives to plan and deal with
these changes. Order in complex systems is not because a targeted behavior of the system
elements or influence a central organization management. Regular patternsin this system
are an example of Self-Organized. In this article, software engineering is proven as a
nonlinear complex system and continues to review the components and features Self-
Organized in software engineering.After demonstrating the software production process
among the complex systems, we can use complexity theory and techniques relating to
building complex systems for more accurate understanding of the process and prevented
impact of inappropriate nonlinear to cost, function, relationship and program features.
Keywords: Software engineering, Complex system, Dynamic, Self-Organized

Criticality, Process model, Life cycle.

1. Introduction

Patterns in complex systems are because communication between factor based
on law on the very small levels of the system. These rules — adapt — under the
influence of the experience and the learning abilities of the actors congtituting
the system [2] and alter the system characteristics as a consequence of
development in the structure of complex systems. In other words, how can a
regional map of the Earth, that is constantly changing, be useful? It should be
noted, rejection long-term strategic plans do not mean rejection managing in a
project. This is a common event in complex environments, and it is
unpredictable. A large number of academics are engaged in research in
complexity theory to help decision makers to improve its project management
methods.

If we can prove that a system is nondeterministic nonlinear dynamic system,
then this system will be complex. Linear systems are not complex. These
systems have a set of very tight and stable rules and cannot adapt to the
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environment. A complex system is a fully functional system that includes
variable and dependent components. Unlike a perfectly regular linear system,
components of a complex system do not have precisely defined communication
,0r constant behavior or values and is not possible to explain the behavior of
these components as well as conventional methodsin linear systems. We cannot
predict what happens in complex systems, but when it occurs, it is easy to
identify patternsthat system is based on. [8]

If we can consider the software development process as a complex system, then
complexity theory and its quantitative techniques help us understand those
processes and access to more accurate estimates.

In the article [7] the first stone is laid in the presence of chaos in software
engineering.

Raccoon considers the presence of chaos in the production process and the
software life cycle.

However, in [7] and dso [5, 6] are presented only theoretical matters and has
not used the exact characteristics of chaos systemsto prove this claim.

2. Complexity in Software Engineering

In 1994, as Gibbs said, despite 50 years experience in programming, the
software industry is behind for years _perhaps decades _ from the needed rules
to achieve the engineering requirements in the information age society.

Although software systems are faced extensive, but still production and
development of software use the basic structure in software engineering. This
has led researchers are using different approaches in dealing with the problem.
Among them can be pointed to tools, methodology, the prototype and varies
software processes.|nahility to choose the exact way to solve software problems,
indicating that Gibbs™ opinion is still correct.

Demonstrating the complex dynamics in software engineering can be used from
complexity theory and quantitative techniques related to complex systems for
more accurate understanding of this area and prevented from the nonlinear
inappropriate influence on cost and performance.

However, some of the articles are used characteristics of complex systems to
identify such systems, but rules are stronger to correct identification of complex
systems.

This article will continue to introduce and review the six major law of complex
systemg[1] in software engineering.

1-Complex systems contain many constituents interacting nonlinearly.
Nonlinearity is a necessary condition for complexity, and that almost all
nonlinear systems whose phase space has three or more dimensions are chaotic
in at least a part of that phase space. This does not mean that all chaotic systems
are complex. Chaotic does happen with very few constituents; complexity does
not.

Common software development process is a sequence of decision problems that
attempts to convert afuzzy set of expectations to be requirements, specification,
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design and ultimately code and documentation.

Usual cascade approach was rejected to achieve its goals in creating software,
because it is a method for resident and amost unchanged problems. This
assumption is far from reality. Today, that process of modern software is based
on creating a sample basis. These approaches indicate the fact that software
development has a partial decision-making problem, and its risk assessment is
difficult. This shows the non-linear features in software engineering.

2-The congtituents of a complex system are interdependent.

Here is an example of interdependence. Remove a part of a system with non-
complex components does not cause many difficult on the result. However,
complex system does not allow us to do this, because of numerous
communication between components.

Different systems in software engineering are placed together and occur the
wide information flow between them. Many of these systems cannot be
considered independent of the others, and if we removed the information flow,
then data redundancy will grow with the system. Software engineering is
therefore, including components with numerous dependence.

3- A complex system possesses a structure spanning several scales.

In this case, we can consider the human body as a complex system and its scale
such as different organs and cells and bone .

Modeling a system starts with an initial process in software engineering. DFD
that performing it, is called context diagram. This chart displays the whole
input and output of a system. This chart can be seen all the foreign entities that
interact with the system and data flow between these entities and the system.
The next level isidentified that the main system process and high-level DFD are
drawn. The DFD can be detailed to make the process, as well as they continue to
display more details of the system in the lower levels.

The same structure of complex systems with different scales lead to one of the
basic and new features of complex system , and it is the fourth feature.

4- A complex system is capable of emerging behavior.

Emergence happens when you switch the focus of attention from one scale to
the coarser scale above it. A certain behavior, observed at a certain scale, is said
to be emergent if it cannot be understood when you study, separately and one by
one, every congtituent of this scale, each of which may also be a complex
system made up of finer scales. Thus the emerging behavior is a new
phenomenon special to the scale considered, and it results from global
interactions between the scale’s constituents.

These features have been seen in use case related to software engineering. As
the level to look into a process model, database and network can make new
results that were different from the other levels. By combining similar or shared
but incomplete low-level DFD operation can be understood major operation of
systems. It isan example of this property in software engineering.
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The combination of structure and emergence leads to the self-organization,
which is what happens when an emerging behavior has the effect of changing
the structure or creating a new structure. More detail about this property is
discussed.

5- Complexity involves an interplay between chaos and non-chaos.

Many people have suggested that complexity occurs “at the edge of chaos”, but
no one has been able to make this totally clear. It islike a critical point in phase
trangitions. It is the point where the long-range correlations are most important.
Perhaps complex systems manage to modify their environment to operate as
much as possible at this edge-of-chaos place, which would aso be the place
where the self-organization is most likely to occur. It makes sense to expect the
self-organization to happen when there are strong long-range correlations.

Use of parallel different processes is a way to obtain the best solutions in
software environments.

Although some of these solutions will lead to fail, but some of them are very
successful. Thisisavery effective method for developing software systems.

In this case, the software system is located in conditions between the full order -
where flexibility of the system is limited and the ability is zero to identify and
change to the new situation - and chaos - where the minimum structure existsin
the system-.

Finally, there is one more property of complex systems that concerns all of us
very closely, which makes it, especialy interesting. In order to evolve and stay
alive, in order to remain complex, all the complex systems need to obey the
following rule;

6- Complexity involves an interplay between cooperation and competition.

Once again, this is an interplay between scales. The usua situation is that the
competition on the scale n is nourished by cooperation on the finer scale below
it (scaen+l).

This property can be easily seen in subsystems that designed for the original
software system.

Although these subsystems are in a competitive mode, But at higher levels,
they followed accessto the main target.

Self-organization occurs when the emergence behavior leads to change the
structure or create a new structure. Self-Organized Critically is the most
important shared characteristics of complex systems.

3.Self-Organized  Critically components in  software
engineering

Self-organization occurs when the emergence behavior leads to change the
structure or create a new structure. Self-Organized Critically is the most
important shared characteristics of complex systems. Table 1 shows components
and their definition in software Engineering.



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

Table1 : Self-Organized Critically components and their definition
in software engineering

SOC components description

Size and structure distribution of the
Power law and critical point project. The critica point in the
project is acceptance of the changes
periodically.

Changed on user requirements and
demands

Driving force Technology change

Staff change

Identify and create new solutions

Identified and predicted range of
Thresholds projects,

Basic definitions of the project and
Initial specified rules

Cascades Change in a phase of the project and
extend it to other parts

4. General characteristics of Self-Organized Critically in

Softwar e Engineering

SOC isthe only known mechanism to produce the overall complexity. We show
the most important characteristics of this mechanism in the software
development process.

1-Relationship:

Components have more than one input and output on average. The perceived
requirement starts creating problems for the software development process and
software development process create different output with a software approach
to solving these problems.

2-The converting status:

Approximately, it is equal to one. Increasing requirements cause to define
problems that the reach of these problems led to a unique solution. A direct
relationship is created between the numbers of problems and solutions by the
software development process.

3-Learning ability:

Components have the learning ability from past experiences. Software
development process can be given past experiences and create the optimal
solution.

4-Parallel operation:
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Components work paralel. These components exist to solve a problem or
several problems. That is easily understandable to explain the software
development process to solve problems in a paralel mode so it causes to
improve speed and create the high adaptation ability.

5- change the interaction:;

Components are able to change other components that interact with them. This
change can be permanent or temporary. Problem and the solution is thought as a
component of the relationship into the software development process, that could
be causing transformations in each other.

At first, the problems are transferred into a series of solutions, but at validation
phase, the definition of the problems may be revise. Assume a fixed
environment is too restrictive for high-speed scenarios.

In software engineering are constantly changing the customer expectations and
competitors'ability. Products will be assessed faster than expected and if they
are unsuitable, they removed easily. There are some new means such as
information technology, internet and global economy that help to shape this
phenomenon.

6-feedback loops:

Outputs are returned to begin of the process in the feedback loop. The actua
results of this operation will make the process correction. Creating positive
feedback loops was discussed in the process model from years ago. It was more
important when observed that adding manpower to backward project would
cause the more delayed.

The presence of feedback loops can be seen in each stage of the software
development process to redefine the problem or the solution. This feedback loop
has a significant impact on performance of system.

7- Ability to Control:

There are many variables in the software problems and its solutions in the
software development process. They cause to make requirement definition and
convert it to the problem and the useable metric. The specific area is defined
the overall image from the implementation process.

All variables must be controlled. However, controls should not cause to be
changed, simply it keeps the system in the defined scope.

8-Attracted areas:

There are different ways to achieve an acceptable response in the software
development process, so it shows creative freedom.

There are several problems, all of which eventually reach a specific solution that
meets the system reguirement. All of them show flexibility in the production
process.

9-External borders:
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Complete exact boundary is not imaginable between the problems creating and
requirements and also offering solutions and product [3]. System boundaries are
not completely closed and not completely open.

10- Performance:

The overall goa is construction of problem solving in the software
development process. Even so, each one of problem solving has own means.
Performance goal's can be multiple. It will give a multi-dimensional aspect to the
system.

11-Building blocks:

Problem and solution are clearly two-block in the software development
process, but there are many other blocks such as problems assessment and
evaluation with different aspects[4].

Subsystems could exist in different dimensions that make a fractal structure of
the system.

12-The dominant properties:

You can consider a certain mode of the finding the problem and solve it for
software development process with progress in the larger dimensions of time.
Although this property is understandable in small size, but connected between
components looks organized in the dimension broader.

13-Stability of the system:

Changed in requirements and existing technologies and creating the new
solution cause unexpected side effects in the software devel opment process over
thetime.

However, some of these conversions overturn into the software development
process, but a group of them has a considerable impact on the problem
definition and production process.

14-Decentralized control:

Centralized management and control is not in one part of the process. Each
component requires separate management. Problem and solutions manage in the
own area, although this does not cause to change the interactions between
components.

15-Information flow:

Information and data flow exist increasingly in the software process that is from
problem to the solution and vice versa.

The steady information flow changes the system mode from linear and
definitive to nonlinear.

5. Conclusion
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Attempt to estimate project schedule or activities terminate a series of partial
non-exact estimates without regard to the type of software engineering dynamic.
Clearly, the need is felt to improve the estimates and measurements in software
engineering.

However, few effort assisted to identify exact systems in software engineering.
In this article complex system was introduced as the best solution for complying
with plenty of changes in software engineering.Software engineering and its
scope is proven among the complex systems, so its rules can identify reliably
direction to a useful software, and it causes a better understanding of problems
and the factors that will lead the software engineering to create optimized
software rather early move toward solutions.There are no fears of a complex
nuclear in the software scope, direction to having paved reliable softwarelt is
aso an effective method to achieve competitive advantages in software
engineering so software engineers find the superiority of information on
software projects by using the complex theory.
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Abstract. The principles of creation of the mechanics of structured particles are considered. The explanation how
this mechanics leads to the account of dissipative forces is offered. The explanation of a motion equation for the
system consisting from the potentially interacting material points is submitted. It is discussed why the motions of the
system determine by two type of symmetry: symmetry of the system and symmetry of space and how it leads to two
types of energy and forces accordingly. It is shown how the mechanics of the structured particles leads to thermody-
namics, statistical physics and kinetics.

Keywords: Dynamics, irreversibility, Hamilton formalism, classical mechanics, entropy.

Introduction. The Newton’s motion equation is gained on the basis of the model bodies in the form of the mate-
rial points (MP) and solid bodies. Such idealization of models of real bodies leads us to the second law of Newton.
According to this law, the acceleration of MP is proportional to the potential force which acts on it [1, 2]. The work of
this force is equal to their integral along the way. The energy conservation law of MP from here follows. In connection
with this law the dynamics of MP is determined by two types of energy: the kinetic energy and potential energy. Along
trajectory of MP the sum of these types of energy is constant. The MP motion is reversible. It is follows from the
Newton’s second law and potentiality of forces.

All bodies in the nature have a structure. Therefore they have the internal energy which is caused by relative mo-
tion of the body’s elements. Therefore the works of the external forces change not only the body’s motion energy but
the internal energy also. However the Newton's motion equation, which has been constructed on the basis of models of
structureless bodies, does not include the terms responsible for the change an internal energy. In practice they are
taken into account by addition to the Newton's motion equation of the empirical force of a friction.

The work of the frictional forces defines the dissipative part of motion energy which goes to the body’s internal
energy and dissipated in the environment [2]. The friction coefficient is taken from the experiment. Thus, the rigorous
description of the dynamics of bodies in the frame of classical mechanics is absent. It is due to the simplification of the
bodies models. Therefore for description of a motion of real bodies, the MP should be replaced on a structural
particle and the motion equation for the structural particles should be obtained.

The great diversity of structures does not allow analyzing all types of energy dissipation. But we can select such
relatively simple models that allow understanding the nature of dissipation in the framework of the laws of classical
mechanics. It is a system of potentially interacting material points.

The problem of description of the dissipative forces in the frame of the classical mechanics is similar to the prob-
lem of irreversibility. This problem was formulated by Boltzmann. All attempts to solve it without the use of statistical
laws were till now unsuccessful. The generally accepted explanations of the irreversibility of today are based on
probabilistic laws contradicting the determinism of classical mechanics [3]. Nevertheless, the explanation of irreversi-
bility without attraction of probabilistically laws, if particles possess by the structure, can be offered [4, 5].

To find an approach to solving the irreversibility problem in the framework of the laws of classical mechanics we
studied in the beginning the dynamics of hard disks. As a result, it was found that the system, consisting of two inter-
acting of disks subsystems, moves to equilibrium [4]. It has been shown that this is due to the transformation of energy
of relative motion of subsystems into the motion energy of disks relative to the centre of masses (CM) of the corre-
sponding subsystem. The same mechanism of equilibration takes place for the structured particles (SP) where SP is
equilibrium system consisting from a big enough number of potentially interacting MP.

Mechanic of SP can be constructed at following restrictions [6]: 1). Everyone MP is belonging to its SP during all
process. 2). SP is in equilibrium during all time. The first restriction eliminates inessential complications related to the
necessity to reconsider of SP structure due to transitions MP between them. The second restriction is equivalent to the
requirement of weak interacting which accepted in thermodynamics.

The aim of this paper is to show how the mechanics of SP can be constructed on the bases of a Newton’s laws for
MP. For this purpose the nature of the restrictions of classical mechanics is analyzed. The explanation of the necessity
of the systems dynamics description on the basis of two types of symmetry: the symmetry of the system and the
symmetry of the space are submitted. How from SP mechanics to come to thermodynamics, statistical physics and
kinetics and how to introduce the concept of entropy into the classic mechanics are explained.

THE SYSTEM OF TWO MP. The basic principles for construct of the SP mechanics as well as the method of its
construction can be illustrated on the example of system of two MP. The task of two MP is solved by transition to a
coordinate system of CM [7]. In this case, the variables are separated. The nature of such separation of variables is
connected with the emergence of a new quality of a system that is absent for MP. It is internal energy caused by the
relative motions of system elements. The energy of two MP in laboratory coordinates of system (LS) has the form:

E=m(} +v2)/2+U(r,)+U" (1) +U" (r,) = const , (1)
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where U(#;,) is a potential energy of MP interaction; U“" (1) ,U“"(r,) are potential energies for MP in an external

field of forces; 7;, 7, -coordinates of MP; 1, =(r; —1,), V,,V, are the velocities of MP.

The motion of each MP is caused by two independent types of forces: forces of interaction MP and external forces.
In the LS coordinate system the task is nonlinear because the motion of one MP depends from the motion of the other
MP. Thus in the LS coordinates of system the MP motion are interdependent. Therefore the LS system is unacceptable
for the description of dynamics of system. New variables are set as follows: R, =(r,+#,)/2, V, = R, are coordinates

and velocities for CM, v,, =7;,. In these variables the system’s energy is:
E={MV}/2}+{mv /4 +U(r,) }*U™(R,,1;,) )
Here MV} /2 is a kinetic energy of CM system’s motion. The energy mv’, /4+U(r;,) is a internal energy of
system determined by forces of interaction MP and their relative motion; v,, =7, ; U“"(R,,#,) -is a potential energy

of system in an external field. M =2m. Differentiating the energy (2) with respect to time, we get:
MV,V, + mv, v, |2+ Fy,+ F"V, + F™ v, =0, A3)
where F,, =0U(r;,)/ 0ry, Fy™ =0 U™ (Ry.1;,) |/0R,, F™ =0[ U™ (Ryu1iy) |/ 0,

If there is no external force field, the last two terms in eq. (3) are zero. Variables are separated and eq. (3) is inte-
grable. If the external field exist but does not depend from 7, then last term in the eq. (3) is equal to zero and its
breaks up on two independent equations:

MV,V, + F"V, =D, (4 2mv,v, + F,v,==D. (5

Here the eq. (4) describes the motion of the CM system in an external field of force; the eq. (5) describes the rela-
tive motion MP which does not depend on exterior forces; [ is a constant which we take equal to zero. It means that
when the external forces are homogeneous the internal energy can’t change. Thus, in the first and second cases the
motion of two MP is determined by the Newton's third law. In general case the exterior forces can change both the
energy of system motion and internal energy.

Thus, on the example of the two-body system has shown that the energy of the system is split into two independ-
ent types by transition to the CM coordinates system. It is the internal energy which depends on the relative velocities
of MP and the forces of their interaction. And it is the energy of the system motion in the field of external forces which
depends on the coordinates of the CM and its velocity. We can see that by summarizing of the motion equation for LS,
we exclude internal forces, leaving only the external forces. As a result we come to the system’s motion equation in
space. By subtracting these equations, we exclude the external forces and come to the equation for the relative motion
of MP in the interaction field of forces. I.e. the system’s motion, unlike the MP motion, is determined by two invari-
ants: the energy of its motion and internal energy.

All bodies consist of microparticles or molecules. Therefore they can be represented in the form of the SP whose
position is determined by its CM. As shown on example of two MP, the motion of each MP should be determined in
relative to the CM. Coordinates and velocities of the MP relative to the CM systems we will call micro variables, the
coordinates and velocity of the CM systems we will call as macro variables. Since internal and external forces are
independent, then these variables are also independent. Hence the two spaces variables in relevant micro and macro
variables, also independent. I.e. the new variables divide the space of the generalized co-ordinates and velocities on
two independent subspaces. One subspace is determined by the internal symmetries of the system, and the second
subspace is determined by the symmetry of the outer space [8]. Thus the systems dynamics is defined by two types of
symmetry: symmetry of the system which defined by distribution of its elements and character of their interactions,
and symmetry of space in which the system moves. Hence, the energy of the system will be the sum of two invariants
of motion: internal energy and the energy of motion of the system as a whole.

Since the energy, unlike the forces, is the additive function of dynamic parameters of the MP, the mechanics of SP
conveniently builds basing on the energy function. Below we will obtain the expression for the energy of the system
consisting from potentially interacting MP which will be written down in micro and macro dynamic variables.

ENERGY OF THE MP SYSTEM. Let us take a system from N of potentially interacting a unit mass MP. The
potentials in each point of space are additive. Therefore, the force acting on a given MP is equal to the sum of forces
acting on it from all others MP and from the external forces. The forces between everyone two MP are determined by

distance between them. Thus, the kinetic energy of system 7, can be represented as the sum of the kinetic energies of

the MP. So, T, = Z]\jl mviz / 2 . Potential energy is equal to the sum of potential energies of all MP in the field of the

external forces and potential energies of MP pair interactions among themselves which is U, (n)=
N-INN .. . . . . _

Z,:1 ZFMUU (”y)’ where j, j=1,23..N are the number of MP, v, —is a velocity of I -element; vy =71 Hence,

full energy of system is equal to E, =T, +U, +U“"=const . It is obvious that kinetic energy of system includes the
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energy of its motion in the field of external forces, 77 and kinetic energy of relative motion, 7, caused by interac-

tions MP among themselves. Le., T, = T + 7" . We will write down the velocities of everyone MP in the form of the
sum:v, =V, +7V. where J,=R,, R, :(Z:Zl,;_ )/N» Zil v, =0. Momentum of the system P, is the sum of the
moment of all MP. lLe., P, = ZZI my, =MV, - Thus, the relationship between the momentum p, and body is the

same as between the momentum of one MP with the weight A7, . Le., the system can be considered as a point with the

coordinates of the CM that moves with velocity equal to the sum of the velocities of all MP. Therefore the dynamics of
the system, unless you consider changing its internal energy, is determined by Newton's equation of motion for MP
with a mass equal to A7, . Hence it is clear that in a CM coordinate system the momentum of the system is equal to

zero and T, = Z’]Zl mvl.z / 2=M, V; /2+ Zfil mv[z / 2 . It means that unlike one MP, the total kinetic energy of motionless

system is equal to the sum kinetic energies of MP determined by their velocities relative to the CM. L.e., one part of
kinetic energy of system is connected with motion of the MP relative to the CM, and the second part is connected with
the motion of the system CM. Hence, the velocity of system is determined by the velocity of its CM whose position is
defined by a radius-vector R, .

Thus, the system’s energy consists of the kinetic energy of the MP motion relative to the CM and the potential
energy of their interaction. The sum of this energy called the internal energy of the system. Then the energy can be
written as a sum of internal energy plus the system’s energy in the field of external forces. L.e.:

E, =Ty +Ey +U™, (6)
where E =T, +U, is internal energy, T ]\i,"S =z{v1"ﬁi2 / 2 is a kinetic part of internal energy, U, is a potential
i=

part of internal energy, determined by the interactions of MP.
Quadratic function of the kinetic energy can be expressed through a quadratic function in which arguments are the
velocities of the MP in relative to the CM and the velocity of the CM system. This conclusion is follow from the
o N o _ N 2 N-I~NN . N-1x— N
equality: NZ[:l Vi 7(21':1 v") +Zi:1 Zj:iﬂ vffz' - S0 we have: T, :[MNVJ\? +(m/N)2i=1 Z;‘:m v;]/Z (a). The

first term in (a) is the kinetic energy of the CM motion. The second term is the kinetic part of the internal energy

determined by the relative velocities of MP. Let's transform the energy 7, by replacement: v, =V, +V, , where

191 =0, then: T, :MNVAz, /2+Zilm§’_2/z. Using (a) we will

V. is a MP velocities relative to the CM. As ZN

i i=

find: ZZI mv?[2 = (/2N )Zj\: Zlm my; . Therefore T =ZZ1 mv? [2=(m/N Zj\: ZLH v; /2.

Thus, the law of energy conservation for the system can be formulated as follows: the sum of the system’s
kinetic energy of motion, its internal energy and of the potential energy in the external field of forces always is a
constant along the trajectory of the CM. The difference of the energy conservation laws for the system and for MP
leads to a qualitative distinction for their motions. Indeed, the trajectory MP is defined by transformation of potential
energy of an external field only into the kinetic energy of its motion. But the trajectory of system is defined by trans-
formation of potential energy of an external field both to its kinetic energy and to internal energy. Thus, the natural
variables that define these types of energy are macro and micro variables.

THE SYSTEM’S MOTION EQUATION. There are basic differences of dynamics of the systems, possessing
structure and the sizes, from dynamics of MP. The motion of MP is uniquely determined by the point in space. But SP
motion is determined by the area of space occupied with it and CM position. Therefore for unequivocal definition of
dynamics of system it is necessary to know, both change of its kinetic energy of the system motion and change of
internal energy as energy of an external field goes on change of these two types of energy. The system’s motion
depends from its sizes if the spatial heterogeneity of external forces is exist.

Another fundamental difference between the dynamics of MP and the dynamics of the system base on the fact that
for one MP the principle of superposition of forces is valid, while for the different MP it is not so. Indeed, the change
of the internal energy has a place when the sum of internal forces is equal to zero. Therefore if to summarize the
equations of motion for each MP, we will lose the terms which determine the change of the internal energy. But the
system’s motion is determined by the change of two types of energy: the system’s motion energy and internal energy.
Therefore the motion equation should be submitted in the variables that determine the motion of its CM and motion of
the MP relative to the CM.

Differentiating eq. (6) over time we obtain [5, 6]:

VMV, +Ey ==V, F" =0, @)
where g =SV pevR 7). BV =T F)+UN F) =D Vb, + FF),)e r=Ro+Fs v =V, 45, B =00/

O 5 :ZZVI_ E™(R,,T) \71. R 77l , are the velocities and coordinates of MP relative to the CM, J, R, are the velocity and

coordinates of the CM. The eq. (7) is equation of system’s energy balance. In the left-hand side the first term
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T }(,r=VNM NVN is a change of system’s kinetic energy. The second term is a change of system’s internal energy,

defined in the coordinates and velocities of MPs relative to the CM. The right-hand side defines the work of external
forces that change the energy of the system. Here the first term defines the change of the TA’/" . The second term defines
the change of the E7".

Now let us take the external forces which scale of heterogeneity is commensurable with the systems scales. In this
case we can write: F“"'=F“"(R+7) where R is a distance to the CM. If R>>7;, than the force F" is expanded in

a small parameter. Retaining in the expansion of the zero and first order, we write: go*=F"| +(v.F[F")
1 RO 1

~ = env
REE" T
RU

(V-F™), ;- Because 37" 5 = 3" 7 =0 and 37" i = NF;" = ", we will have:

1

VMV, + F™)+ 300 mv, (5, + F(7)) = —~(V-F™), 3" 57 (8)

i

The work of the potentially part of force, F,"", change the system’s motion energy. The term in the right-hand

side has a first order of smallness as the condition R >> 7; does not mean smallness of the 71 =V,. This term is

proportional of the gradient of external force and determines the work on change of internal energy. Its variation can’t
be expressed by the integral of the gradient of any scalar function on the way. It is because the change of internal
energy is a sum of work of external forces on motion of MP, while the sum of these forces is zero. But these forces can
be expressed through the effectiveness of the change in internal energy. This can be done so.

Multiplying (7) on V,, and dividing result on V/\f , we obtain the system’s motion equation:
5 env
MV, =-F" —ayVy, )
where o, = (0" +Ej\',”)/ Ve

The second term in the right-hand side defines a non-potential part of forces whose work changes the internal
energy. If the external field of force is homogeneous or when the forces between MP are much more of the external
forces, this term is equal to zero and the eq. (9) becomes the Newton’s motion equation.

Thus, to obtain the motion equation for the structured body, it is necessary to execute consistently the following
operations. Firstly, it is necessary to present a body as a system of microparticles. By transition to micro and macro
parameters we present the system’s energy as a sum of the motion energy and an internal energy. From here we obtain
the equation of energy streams for these types of energy. From here we will come to a system’s motion equation which
takes into account non-potential force changing its internal energy. It is important to note that the eqs. (6-9) strictly
follow from Newton's laws for MP. Therefore, all properties of the dynamics of such systems, which follow from
these equations, are determined only by these laws.

SYSTEMS OF SP. The above equations are valid for the general case of any systems of potentially interacting
MP in the external field of forces. In general case due to the nonlinearities they are not integrable. But integration is
possible if the system represents as a set of equilibrium SP. The equilibrium of SP means that it can be split on the
rather large equilibrium subsystems which are motionless relative to each other. Therefore the SP internal energy is the
sum of the internal energies of subsystems. L.e. the collective processes of energy, momentum and mass flows into SP
are absent. Therefore at feeble enough action on SP not breaking equilibrium, its motion will be determined by the
change of the motion energy and an internal energy.

In the approach of the local equilibrium approximation any nonequilibrium system can be represented by a set of
SP which has a relative motion to each other. In the thermodynamic limit at enough weak interactions, each of the SP
during the entire process can be regarded as equilibrium [9]. Then the dynamics of nonequilibrium systems can be
described by the eq. (9). Let us the system consists of two SP: L and K. Let us L is a number of MP in L-SP,a K

is anumber MP in K -SP,i.e. L+ K = N . Letus CM for two SP motionless, i.e. LV, + KV, =0, where V, and V,

velocities of two SP relative CM of the system. Differentiating energy of system on time we will ob-
tain: Z~N1V""' +Z Nl“ Z N IF./.v./. =0, where F_j = 8U/8r.j. For finding the equation for L -SP, we gather at the left
i=1 i i= J=i+l T U p p

hand side only the terms defining the change of kinetic and potential energy of interaction of L -SP elements among
themselves. All other terms we displaced into the right hand side and combined the groups of terms in such a way that
each group contained of the terms with identical velocities. In accordance with Newton equation, the groups which
contain terms with velocities of the elements from K -SP are equal to zero. As a result the right hand side of the
equation will contain only the terms which determine the interaction of the elements L -SP with the elements K -SP.
Thus we will have: I-LLV' v, +ZH ZZ:IM F,v, . :Zi:l K g , where double indexes are entered for a

A ip=1 Jk= g K

designation of an accessory of a particle to corresponding subsystem. If we will make replacement v, = ‘7& + VL ,
where \7& is a velocity of [, particle in relative to CM of L -SP then we obtain the equation for L -SP. The equation

for K -SP can be obtained in the same way. As a result we will have: [6, 11]:
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V.MV, +EI" =—®, -V, ¥, (10) VMV +EX =, +V,P,(11)
K ~ K L — L
where ' = Z;L—l i > @, Z =1 Vi l :sz v/A F Z/K_l F:'ij B = i =1 Fz‘ij ’

EWS Z[ = ZJ +1 ’L/L ﬁfLJIL /L + F:',_ Elm ZL _IZJ ﬁil\’j!\’ /K+F;'Kjk]’ ML =mL i MK =mK.

¢ =ig+1 ’K Jk
The egs. (13, 14) are the equations of energy exchange. The potential force, W, defines motion of the CM of SP.
The non-potential forces which determined by the terms @ , and @ , , will transform the motion energy of SP into

the internal energy as a result of chaotic motion of elements one SP in the field of the forces of another SP. They are
dependent on velocities and can’t be expressed through the gradient from any scalar function. These forces are equiva-
lents to dissipative forces. The SP motion equations corresponding to the equations (10, 11) can be written as [6]:

MV, =¥ -a,V,, (12) MV, =%+a,Vy,, (13)

where o, =(E!" +® ) /V}; a, =(@, —EX)/ V¢
The egs. (12, 13) are written down for SP which are considered equilibrium during all process of interaction. In
this case we can neglect by the energy, momentum and mass flows in SP. Due to equilibrium of SP its internal energy

can’t be transformed into SP motion energy. This follows from the law of conservation of momentum, according to
which neither any internal MPs motions can change of SP velocity. From here we come to a conclusion about irre-

versibility of SP dynamics. Therefore, coefficients ¢, , &) are friction coefficients.

Dynamics of non-equilibrium systems is determined by the eqs. (12, 13). Consequently the Lagrange Hamilton
and Liouville equations for the systems, whose elements are the SP, will also be determined by these equations. It is
well known that the Hamilton principle for MP derived from differential D’ Alambert principle using Newton’s equa-
tion [2]. For this purpose the time integral of virtual work &w°® done by effective forces is equated to zero. Integration

over time is carried out provided that external forces possess a power function. It means that the canonical principle of
Hamilton is valid only for cases when z F,6R, = -6V (b), where [ —is a particle number, and F, - is a force acting

on this particle. But for interacting SP the condition of conservation of forces is not fulfilled because of the presence of
a non-potential component. Therefore in the equations of Lagrange, Hamilton and Liouville for systems from SP, the
terms caused by non-potentiality of collective forces are appeared. The Liouville equation for SP is written as [4, 6]:

df dt=~f>" OF, |0V, (14)

Here f— is a distribution function for a set of SP, F’, is a dissipative force, V', is the velocity of L —SP.

The state of this system can be defined in the phase space which consists of 6R —1 coordinates and momentums
of SP, where R is a number of SP. Location of each SP is given by three coordinates and their moments. Let us call
this space us S-space for SP in order to distinguish it from the usual phase space for MP. The S-space unlike usual
phase space is compressible though total energy of all MP is a constant. It is caused by transformation of the motion
energy of SP into their internal energy. The SP internal energy can’t be transformed into the SP energy of motion as
SP momentum can’t change due to the motion of its MP. Therefore S-space is compressible because the internal
energy will increase until the relative motion of SP will not disappear.

It is necessary to redefine the geometrical concept of an interval [2] for systems whose elements are the SP. In-
deed, we have shown that the dynamics of the SP is determined by two types of symmetry: the internal symmetry and
the symmetry of the space. Therefore the motion of the system is determined by two types of energy: kinetic energy of
the SP and its internal energy. Each of these types of energy has its own type of forces. This is reflected in the fact that
the geometry of motion of the SP, in contrast to the geometry of motion of the MP, is the sum of the squares of the two

intervals, that can be written as [2, 7]: ds° =ds_ +ds, . Here dstz’, is a square of an interval corresponding to SP
motion energy, dS,m - is a square of the interval corresponding to SP internal energy.

Thus, the square of the interval of a nonequilibrium system splits into the sum of the squares of the two independ-
ent intervals. The first one corresponds to the system motion while the second corresponds to its internal energy. These
intervals are orthogonal since they satisfy the Pythagorean Theorem.

MECHANICS OF SP AND THERMODYNAMICS. Difficulties of substantiation of the empirical laws of
thermodynamics based on fundamental laws of physics are connected with the reversibility of the Newton’s motion
equations. The reversibility is due to its constructing on the bases of unstructured body’s models. Acceptance in
attention of structure leads to occurrence of non-potential component of the collective forces of body’s interaction
changing their internal energy. For SP this energy can only increase due to the energy of its motion. It is equivalent to
irreversibility of the SP dynamics. Let us explain this conclusion.

The presence of reversible dynamics for SP would mean that its internal energy is capable to pass into motion en-
ergy. In turn this would mean the possibility of increasing momentum of SP at the expense of its internal energy. But
this contradicts the law of conservation of momentum. Indeed, for each of the equilibrium subsystems into which
splits SP the sum of the velocities of MP in subsystems and sum of their interaction forces are equal to zero. But for
SP momentum appearing it is necessary that at least in one of subsystems the requirement of equality to zero of the
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sum of forces has been disrupted. It is impossible because according to a law of momentum conservation any of
subsystems cannot acquire a relative velocity or due to internal MP motion or forces from unmovable subsystems. I.e.
internal energy of the SP can’t transform into the energy of its motion. It is equivalent to irreversibility. From the
mathematical point of view this conclusion follows from the fact that microparameters determining the MP motion are
not dependent on the macro parameters that determine the SP motion energy. This mechanism of irreversibility is
deterministic because its follows from the Newton's laws. There is a fundamental difference between deterministic and
probabilistic mechanisms. For deterministic mechanism the “coarse-grain” hypothesis isn’t required.

Let us explain how can connect the mechanics SP and thermodynamics [5, 6]. In thermodynamics the work of ex-
ternal forces breaks up on two parts. One part is related to the reversible work. Another part of energy goes into heat-
ing system. According to it the basic equation of thermodynamics looks like: dF = d(Q— PdY . Here E is the energy

of a system; Q is the thermal energy; P is the pressure; Y is the volume. As we deal with equilibrium systems, then

dQ =TdS , where T - temperature, S - entropy. According to the eq. (7), coming into the system energy can be

divided on two part. There are energy of relative motion of the SP and its internal energy. It was showed [5] that in
thermodynamics to the change of the SP energy of relative motion there corresponds the value of PdY , and to change

of SPs internal energy there corresponds value, 7dS . Thus, we will come to the basic thermodynamic equation if in
the equation (7) to carry out standard transition to thermodynamic parameters [5, 9, 10].

Let us take the system consisting from « R » numbers of SP. Each SP consists from N, number of MP and

N, >>1,where L =123..R, N= Zle N, - full number MP in system. Then the share of energy, which goes on

internal energy increasing, is determined by the expression [5, 6]:

AS =" {NLZkN:I[IZSkavkdt]/EL} (15)

Here E, is the kinetic energy of L -SP; s - is a number of the external elements which interact with elements k

belonging to the L -SP; F, /i is a force, acted on Kk -element; V, -is a velocity of the k element.

The eq. (15) can be viewed as entropy definition. This definition of entropy corresponds to Clausius definition [9,
10]. Difference consists only that this entropy follows from analytical expression for the change of an internal energy
obtained by us on the basis of Newton's laws. From the eq. (15), it is possible to obtain the value of the entropy pro-
duction and obtain the conditions which necessary for sustain the non-equilibrium system in the stationary state [6].

Mechanics of SP leads to statistical physics and kinetics. Indeed, the velocities of SP are determined by average
values of velocities of MP. The sum of the MP velocities relative to the CM is equal to zero. Thus the internal energy
is equivalent to the rms fluctuation of the MP velocities relative to the system’s velocity. This means that the dynamics
of the SP is expressed through the first and second moments of the motion [9].

CONCLUSION. The key idea of expansion of the Newtonian mechanics allowing to include the dissipative forc-
es into description, consists in replacements of MP on SP. External simplicity of this idea does not mean its
obviousness. Indeed the dynamical characteristics of the system do not follow directly from simple plurality of
dynamical characteristics of elements. This is evident from the fact that the structure of the system determines not
only its motion but also the collective forces of interactions. In connection with the construction of the mechanics of
the SP requires knowledge of the principles of synthesis of the properties of systems based on the properties of its
elements [11]. The first question is how to find the SP motion equation on the basis of Newton's laws without attracted
of some statistical hypotheses.

It became clear as a result of studying of dynamics of two MP systems that SP mechanics must to be built in space
of micro and macro variables. In these variables the energy of SP breaks up on the energy of its motion and an internal
energy. The SP motion energy is expressed through macro-parameters - co-ordinates and velocities of CM. Its change
is connected with the work of the external force acted on the CM of SP. The internal energy is expressed through
micro-parameters. The increasing of internal energy is provided by the work of the external forces which change the
relative motion of MP. The internal and external forces are independent. Therefore the SP motion energy and internal
energy are independent also. Independence internal and external forces tell us about presence two types of symmetry.
It is symmetry of space and symmetry of system. According to these types of symmetries the system’s energy
breaks up on two invariants: the SP motion energy and SP internal energy.

The major factor causing difference of SP dynamics from MP dynamics is a structure and an internal energy. Tak-
ing SP as a system’s elements we, thereby, have supplied this elements with a new properties — structure and an inter-
nal energy. The change of an internal energy provided by the work of collective forces is a cause’s difference of SP
dynamics from dynamics of MP.

Newton's laws were obtained for models structureless bodies. To use them to determine the equation of motion of
real bodies with the structure, we took a model of SP, consisting of potentially interacting MP. Using the Newton's
law for MP, we find the equation of motion of such a SP, taking into account changes in its internal energy. This was
done by using the expression for the energy of the SP by shifting to the variables that characterize its dynamics. Deri-
vation of the SP motion equation is carried out so. We write the SP energy through independent macro and micro-
variables. In these variables, it splits into SP’s energy of motion and the internal energy. Differentiating this energy in
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time, we obtain the equation for the flux of the motion energy and internal energy. From here we come to the SP’s
motion equation. Dissipative forces are defined through the relation of this work to the SP’s motion energy.

Irreversibility is a new property of the SP dynamics. The mechanism of irreversibility is related to the transforma-
tion of SP motion energy into the internal energy and the inability of the inverse transformation due to momentum
conservation law. Because the SP motion equation obtained on the basis of Newton's laws, the irreversibility of the
dynamics of the SP is deterministic. If we neglect the change in internal energy, the motion of the SP will be deter-
mined by Newton’s motion equation.

There are both similarities and differences between accepted today a probabilistic explanations of irreversibility
[3] and our explanations. In the basis of probabilistic mechanism of irreversibility is a fact of randomization of trajec-
tories of Hamiltonian systems in phase space due to the exponential instability and the hypothesis of “coarse-grain® of
the phase space. In the deterministic mechanism of irreversibility both the exponentially instability and mixing in
phase space determine the efficiency of transformation of the motion energy into the internal energy. But the irreversi-
bility follows from the momentum conservation law and the non-potentiality of the forces which transform the energy
of motion into the internal energy. The hypothesis about «coarse-grain» of the phase space is not required. In accor-
dance with a deterministic mechanism of irreversibility in classical mechanics the concept of entropy is appeared. This
entropy corresponds to the empirical entropy offered by Clausius and is consistent with the mathematical form of its
probabilistic definition proposed by Boltzmann.
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Abstract

Hamilton's variational principle is used to derive the nonlinear response of floating roofs
of cylindrical liquid storage tanks due to harmonic base excitations. The contained liquid is
assumed incompressible and inviscid. The variational principle accounts for nonlinearity
caused by large deflections of the floating roofs. Derived nonlinear ordinary differential
equations has cubic nonlinear stiffness terms similar to Duffing equation. Due to small
damping of the fluids, storage tanks are subjected to the resonance in the case of
coincidence of natural frequency with excitation one. It is shown that accounting for large
deflections of the roof plate, reduces the height of sloshing induced surface waves.
Evaluating the response of nonlinear model for increasing amplitude of harmonic
excitations, gives rise to the appearance of sub and super harmonics in the response.
Further increase of excitation amplitude increases the contribution of sub and
superharmonics in the response and for some excitation amplitudes the response become
chaotic. Fractal structure of the Poincare maps is the evidence of the chaotic responses.
Keywords: Floating roof, variational principle, large deflection, sloshing.

1. Introduction

Floating roofs are used in the petroleum industries for storage of liquid
hydrocarbons in atmospheric storage tanks. Noting that serious damages in
floating roofs due to large deflections could be attributed to the sloshing of the
contained liquid [1], it will be essential to take into account for interaction
between floating roof and supporting liquid in the nonlinear analysis of the
system for base excitation.

Many investigations have been done on the dynamic response and sloshing
behavior of the storage tanks. Assuming small surface waves, and using potential
theory Jacobsen [2] and Senda and Nakagawa [3] studied the sloshing effects in
cylindrical storage tanks. Nakagawa [4] and Yamamoto [5] considering the
interaction between rigid massless floating roof and contained liquid studied the
sloshing effects in the storage tanks. Sakai et al. [6] employing the linear
potential theory and using the variational principle derived the free vibration
properties of the system and compared the results with the experiment. Matsui [7]
developed an analytical solution for the response of cylindrical storage tanks with
floating roofs under seismic excitations.Due to small amount of damping in these
models large amplitude oscillation is anticipated for near resonance excitation.
This indicates that accounting for different sources of nonlinearity in the model.
Different researcher considered different source of nonlinearity in their
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investigations. In an static analysis and considering the large deflections of the
floating roof, the authors studied the importance of the flexural and membrane
stiffnesses on the stress analysis of deck plate [8]. Frandsen [9] carried out
extensive investigations on the nonlinear sloshing behavior of rectangular storage
tanks without roof for vertical, horizontal and combined excitations. Cho and Lee
investigated the hydrodynamic characteristics of large amplitude sloshing
response of storage tanks with baffles using nonlinear finite element method [10].
In this study, using the Hamilton's variational principle for large deflection
analysis of the floating roofs and contained liquid, the sloshing response of the
floating roof under harmonic excitation is investigated. Weighted residual method
is adopted to minimize the error in the integral solution of the coupled field. It is
shown that the resulting equations are similar to the Duffing equation with cubic
nonlinearities. The discritized Duffing type equations solved numerically for
harmonic base excitations with different acceleration amplitudes and frequencies.
By sweeping the excitation amplitudes, the bifurcation diagrams are plotted at
different frequencies near the resonance conditions. Presence of sub and super
harmonics and chaotic vibrations are examined using Poincare maps and
frequency spectrums.

2. The Variational principle

Figure 1 depicts a typical liquid storage tank with single deck floating roof and
the cylindrical coordinate used in the analysis. Simultaneous application of the
Hamilton's variational principles on the deck plate and the liquid facilitates the
problem of imposing the compatibility of deformation between the floating roof
and the supporting liquid.

Figure 1. Typical liquid storage tank with single deck floating roof.

The extended Hamilton's principle for coupled fluid-structure system considering
only the conservative forces reads
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I
§I(T—U+F)dt:0 (M
ti
where 7, U and F are the kinetic energy and strain energy of the deck plate and
fluid Lagrangian, respectively. For incompressible and inviscid fluid it is possible
to treat fluid flow using potential function. Assuming no separation between fluid
and deck plate, the fluid Lagrangian will be

1,00 ow g 2
F=[p~()o+Lo-E 424
SIP[ AR 2)
d

where S; is the deck plate area (deck plate-fluid interface), w is the plate
deflection and @ is the velocity potential function. Considering the large
deflection theory and assuming that the in-plane displacements are infinitesimal
and ignoring associated nonlinear terms in strain-displacement relation, the
strain-displacement relation can be expressed as

2
g}’ :%4_1(%)2 ;& :lau_g+u_r+l la_w
or 2 or r 00 r 2\roé
gp =L Oty up  10wow
r 06 or r ror o6
where & denotes the deck plate strains and u,, uy and w are radial, tangential and

flexural displacements of the deck plate. Decomposing the displacements into
flexural and membrane components, we have

)

u, =u, —z@; ug =—z—— 4
or

Where it is assumed that the mid plane displacement in peripheral direction is
negligible in comparison with flexural and radial displacements. The variation in
the strain energy of the deck plate can be obtained by integrating on the deck
plate volume

7
[oudt = [ (0,66, +04)024 +5,,0¢,,)dV )
t v
Defining time dependent generalized coordinates of B; and C;, we decompose the
flexural and radial displacements in terms of interpolation functions &; and #; as

i

1 1
w= Y B;(0&(r,0) ; ul =) Ci(tm;(r,0) (©)
i=1 i=1
Now the with substitutions of Eq. 6 in to Eq. 5 the variation of strain energy can
be rewritten as
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Where H, I, Q and y are the coefficients, which can be calculated using
numerical integrations methods. The kinetic energy of deck plate is

1 .2
T =3 jmw dsy (8)
Sa
Where m denotes the unit mass of the deck plate. Rewriting the deck plate
deflection in terms of interpolation functions and evaluating the variation of
kinetic energy we arrive at

I |
[t =—m [ 33" B;0)6B; ()& S, ©)
t, s, i=1j=1

This can be expressed as

i

t, I
[orac =" Py om; (10)
t, i=1

Where P is two-dimensional coefficient, which can be calculated.On the other
hand the potential function in the fluid Lagrangian, should satisfy the Laplace
equation subject to the following boundary conditions

0P| o =0 O”Sb;agi =);(cos00nSW (11)
0z Z 1z=0 or r=a

=W on Sd 5
z=H

where X is the velocity of base excitation and Sy, S, and S,, are deck plate-fluid
interface, tank bottom surface and tank wall surface, respectively. Solving the
Laplace equation subject to the second and third boundary conditions gives the
potential function as

LK J1(ZE ) cosh(%k )
D =| X+ A (1) —2 el (Y (12)
k=1 Ji (gk)cosh(—kH)
a

where J; is the Bessel function of the first kind of order one, 4; is time dependent
modal amplitude and & is the root of J '(Ek) = 0. Evaluating the variation in

the Lagrangian of the contained liquid yields the following compact form.
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where S, U, F and T the confidents with integral forms. After evaluation of the
first variation of different terms and substituting in Equation 1, we conclude first
variations of an integral form equation. Then by Setting equal to zero the
coefficient of A and dC, it is possible to evaluate A and C in terms of B as
follows

K I
Ak =2[S/k]_lzTikéi
I= =
J1 l l1 I [
Ci ZZ—[Hg]_IZZF/k;B/Bk =ZZ‘P/kiBsz
= 171 k=1

=1 k=1

(14)

Now equating the coefficients of 5Bi to zero and substituting expressions for A

and C from Equations 14, the governing nonlinear differential equation for the
generalized coordinate B becomes

(P+p, TS'T)B+(Q+p, gU)B+xB> = p FX (15)

This is the equation of flexural vibration of the deck plate accounting for the large
deflections in the deck plate and at the same time considering the fluid-structure
interaction. Accounting for fluid-structure interaction leads to additional mass
and stiffness matrixes simulating fluid’s added mass and added stiffness.
Considering the large deflections of deck plate gives rise to the cubic stiffness
term in Equation 16. Due to similarity between this equation and Duffing
equation, emergence of rich dynamics including quasi-periodic and or chaotic
responses are expected. Due to small amount of damping in the fluid, near
resonance excitation could result in violent response. In this case, the nonlinear
stiffness term could have a suppressing effect reducing the sloshing induced wave
elevation. Considering the form of excitation (Equation 12¢) and using the shape
functions of deck plate in air, following interpolation functions for flexural and
radial deflections are used

& (r,0)=[a;J,(k;r)+ B;1,(k;r)]cos(0)
Lo (16)
n; (r,6) = sin(4; —)cos(d)
a

where /; denotes the modified Bessel function of the first kind of order one and k;
and A;s are wave numbers. The wave number and the ratio of the amplitudes «;
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and f; can be determined from the requirement of free-edge natural boundary
conditions (including zero shear and moment) on the deck plates edge.

3. Numerical simulations and results

The numerical simulation investigates the sloshing response of a liquid storage
tank with floating roof to harmonic excitations of different amplitudes and
frequencies. Table 1 gives the tank parameters used in the simulations. Damping
in the system is considered using a stiffness-proportional Rayleigh damping with
damping ratio of 0.5% at systems first natural frequency.

Table 1. The values of parameters used in the analysis.

Parameter Value
Tank Radius (m) 4
Tank Height (m) 3
Mass density of the deck plate (kg/m?) 77
Mass density of contained liquid (kg/m°) 850
Poisson’s ratio of deck plate 0.3
Deck plate thickness (m) 0.01
Module of elasticity of deck plate (N/m?) 2.1x10°

In the following the appearance of quasi-periodic and chaotic response due to
presence of the nonlinear term in Equation 15 is investigated.Due to presence of
the cubic nonlinearity in this equation and its similarity with Duffing equation,
appearance of strange response is expected. To study the nonlinear behavior of
the system the phase plane, Poincare map and frequency spectrum of the
responses are employed. To evaluate the emergence of the nonlinear effects due
to large deflection of deck plate, the strange responses are studied near the
resonance conditions.

Figure 2 depicts the phase plane and Poincare map of the response for excitation
frequency 0.6 Hz and ground acceleration amplitude 2.84 m/s® . Interesting point
in this figure is the emergence of subharmonics in the response. In contrast to the
linear case where the Poincare map, includes a fixed point, in nonlinear cases the
presence of the subharmonics results in the emergence of multiple points in the
Poincare map.

By increasing the excitation amplitude to 5.26 m/s’, the simulation results are
shown in Figure 3 where the appearance of the horse show like structure of the
Poincare map is the evidence of the chaotic motions. To show period doubling
bifurcation for increasing level of ground acceleration, in Figure 4 the bifurcation
diagram for excitation frequency of 0.6 Hz is plotted. This figure shows that for
some ranges of excitation amplitudes, subharmonics are emerged and for some
other amplitude, the response becomes chaotic.
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To study the effect of frequency variation near the resonance condition (where
the nonlinear term has significant effects) the bifurcation diagram is also plotted

for excitation frequency of 0.5 Hz,

in Figure 5. Increasing the excitation

amplitude, different type of the responses emerges, representing period doubling

rout to chaos.
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4. Conclusion

Using Hamiltonian variational principle the governing equations for sloshing
response of floating roofs accounting for large deflection of deck plate are
derived. Similarity is found between nonlinearity of derived equation and those of
Duffing equation. It is shown that this nonlinearity has suppressing effect for near
resonance excitation and could substantially reduce the wave height.
Investigating the response for near resonance excitations results in appearance of
sub and super harmonics in the response and further increase of the excitation
amplitude leads to chaotic response. Phase plane diagram and fractal like
structure of the strange attractors in Poincare map are used to clarify the chaotic
responses.
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Adaptive Backstepping Neural Network Control for
Mechanical Pumps

Kyriakos G. Vamvoudakis, Manolis A. Christodoulou

Abstract: In this paper, an Adaptive Backstepping Neural Network control approach is
used for a class of affine nonlinear systems which describe the pump model in the strict
feedback form. The close loop signals are semi globally uniformly ultimately bounded and
the output of the system is proven to follow a desired trajectory. Simulation results are
presented to show the effectiveness of the approach proposed in order to control the pump
output.

1.Introduction
Recent technological developments have forced control engineers to deal with
extremely complex systems that include uncertain and possibly unknown
nonlinearities, operating in highly uncertain environments. Man has two principal
objectives in the scientific study of his environment: he wants to understand and
to control. The two goals reinforce each other, since deeper understanding permits
firmer control, and, on the other hand, systematic application of scientific theories
inevitably generates new problems which require further investigation, and so on.
Adaptive control [1], [10] is a powerful tool that deals with modeling
uncertainties in nonlinear (and linear) systems by on line tuning of parameters.
Very important research activities include on-line identification [11], [13] and
pattern recognition inside the feedback control loop. Nonlinear control includes
two basic forms of systems, the feedforward systems and the feedback systems.
The strict feedback systems can be controlled using the well known
backstepping [1], [4], [15] technique. The purpose of backstepping is the
recursive design of a controller for the system by selecting appropriate virtual
controllers. Separate virtual controllers are used in order to stabilize every
equation of the system. In every step we select appropriate update laws. The strict
feedforward systems can be controlled using the forwarding technique that is
something like backstepping but in reverse order. Other cases of systems that can
be converted to the previous forms are part of a larger class of systems that are
called interlaced systems as described by [17], and [18]. In these systems we
combine backstepping and forwarding techniques together in order to recursively
design feedback control laws. Interlaced systems are not in feedback form, nor in
feedforward form. These systems have a specific methodology that differs from
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backstepping and forwarding. We don’t start from the top equation, neither from
the bottom.

Other special cases of systems are part of other forms that we call mixed
interlaced and we introduce their study in the present paper. The methodology is
based on classical interlaced systems and is developed by the authors. We want to
make the systems solvable by one of the well known backstepping and forwarding
methods. This can be reached after some specific steps that convert the system
into a known form. We start from the middle equation and we continue with the
top. The previous method is based on classical interlaced forms that are
introduced by [17] and [18] and can be extended to more complicated systems.

A lot of researchers developed a series of results that generalized and
explained the basic idea of nonlinear control. Teel [19] in his dissertation
introduced the idea of nested saturations with careful selection of their parameters
to achieve robustness for nonlinear controllers. After Teel [19], [17] proposed a
new solution to the problem of forwarding that is based on a different Lyapunov
solution.

In this paper we control a pump which is a fifth order nonlinear model, but for
simplification purposes we use a third order reduced model that exists in the
literature. The pump has inherent structural uncertainties with high degrees of
uncertainty, thus we are forced to use our non-linear adaptive control techniques.

2.Problem Analysis

A. System Pump Description

Consider a Pump model found in the literature [20] which is presented by the
following well known scheme. (The various variables are explained later in the
paper. Here we give the basic figure)

Figl: Schematic representation of a general Pump mechanical design
Assume we have second order dynamics
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X. =V

C [

o1 (@
=—(-x (K., +K,)-K.I —f
Vc m ( Xc( c + a) a'd tan (ad) cvc +¢s|s)

C
Where x_ is the piston linear displacement, a quantity that can always be
measured.
Consider certain volume within the hydraulic actuator
V, (a4 )=V, —S,ls tan(e ) ; the dynamics of pressure within the control actuator
are:

Id Sa
cos® (ay )

AP, (t):vﬂ—"”) Q. (x)+ o, |, @)

a (ad
where the actuator ingoing/outgoing flow is

—tt,n T (%, )sgn (P, —P,)J|AP, —AP,| %, <0

:ua‘outf (XC)SQn(Pa_Pi)\AAPa_B| XC >0

Remark 1. The outgoing actuator flow has been assumed to be positive, i.e.,
X, >0=Q,>0.

Qa (Xc) = (3)

Remark 2: The valve stroke is modelled as

f(x)=a|x|+ax. (4)
The dynamic behaviour of the disc is governed by the following torque equations:
ay =

. 1

@ = (ad)[—KT (a4 )tan(ay ) f, (ay ) o - 5)

fy (g, APy )@y — 1K X, (g )= 1,8,AP, — f (e )APd]

with
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fp(ad)zziz%gl(zd)yo;

fd(ad,pd):%md(a)

fc(ad):%(";‘z)tan(ad); (6)
KT(w,ad)znga+Kblg_%

3(ay) =3, +%

The output flow of the pump is given by:

Q, =K, (o)l tan(ay), x>0 @
Q, =K, (@)lytan(ay )—Q,(x,), X, <0

The mechanical link between the disc and the actuator is provided by the
following equation (assuming that the angle is small, we linearize the tangent)

X, =lytan(ay ) = lyary (8)

Under all the above assumptions the fifth order nonlinear model for the pump is
given by:

<.
Il
<

1 .

= —(=-x (K, +K,)-K,x, - f
Vc mc ( Xc ( c + a) aXa ch +¢s|s)
X, =V, )
v, :%[—KTxa — £V — fv, — 17K X, 135S, AP, — f,AP, |

> ﬁoil .
AP (t)= —Fo [ S

a( ) Vao_saxa[ Qa(Xc)+ aVa],

with
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f, =22 f, (AP,) = —22 + K, (AP,)
NM |2 NM 2o
. =|_2”; K, (a;):ldea+Kb|b2—%; (10)
NM 12
J=J,+—"F
2

Assuming negligible valve dynamics we may get a reduced third order model as
follows:

X, =V,

. 1

v, :j[—KTxa — £V — fv, — 17K X, 135S, AP, — f,AP, | (12)
: Bii

AP, (t)=—Zrol L) +SV
a( ) VaO_SaX |: :|

and

¢|

X, =——22 =D, —b X, 12

Tk + K (12)

The pump is commanded assuming action on the actuator flow, and then we
get:

X, =V,
v, :%[—KTXa — fxV2 — £, ~12S,AP, - £,AP, ] (13)
Alja(t):i[ X, )+ SV, |;

V.0 =S, X,
and x, =h.

Equation (11) can be expressed in (or transformed to) the following nonlinear
state space form:
X =f(X)+0,(X)X,,,.1<i<n-1
Xi = fi(Xi)+gn(Xn)u 7n22 (14)
y=Xx
where X, =[x, %,,..%]" €R',i=1..n,ueR,yeR are state variables, input and
output respectively. More accurately for the pump model (11) we have f,(x)=0,
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2 J( ¢ P d) e Vao_saxa
- Bii
— b y—Ze
gg(XS) Qa(S)VaO_SaXa

Our purpose is to construct a specific adaptive Neural Network controller (the
proof is omitted due to space) such that:

i) all the signals in the close loop remain semi globally ultimately
bounded
i) the output signal y follows a desired trajectory signal yg, with

bounded derivatives up to (m-+21)th order.

In order to approximate some unknown nonlinearities we use Neural Networks
[2]1, [3], [51, [9], [16]. This approximation is guaranteed within some compact sets
Q.

Since g;(.), i=1...n are smooth functions, they are therefore bounded within

some compact set. According to the previous we can make two assumptions.
Assumption 1: The signs of g;(.) are bounded for example there exist

constants g, (.) > g;,(-) >0 such that, g, () >|g, () 2|9, (), VX, e Q= R".
Assumption  2:  There exist constants g,()>0 such that
0:()<9u() VX, eQcR".

B. RBF Neural Networks

Dynamical Neural Networks are well established tools used in the control of
nonlinear and complex systems. We use RBF Neural Networks [6] in order to
approximate the nonlinear functions of our systems [14], [15]. The idea behind
this is described fully at [2], [3], [71, [8], [9], [15]. The RBF NN we use are of the
general form F()=6"&(.), where @< RPis a vector of regulated weights and

£() a vector of RBF’s. It has been shown that given a smooth function
F: Q—R, where Q is a compact subset of R™ (m is an appropriate integer)
and ¢ >0, there exists an RBF vector & R™ — R” and a weight vector 6*e R"
such that |F(x)-6*Té’;(x)| <g VxeQ. Here ¢ is called the network reconstruction

error. The optimal weight vector is chosen as an appropriate value that minimizes
the reconstruction error over Q .
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Output I

Adjustable weights w;
(w, = bias)

- " } o) | Adjustable centers u
RBE's L9 N /4 J Adjustable spreads v

[nputs X, X, X

Fig2: Schematic representation of RMF Neural Networks

C. Controller Design

In [15], a desired feedback control law was initially proposed for system (13)
and Neural Networks are used to parameterize the desired feedback control law.
Finally adaptation laws are used to tune the weights of neural networks for closed
loop stability. In our paper we use the controller designed by Kaynak et al. [4].
The design procedure is described in 3 steps because in the pump model above we
have 3 states. Each backstepping stage results in a new virtual control design
obtained from the preceding design stages. When the procedure ends, the
feedback design for the control input is obtained, which achieves the original
design objective.

Stepd: In this step we want to make the error between x; and X, (=y,) as

small as possible.
The previous is described by the following equation:

& =X =Xy (15)

We take the derivative of e, . After that we have:
€ =% —%y =& =1(%)+0,0(4)X — X (16)

by using X, as the virtual control input. The previous equation can be changed by
multiplication and division with g,(x;) to the following form:

& = 0,009, () fL(%) +%, — 9,7 (%) %] (17)

We choose the virtual controller as:

Xog =% = =0, (%) () + 9,7 (%)% — ki (18)
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where k; is a positive constant. In order to approximate the unknown
nonlinearities (functions f,(x )andg, (X)) we use RBF Neural Networks. A

Neural Network based virtual controller is used as follows:
Xog = =0, & 06) +6, M (%)%, —ke (19)

where we have substituted the unknown nonlinearities g,(x)" f,(x) and

g,(%)" with the RBF Neural Networks 6,"&(x) and &n,(x) respectively
based on Lyapunov stability [2].

We take the following adaptation laws (c-modification) in order to avoid large
values of the weights:

6.’1 =Iyleé(x)—o6]
51 =D, [—en (%) %y —7061] (20)

with o, 7 small and positive constants andT",, =T',," >0, ', =I",," >0 are the
adaptive gain matrices.

Step 2: In this step we make the error between X, and X,4 as small as possible.
The previous is described by the following equation:

€, =X, — X5y (21)

We take the derivative of e,. After that we have:
€, =%, —Xpq = F,(5) + 0, (X)X — Xoq
=0, (iz)[gz (Yz)_1 fz (iz) +X -0, (iz)_lxzd]

By taking the x,,as a virtual control input and by substituting the unknown
nonlinearities g,(X,)™ f,(X,) and g,(X,)" with the RBF Neural Networks

(22)

0,"&,(X,) and &,'n,(X,) respectively based on Lyapunov stability [2], we have:

Xgg =€ — HzTé:z (iz) + 52Tn2 (iz)XZd - kzez (23)

We take the following adaptation laws (c-modification) in order to avoid large
values of the weights:

92 =T, [e,,(%)~-0,6,]
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52 =T, [-6,n, (%) %4 —7,0,] (24)

with o,, 7, small and positive constants and I',, =T,," >0,[,, =T,,' >0 are
the adaptive gain matrices.

Step 3 (Final): In this step we make the error between x, and x,, assmall as

possible.
The previous is described by the following equation:

€ =X, — Xy (25)
We take the derivative of e;. After that we have:

€ =% =Xy = F,06) + 93 (KU — Xy

- g o 1y (26)
:gs(xs)[ga(xg) fs(X3)+u_ga(X3) X3d]

Where U is the control input and by substituting the unknown nonlinearities
0,(X%) " f,(X,) and g,(X,)™" with the RBF Neural Networks 6,'&,(X,) and

8,'n,(x;) respectively, we have:

u=-€,— 93T6g3 (Xz) + 53Tn3 (73)X3d - ksea (27)

We take the following adaptation laws (c-modification) in order to avoid large
values of the weights:

93 =Ty [6,8(%) —0,6]

0y = Dy [0 (%) X5y — 73] (28)
with o, 7, small and positive constants and I, =TI',," >0,T,, =T, >0 are
the adaptive gain matrices.

3.Simulation

In order to show the effectiveness and apply the above approach a simulation
is presented for the pump model:
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X =X

X, ==X — f (X0 %) X, —a X,

% = 2 (%) e~ (% )u]

y=X

where x;, X,, X, and Y are states and output of the system respectively. The initial
conditions are x, =[X,, X, X5, ]" =[0.3, 0.2, 0.1]" and the desired output signal
of the system is y, = (atan (10*(t —10))/7:) +0.5. These selections are not based

on any experiments in the lab.
We make the assumption that all the basis function of the NNs [12] have the

(Z _ui)T (K _ui)

form  G(X)=exp[- ] (as described in [6]) where
U, = [uil, Uy +oos Uy ]T are the centers of the receptive field and v; are the widths
of the Gaussian function.

The Neural Networks 6,"&(x)and &,"m (%) have 5 nodes with centres u;
evenly spaced in [-6, 6] and widths v, =1, 6,'&,(X,) and &,'7,(X,) have 25 nodes
with centres u; evenly spaced in [-6, 6] x [-6, 6] and widths v;=1 and 6,'&,(X,)
8,'175(X;) have 125 nodes with centers u; evenly spaced in [-6, 6] x [-6, 6] x [-6,
6] and widths v;=1. We select the design parameters of the above controller
ask, =k, =35, T, =T, =diag{2}, 0, =0, =y, =7, =0.2. The initial weights

6., 0,, 63 are arbitrarily taken in [-1.2, 1.2] and 64, J,, d5 in [0, 1.2].

Figs. 3-8 show the simulation results of applying the controller for tracking the
desired signal y4. From figure 3 we can see that good tracking performance is
obtained. Figure 4 shows the trajectory of the controller. Figure 5 shows the phase
plane of the system. Figure 6 shows the errore, , Figure 7 shows the error e, and

finally Figure 8 shows the errore, .
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Fig. 3: The output of the system under adaptive controller.
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Fig. 4: The trajectory of the adaptive controller.
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Fig. 5: The phase plane plot of the system.

Errort
03 T T T T T T T T T

0.25 B

0.15¢ B

el

01k B

0.05 H b

2 4 6 8 W 12 14 1B 18 A
t(s)

Fig. 6: Error e;.

-0.08
0



Proceedings, 4™ Chaotic Modeling and Simulation International Conference
31 May — 3 June 2011, Agios Nikolaos, Crete Greece

Error2

0s B

0.8 B

e2

0
02 M B

.
B W 12 14 1B 18 2
t(s)

Fig. 7: Error ey.
Errord

0.4 ! '
0

ra
=
mE

e3

15 I I I ! I I I ! !
1} 2 4 B g 10 12 14 18 18 20

t(s)
Fig. 8: Error e3.

4.Conclusion

In this paper, we apply a backstepping controller scheme to control the output
of the pump model to reach a specific pressure behavior without knowing the
dynamics. The tracking error is bounded and is established on the basis of the
Lyapunov approach. Simulation results show the effectiveness of this algorithm in
controlling the mechanical pump. Future research will be focused on
implementing this algorithm in the real experimental model.
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Adaptive Control of Mixed-Interlaced forms

Kyriakos G. Vamvoudakis, Manolis A. Christodoulou

Abstract: In this paper we combine forwarding and backstepping techniques to stabilize
mixed interlaced systems. All the signals in the close loop remain semiglobally ultimately
bounded the output signal y follows a desired trajectory signal yg, with bounded derivatives
up to m'™ order. We also present simulation examples that prove the adaptation of mixed
interlaced forms, using a backstepping controller.

1. Introduction

Recent technological developments have forced control engineers to deal with
extremely complex systems that include uncertain and possibly unknown
nonlinearities, operating in highly uncertain environments. Man has two principal
objectives in the scientific study of his environment: he wants to understand and
to control. The two goals reinforce each other, since deeper understanding permits
firmer control, and, on the other hand, systematic application of scientific theories
inevitably generates new problems which require further investigation, and so on.
Nonlinear control includes two basic forms of systems, the feedforward systems
and the feedback systems.

The strict feedback systems can be controlled using the well known
backstepping technique. The purpose of backstepping is the recursive design of a
controller for the system by selecting appropriate virtual controllers. Separate
virtual controllers are used in order to stabilize every equation of the system. In
every step we select appropriate update laws. The strict feedforward systems can
be controlled using the forwarding technique that is something like backstepping
but in reverse order. Other cases of systems that can be converted to the previous
forms are part of a larger class of systems that are called interlaced systems as
described by [9], and [3]. In these systems we combine backstepping and
forwarding techniques together in order to recursively design feedback control
laws. Interlaced systems are not in feedback form, nor in feedforward form.
These systems have a specific methodology that differs from backstepping and
forwarding. We don’t start from the top equation, neither from the bottom.

Other special cases of systems are part of other forms that we call mixed
interlaced and we introduce their study in the present paper. The methodology is
based on classical interlaced systems and is developed by the authors. We want to
make the systems solvable by one of the well known backstepping and
forwarding methods. This can be reached after some specific steps that convert
the system into a known form. We start from the middle equation and we
continue with the top. The previous method is based on classical interlaced forms
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that are introduced by [9] and [3] and can be extended to more complicated
systems.

A lot of researchers developed a series of results that generalized and
explained the basic idea of nonlinear control. Teel [10] in his dissertation
introduced the idea of nested saturations with careful selection of their parameters
to achieve robustness for nonlinear controllers. After Teel , Sepulchre, Jankovic
and Kokotovic [9] proposed a new solution to the problem of forwarding that is
based on a different Lyapunov solution.

The paper consists of four sections including the current one. The next section
introduces the meanings of Adaptive Control, Backstepping and Forwarding
techniques. In Section 3, the main body of this paper, the mixed interlaced forms
are analyzed. Finally section 4 draws some concluding remarks.

2. Background in Adaptive Control

The history of adaptive control began from the early 1950’s. With the
passing of the years a lot of papers and books have been published. These
research activities have proposed solutions for basic problems and for broader
classes of systems. Especially the interest for nonlinear adaptive control began
from the mid-1980’s. A lot of great scientists, such as Kokotovic et al [2], Lewis
et al [4], loannou and Sun [7], Christodoulou and Rovithakis [5] have studied
adaptive control and its applications extensively.

Adaptive control is a powerful tool that deals with modeling uncertainties in
nonlinear (and linear) systems by on line tuning of parameters. Very important
research activities include on-line identification and pattern recognition inside the
feedback control loop.

Through time, adaptive control has existed big development (Sepulchre et al
[9]) in order to control plants with unknown dynamics that appear linearly.
Adaptive control is based on Lyapunov design.

In order to make it clear, a short example will be reported. Let us consider
the nonlinear plant:

X =U+6x> (1)
And select the control law as:

U =—qgx—6x3 (2)

which, if the estimated (é) is equal to real 6 such that 6 =6, then the result is a
close loop system of the form:

X =—Ox (©)

The filtered version of the signals x is:
1 »
Xf =——X 4
" st @
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The prediction error e is:
e=x—%=(0-0)x; =6x; (5)
We use the commonly normalized update law:

A Y 2=
0=- X;°60 (6)
1+x.2

The previous update law is linear. It can be proved that & does not converge to
zero faster than exponentially and the easiest case is:

6=e7"6(0) @
Finally the close loop system has the following form:
X =—X+0x? (8)

where for simplicity q substituted with 1 and by substituting & from the previous
equation is obtained:

X =—x+e'9(0)x? 9)

where for simplicity y substituted with 1.
It is easy to see that the explicit solution of the previous is determined by the
following equation:

2x(0)

X= ~ ~ (10)
x(0)0(0)e ™" +[2—x(0)0(0)]e™*

From the previous it is clear that if x(0)&(0) <2 then it is obvious that x converge
to zero as t 2. At the case that x(O)é(O) >2, at the time:

1 x(0)6(0)
27 x(0)6(0) -2

the difference of the two terms of the exponential in the denominator becomes
zero, that is:

| X(t) >0 as t -t
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The previous model is unstable (x goes to infinity at t..) and Lyapunov design
models must be specified in order to achieve stabilization.
Let choose the following Lyapunov function:

V:%x2+%(é—9)2 (11)
The derivative of the Lyapunov function for our nonlinear plant is:
V =x(u +6?x2)+(é—¢9)2é
In order to find a control and an update law we must specify:
V <32 = x(U+0x2) + (0 —0)260 < —X° (12)

From the previous equation in order to remove the unknown 6 we use the update
law:

And the control law is:
U=—x—0x>

Both control law and update law yield V <—x? such that stability maintains in
opposition to the previous approach without Lyapunov.

Adaptive control in most cases has tracking error that converges to zero.
i) Adaptive Backstepping Design

Backstepping ([1], [2], [4], [7]) is a recursive design for systems of the form:

X =Xp +(/)1T(X1,X2)19
X, = X3 +(02T(X1, Xy, %3)0

, T
X3 =U +@3 (X, %, %3)0

with state x=[x;", X,", X3'] and control input u. The value 6 is a p x 1 vector which
is constant and unknown. The function ¢, depends only to x;, X, function ¢, @3
depends only to X3, X5, Xa.

The purpose of backstepping is the recursive design of a controller for the
previous system by selecting appropriate virtual controllers. The virtual controller
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for the first equation of the system is x, and is used to stabilize the first equations,
the virtual controller for the middle equation is x; and is used to stabilize the first
two equations, and finally the controller for the last is u. We use separate virtual
controllers in order to stabilize every equation of the system. In every step we
select appropriate update laws.

In classical backstepping, the output is selected as the state x; and the purpose
of adaptive control is to make this state to follow a desired trajectory Xig.

Adaptive backstepping design is a Lyapunov based design [4]. The previous
procedure can be applied only to systems that have (or transformed to) the
previous form (strict feedback).

i) Adaptive Forwarding Design

Forwarding ([9]) is something like backstepping but for strict feedforward
systems. Let us introduce forwarding technique with an example such as:

. 2
X = Xy + Xg” + X,U
o 2
Xp = Xg — X3°U

In the previous example we do not have feedback paths.
Firstly we stabilize the last equation ( %; =u ). We take the following Lyapunov

function:

1 - . . .
V3= EX32 and a feedback to stabilize the system is u =—x5. With the previous
we augment X; =—X; by the middle equation, and write our system in the

cascade form:

X = 05 (X3)

where ¢,(x;) = X3 —X;> is the interconnection term. %, =0 is stable and
X3 =—X5 1S GAS and LES. The next step is to construct Lyapunov function V, for

the augmented system when Vs is given.
After some specific steps we reach the following control law:

3
U= —Xg — (X + X + %)(u %:2) (13)
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3. Mixed Interlaced Forms

a. Introduction and Linearization Method

To begin with we consider the following third order mixed interlaced system
and via an example we will introduce mixed interlaced forms [12]:

% ==X +a5,(C3 — X)X, +83,(C3 — %) %g
Ko = — X +85(Cr — X)X+, (Cp — Xp)Xg (14)
Xg =—PiXg +(C —X3)u(t)

The previous system is not in feedback nor is it in feedforward form because
of specific terms such as X;X,, X1X3, XoX3. The Jacobi linearization of the previous
system is a chain of integrators.

Instead from starting on top, we start from the middle equation and treat x3 as
virtual control and we want X, =—x, for stability. There exists a Lyapunov

2

function of the form Vl=%x2 and a stabilizing feedback is

_ =PoXe + 535X — Bp3Xo X + %o

Xy —ayC;
backstepping to stabilize the middle equation augmented by the top equation of
our system:

X3

which is xz=a(X,X,). We employ one step of

X =—PaX +a5,(C3 — X)X, +
—PoXg +83Co Xy —8y3Xp Xy + Xy )+
821X —81C;
+ag;(C3 — %)V (15)

+ag1(C5 — X )(

where the control xs has been augmented to Xs=a(x;,X,)+v. With v=0, the
equilibrium (x1,X2)=(0, 0) is globally stable and forwarding yields the following
Lyapunov function:

V, =V, +limX (s)
1

2,12
=—X"+=&", 16
S e (16)

_ 212 13
¢§‘:I_—)(:I_7LX2 2x2 3x2
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The feedback law: v =—(1-x,%)& maintains the system globally stable and the
augmented control is

—PaXp + 830 X1 — AxaXo X + X
Ay Xy — 8y (17)

Xg =84 (X, %Xp) +V=

-1~ Xzz)fl =a,(X, %, &)

In order to stabilize our system we apply the backstepping technique.

b. Mixed Interlaced Forms, Adaptive Control and Simulations

Adaptive Control of dynamical systems has been an active area of research
since the 1960’s. The system is described by the following figure:

Reference

signal 1d

;>0

Unknown Plant -~ y=X
Dynamics

Plant Output

Intelligent Controller
with the use of [«
Neural Networks

Because we have 3 states our controller design is described with Kaynak et al [1]
controller in 3 steps.

Stepl: In this step we want to make the error between x; and X4 (=Yg) as small
as possible.

The previous is described by the following equation:

€ =% Xy (18)

We take the derivative of e;. After that we have:

& =% —Xg =& = f106) +0:(%)% — %4 (19)
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by using x, as the virtual control input. The previous equation can be changed by
multiplication and division with g;(x;) to the following form:

g = gl(xl)[gl_l(xl) (%) +% — gl_l(xl)xld ] (20)

We choose the virtual controller as:

Xag =Xp = =Gy () 10x0) + 0 (X)) %y — ke (21)

where k; is a positive constant. In order to approximate the unknown
nonlinearities (functions f;(x;) and g4(x;)) we use RBF Neural Networks ([11]). A
Neural Network based virtual controller is used as follows:

Xoq = -6,& (%) + 51Tn1(X1)X1d —ki& (22)

where we have substituted the unknown nonlinearities g,(X,) ™ f1(x1) and g;(x,)™
with the RBF Neural Networks 6,"& (%) and &,"n (%) respectively based on
Lyapunov stability ([6], [8]).

We take the following adaptation laws (c-modification) in order to avoid large
values of the weights:

6 =Tyle&(x) - o161 (23)
51 =l (X)X — 101 (24)

with oy, 7, small and positive constants and 7,=I;">0, I',=I,">0 are the
adaptive gain matrices.

Step 2: In this step we make the error between X, and X,4 as small as possible.
The previous is described by the following equation:

€, = Xy — Xoq (25)

We take the derivative of e,. After that we have:

€& =X, —Xoq = F(X2) + 92 (X)X — Xoq

N (e \-Lg (o N (26)
=0, (%92 (%)™ (%) + X3 —92(X2) ™ Xpq]
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By taking the xsy4 as a virtual control input and by substituting the unknown
nonlinearities g, (X,) ™ f,(X,) and g,(X,)™ with the RBF Neural Networks

6,"&,(X,) and &,"n,(X,) respectively based on Lyapunov stability ([6], [8]), we
have:

X3q =—€ — 92T§2 (X2)+ 52Tn2 (X%2)%oq — Ko, (27)

We take the following adaptation laws (c-modification) in order to avoid large
values of the weights:

0, =Ty[e,6,(%,) —0,0,]
Sy =T p[—€,M, (X3)%oq — 7265] (28)
with 5, 7, small and positive constants and I5,=I"»">0, I,=I»">0 are the
adaptive gain matrices.

Step 3(Final): In this step we make the error between x; and Xsq as small as
possible.

The previous is described by the following equation:

€3 = X3 — Xag (29)

We take the derivative of e;. After that we have:

€3 = X3 —Xgg = f3(X3) + 93 (X3)u —Xgq

(30)
= 03(%3)[93 (73)_1 f3(X) +u—0; (ia)_l)'%d ]

Where u is the control input and by substituting the unknown nonlinearities
95(%3) ™ f3(X;) and gs(X3) ™ with the RBF Neural Networks 6,'&(%;) and

55 ny(X3) respectively, we have:

U=—,— 05" & (%) + 55 Ng(Xg)¥ag — Kas (31)

We take the following adaptation laws (c-modification) in order to avoid large
values of the weights:
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93 =Ty[e385(%3) —0365]

03 =gp[—3M3(X5) Xaq — 73551 (32)
with o3, y3 small and positive constants and I3=I'3">0, I's)=I3,">0 are the
adaptive gain matrices.

In order to prove the stabilization of mixed interlaced systems we apply the
previous described by [1] and we perform the following simulations:

We make the assumption that c¢;>>x;, C,>>X,, C3>>X; and
an=ap=p1=P=F:=1, ¢,=9.99, ¢,=6.66, c3=3.33. Also we want our desired
output to be yg=sin(t).

Figs. 1-6 show the simulation results of applying the controller for tracking the
desired signal yq4. From figure 1 we can see that good tracking performance is
obtained. Figure 2 shows the trajectory of the controller. Figure 3 shows the
phase plane of the system. Figure 4 shows the errore,, Figure 5 shows the error

e, and finally Figure 6 shows the errore,.

Adaptive Controller

08

0B

0.4

0z2p

02r

a4t

The output of the system ()

0Bk

L8

0 2 4 6 8 W 12 14 1B 18 A
t(s)

Fig. 1: The output of the system under adaptive controller.
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%3

The control input of the systermn (u)

Adaptive Controller

I
2 4 B g 10 12

t(s)

14 18 18 20

The trajectory of the adaptive controller.

Phase plane plot of the system

w2 b -1

¥

Fig. 3: The phase plane plot of the system.
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Fig. 4: Error e;

Error2
35 T T T T T T

25 b

g2

0sf B

04 B

R L L L L L L L L L

o2 4 § 8 10 12 14 18 18 20
t(z)

Fig. 5: Error e,
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Errord
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Fig. 6: Error e;

4. Conclusion

In this paper, we recognize a new form of systems that we call mixed
interlaced form. We apply the well known backstepping and forwarding
techniques via specific steps. Also Lyapunov functions can be selected to approve
convergence and stability. A lot of systems have the mixed interlaced form. For
example we can think systems in biological models that have many terms from
different states. After the appropriate selection of the controller we can apply
adaptive control to make the systems follow a desired trajectory.

The tracking error is bounded and is established on the basis of the Lyapunov
approach. Finally, only the states of the unknown plant which are related to the
reduced order model are assumed to be available for measurement.

The authors hope that the proposed approach would serve as a promising tool
to analyze more complex systems.
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Abstract. Generalization of the inversive congruential generator of pseudorandom
numbers with prime-power modules is considered and the exponential sums on se-
quence of pseudorandom numbers are estimated. Also we obtained the estimate
of the average value of exponential sums over initial value yo. The estimates for
discrepancy of s-dimensional ”overlapping” points are obtained.

Keywords: inversive congruential pseudorandom numbers, exponential sum, dis-
crepancy.

1 Introduction

Nonlinear methods of generating uniform pseudorandom numbers in the in-
terval [0,1) have been introduced and studied during the last twenty five
years. The development of this attractive fields of research is described in
the survey articles (Chou[l], Eichenauer and Lehn[2], Eichenauer-Herrmann
and Topuzoglu[3], Niederreiter Shparlinski[5]) and in the Niederreiter’s mono-
graph[4]. Inversive congruential generators employ the particular place among
nonlinear generators by virtue of simplicity of the realization of calculations.
In the case of an odd prime-power modulus the inversive congruential gener-
ator is defined in the following way:

Let p be a prime, p > 3, m be a natural number. For given a,b € Z
we take an initial value yo, and let y, ! denotes a multiplicative inverse for
Yn in 27 if (yn,p) = 1, and y,;' = 0if m = 1 and y,, = 0(mod p). Then the
recurrence relation

Ynt+1 = ay7:1 + b(mod p™) (1.1)

generates a sequence o, y1,... which we call the inversive congruential se-
quence modulo p™.
The case p > 3, m = 1 studied in [2].

In sequel we will account that m > 3. In such case the generated sequence
{yn}, n > 0, may exists only if (y,,p) =1 for alln =0,1,2,.... In the work
[1] indicated the conditions at which the sequence {y,} does not break.
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Let {y,} be an infinite sequence generated by the congruence (1.1).

By the normalization
Yn

Tpn = pim
we obtain a sequence of numbers in the interval [0, 1).

The sequence {z,} calls the sequence of pseudorandom numbers in [0, 1)
(denoted as PRN’s) if it satisfies the requirements of equidistribution and
unpredictability (statistical independence). The property of statistical inde-
pendence is a very important requirement of cryptography to PRN’s.

The next important description of the sequence of PRN’s {z,,} is its pe-
riod 7. Clearly that 7 < p™~1(p — 1).

In the works of Chou[l], Eichenauer and Lehn[2], Eichenauer and Topu-
z0glu[3], Niederreiter[4] have been studied the problem of when the sequence
of PRN’s (generated by (1.1)) has the maximal period.

In the present paper we study a nonlinear generator similar to (1.1):

Ynt1 = ay, " + b+ cyn(mod p™), (1.2)

moreover, (a,p) = (yo,p) = 1, b = ¢ = 0(mod p).

Note, that the conditions (a,p) = 1, b = ¢ = 0(mod p) guarantee infinite
of the process of generation.
The generator (1.2) with the conditions a = b = 0(mod p), (¢,p) = 1, can be
study similarly. The generator (1.2) we call the linear-inversive congruential
generator of PRN’s.

It is purpose of the present work to demonstrate that the sequence of

PRN’s {z,} = {;’,’; }, n =0,1,..., generated by the recursion (1.2), satisfies

the requirements of equidistribution on [0,1) and passes the serial test on
unpredictability.

Notation. Variables of summation automatically range over all inte-
gers satisfying the condition indicated. The letter p denotes a prime num-
ber, p > 3. For m € IN the notation Z,n (respectively, Z;..) denotes the
complete(respectively, reduced) system of residues modulo p™. We write
gcd(a,b) = (a,b) for notation a great common divisor of a and b. For z € Z,
(2,p) = 1 let 2! be the multiplicative inverse of a modulo p™. We write
vp(A) = aif p*| A, p>T1 JA. For real ¢, the abbreviation e(t) = €™ is used.

2 Auxiliary results

We need the following statements.

LEMMA 1. Let p be a prime number and let f(x), g(x) be polynomials

over Z.
flz) = A1z + Apz? 4 p(Agz® + -+ ),

9(z) = Biz + +p(Baa® + -+ ),
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and let, moreover, v,(A2) = a >0, vp,(4;) > a, j =3,4,....
Then we have the following estimates

m4a

Z e(f@)) . 2p 2 if (A1) 2 q, 21)

pm
TE€Zpm 0 else;

(N-p)% if (By,p) =1

Z e (JW) < 2p’"§ra ifvp(A1) >0, vp(Bj) > ...,

:I?EZ;,—,,,

0 ifvp(A1) < a<vy(By),j>1,
(2.2)
where N = N(Ay, By;p) is the number of solutions of the congruence Ay —
Byu? = 0(mod p) in Z.
(This assertion is corollary of the estimates of the Gauss sum and the Kloost-
erman sum).

Let {y,} generated by the recursive congruence (1.2). Using the argu-
ments as in Varbanets and Varbanets[6] we obtain the following results.

LEMMA 2. Let {y,} is the sequence of PRN’s generated by the recur-
sion (1.2) with conditions (yo,p) = (a,p) =1, 0 < v, (b) < v,(c). There exist
the polynomials Fo(u,v,w), Go(u,v,w) over Z, Fy(0,v,w) = Go(0,v,w) =0
such that for any k > 2m + 1:

Yor = kb + kacyy ' + (1 — k(k — 1)a™'0%)yo + (—ka™'b)y2+
+ (—ka"te+ K2a”?0%)yg + p* Fo(k, o, 9 1),

Yorr1 = (k+ )b+ (a — k(k + 1)b%)ys t + (—kab)yy 2+
+ (—/{:aZC =+ k2ab2)y0_3 + (k' + 1)Cy0 + paGO(ka Yo, y0_1)7

where o := min (v, (b3), v,(bc));
Fo(u,v,w), Go(u,v,w) € Zlu,v,w], Fy(0,v,w) = Go(0,v,w) = 0.

COROLLARY 1. Let the conditions of Lemma 4 satisfy. Then for
p > 2 the sequence {y,} is purely periodic with period 2p™ ¢, where

(i) £ =vp(b) +vpla— y%) if vp(a — y%) <yp(b) < %m;
(ii) €= 2vp(b) if vp(a — y%) > vp(b), vp(b) < %m

For p = 2 we can obtain the similar assertion and the following corollary.

COROLLARY 2. Let p =2, m > 3. Then the sequence {y,} defined
by recursion (1.2) is purely periodic, where b = 2"bg, (bg,2) = 1, ¢ = 2H¢y,
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(co,p) =1, u>v>0; va(a—y2) =vo > 1. And its period T is equal

(i) 2m=2HL ifm > 2u, vy > v
2
(id) 22t if m > v, vy = v, B = 1, (%—‘ + bo) ;

(i73) 2m~V=vo L G f m > v+ nug, vy < v

3 Exponential sums on sequence of PRN’s

In this section we get the estimates of certain exponential sums over the
linear-inversive congruential sequence {y,} which was defined in (1.2).
For hq, hy € Z we denote

h h
Uk,e(hl,hz;pm) = Z € (W) , (hlahQ € Z)~ (3-1)
yOEZ;'m,

Here we consider yi, y¢ as a functions at yo generated by (1.2) (see, formulas
(2.3)-(2.3)).

THEOREM 1. Let (hy, ha,p) =1, Z/p(hl + hs) = 8, Z/p(hlk‘—thé) =".
We have the following estimates

N(h1,aha;p)2p% if Kk # {(mod 2);

0 if k={(mod2)
and B <~y+4+v,m—pF—v>0;

|ok,e(ha, ho; p™)) < $ PP — 1) if k=4{(mod 2)
and 8 >~v+v,m—v—~vy <0

2p™E if k={(mod ?2)
and 8 >~v+v,m—v—~vy>0.

PROOF. We consider two cases:
(I) Let k£ and ¢ be non-negative integers of different parity, for example,
k:=2k, £:=20+1. By (2.6), (2.7) we have

hayak + hayaerr = Ao + Aryo + Aoyh + Asyg+
+ A_1y0_1 + A_2y0_2 + A_Sy()_3+
+pH(yo, 95 ') = Fi(y0,95 ),
where
Ay = hi(mod p*), Ay = —hikab(mod p*™),
A_y = aha(mod p*), A_y = —hoabl(mod p*T),
A3 =A_3=0(mod p*), u=r,(c) > 1) =r.
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Applying Lemma 1 we at once obtain the assertion of Theorem 1 for k #
£(mod 2).

(IT) Let k and ¢ be integers of identical parity. Then for k := 2k, £ := 2¢, we
have modulo p™:

hiyak + hayoe = Bo + Biyo + Bayg + Bsyg + Bo1yy "+ 0K (yo, 55 ) =
= F2(y0; y(;l)a

where )
By = hi + hy +p* B]
B2 = —ab(hlk + hzg) + paBé
B3 = —a72b2(h1k2 + h2€2) — ailc(hlk + hgf) + paBé
B_ = ac(hlk + hzf) + pO‘Bl,h
moreover, Bi, Bj, Bg, B’ | and coefficients of K (yo,yq 1) contain multipliers
of form hik? 4+ hot?, j > 0.
Now, in order to apply the estimate of complete linear exponential sum

to the sum
F -1
Z . (h1y2k +h2y22) Z e ( 2(1/07240 ))

YoeZsm b YoeZsm b
we must define the values v,(B1), vp(B2), vp(Bs), vp(B-1).
For vp(hy1 + ha) = 8> v, vp(hik + haol) = 0 we obtain

m+tv

lok,e(h1, ha, p™)| < 2p2

For v,(h1+h2) = 8 > v, vp(hik+hal) = v > 0 we denote § = min (5, ).
Moreover, in such case we have

hakd + hotd = (hik? = + hotd =V (k + €) — kO(h1 kI =2 4 hat?~2)
and then by induction on j we infer
l/p(hlk‘j + h2€j) >6,j=2,3,...

Thereby we can apply the estimate of complete linear exponential sum.
Hence,

0 if B<vy+v, m—pF—v>0,
mtvty

logk,20(h1, ho;p™) < 2p” 2 if f>y+v, m—v—7>0,
eP™) ifB>2y+v, m—v—-y<0,

where p(n) is the totient Euler function.
For k = ¢ = 1(mod 2) we have the analogous result.
This finishes the proof of Theorem 1.
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®

O

Let h be integer, (h,p™) = p*, 0 < s < m, and let T be a least period

length of the sequence of PRN’s {y,}, n = 0,1,..., defined in (1.2). For
1 < N < 7 we denote
N—
hyn
'~ (hs o) Z ( Y ) (3:2)

The sum Sy (h,yo) calls the exponential sum on the sequence of PRN’s

{yn}-

THEOREM 2. Let the linear-inversive congruential sequence generated
by the recursion (1.2) has the period T, and let v,(b) = v, v,(a — y3) = vo,
2v < m. Then we have the following bounds

O(m) if p>2andvy<v, vp(h)<m—v—1uy
or =2, 1y <v, rh)<m-—2v;
|S=(h, yo)| < mtvp () g ’ )
4-p— =2 if v >v, v(h) <m-—2v;
T else,

PROOF. By analogy with the proof of theorem 1 we have

— (hy 'y
1S+ ()| = Z ( )‘— > e ()
— ~— " \p
pi-1 hy pf-1 hy
S| et | X (M) - e
k1=0 p k1=0 p
k=2k, k=2k+1
pi-1 p-1
hF(k hG(k
= Ze<7§l)) + Ze(?) + O(m).
k=0 p k=0 p

In the last part of the formula (3.3) we into account that the representa-
tion y, as a polynomial on k holds only for k > 2m + 1.
By the Corollaries 1 and 2 and Lemma 1 we easy obtain

O(m) if p>2, v <v, vp(h) <m—v—uwy,

O(m i =2, 1y <v, va(h) <m—2v,
o] < d O T b= o< ualh)

dp—= if vy >v, vp(h) <m -2y,

T else.

The constants implied by the O-symbol are absolute.
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THEOREM 3. Let a, b, ¢ be parameters of the linear-inversive congru-
ential generator (1.2) and let (a,p) =1, 0 < v = vp(b) < pp(c), 1 < N <
2p™~ 1, v,(h) = p*, s < m. Then the average value of the Sy(h,yo) over
Yo € Zpm satisfies

— 1 1L _m m vrs
Sn(h = oo 3 ISwlhwe)l < NEpF (2ep(a) ¥ + VIO ),
Yo€Zym

where s = vp((h,p™)), h = hop®,

1 ifp=2
ep(a) = { 14+ (*7“) if p>2, ((*7“) be the Legendre symbol) '

PROOF. First we will consider the case s = 0, i.e. (h,p) = 1. By the
Cauchy-Schwarz inequality we get

- 1
wip YoEZym
N—-1
1 (h(yk - ye))
= e <
1 N—-1
< ok e(hy —h;p™)| =
e(p™) ,;4;0
1 m—1 N-1
=N+ —0 > okl —h;p™)|
@(p ) v=0 k,£=0
vp(k—€)=y
Next
[Sn(R)[* <
1 m—1 N—-1 N—-1
< N+ m Z |0k,€(h,—h;pm)| + Z |O—k,f(h> *h;pm”
o™ = vt
kZl(mod 2) k={(mod 2)
vp(k—£)= vp (k=)=

Using Theorem 1 after the simple calculations we obtain

m
2

Sw(h)? < N (4,(a) 5% +8p™F 12 <
< Np~ % (4(ep(a) ¥ +10p%)
Thus, we infer for (h,p) = 1:

Sx(m)] < N~ (2e(a))F + VI0p¥) (3.4)
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Now an argument similar to the one used to prove (3.4) leads to general
bound

= (Q(ep(a))% + mp%) .
O

The estimates of exponential sums obtained in this section can be used
to study the properties of the sequence PRN’s {y,}.

From our sequence {z,} we derive the sequence {Xff)} of points in [0, 1)®
putting Xff) = (Tpy Tpt1,- -+, Tnts—1). From the theorems 1 and 2 and in-
equality for discrepancy ( see, Niederreiter[4], ch.8) we have

THEOREM 4. The discrepancy D](\?), s = 2,3,4, of points constructed
by linear-inversive congruential generator (1.2) with parameters a, b, ¢, which
satisfy the condition

0 < vp(b) = v, 2v < p = vp(c), a % yg(mod p),

has the following bound

D& < 2 4 p T gt p, (3.5)

- 2pm71/

Finally note that Theorem 3 shows that for almost all yo € Z;. the esti-
mate of discrepancy can be improved.

The estimate (3.5) of discrepancy D) means that the sequence {z,}
generated by recursion (1.2) passes s-dimensional serial test on indepen-
dence(unpredictability) (for s = 2,3,4).
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Abstract: The reaction system hydrogen peroxide-thiosulphate-sulfite in acidic solution
belongs to the extensive family of pH-oscillators marked by significant pH variations in
time implying autocatalytic nature of hydrogen ions. This system is known to display
nonlinear behaviour in a continuous-flow stirred tank reactor. Dynamical regimes
occurring in this system depend on external constrains such as temperature, flow rate or
inlet concentrations of reactants. The hydrogen peroxide-thiosulphate-sulfite system
displays strongly nonlinear dynamics as the flow rate Kk, is varied. The observed
dynamical regimes of this reaction are periodic and aperiodic oscillations, chaotic
behaviour and various stable steady states coexisting over a range of operating
conditions. Presented work is focused on experimental study of aperiodic dynamics of
the system and subsequent time series analysis. The analysis is based on the
reconstruction of the attractor from the measured time series.

Keywords: Chemical reactor, aperiodic oscillations, time series analysis

1. Introduction

Nonlinear chemical dynamics represents an interdisciplinary branch of science
that is specified by studying and understanding complex biological and natural
processes through the chemical reaction observations [1]. These chemical
reactions with appropriate chosen initial conditions, input parameters and well
designed equipment for carrying out of chemical reactions can provide strange
dynamical regimes which are closely associated with processes in human body
or functions in plant and animal kingdom. Oscillations and other nonlinear
phenomena in chemical reactions are can be studied particularly in special types
of systems in which this dynamical behaviour can occur. One of them is open
system represented by continuous-flow stirred tank reactor in which the reaction
is kept far from equilibrium and thus give rise to complex behaviour indicated
by a monitored quantity. As the dynamic system is specified by evolving in
time, the monitored quantitity of interest is measured in time. The observed
output signal can be then analyzes using the method of time series analysis.
Analyze of dynamics of the system is based on phase space reconstruction from
time series data points. Phase space reconstruction was first introduced to
nonlinear dynamic theory by Packard [2] and Takens [3] involving building
multidimensional phase space from scalar time series using time delay
coordinates.
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In this contribution, the phase space reconstruction based on singular value
decomposition according Takens theorem is presented. In our study the time
series analysis is applied to the experimental study of chaotic behaviour of
inorganic pH-oscillatory reaction carried out in continuous stirred tank reactor.
The observed quantity is the concentration of hydrogen ion, which plays an
important role in the nature and living systems. The reaction between hydrogen
peroxide-thiosulphate and sulfite ions is interesting in oxidation of sulfur
solutions by hydrogen peroxide, many intermediates or complex reactive
network with positive and negative feedbacks which leads to nonlinear
dynamics such as oscillation or chaotic behaviour [4]. The reaction provides
temperature sensitivity [5,6] as well as strong sensitivity to the presence of
carbon dioxide in the ambient air [4]. Both influences also present possible ways
to chaotic behaviour. In our experimental study we focused on finding array of
chaotic dynamics if the influence of carbon dioxide is completely eliminated.
The applied methods of time series analysis are based on delay reconstruction of
matrix from measured timeseries and consequently important features from
geometry interpretation of the measured behaviour are obtained. Decomposition
of that matrix by calculation of eingevalues and eingevectors yields modes.

2. Dynamic system

Dynamic of the system (evolution process) is described with autonomous
system of ordinary differential equations (ODEs) in an n-dimensional state
(phase) space G R", where R" represents a set of all arranged tuplet real

numbers which can be identified with e.g. a number of elements in a chemical
reaction

dx

dt
An expression on right side of the equation denotes a vector field. The solution
of the equation can be interpreted as a function of two variables, a discrete time

f(x), xeR".

variable t € R and state (phase) variable X € R" and thus mentioned solution

can be called as a phase flow @ (t, X) of the system. Each state (phase) point is

influenced by an abstract force causing a motion. The time evolution of real
system is then described by motion of the state point along a trajectory
considered as a smooth curve passing through the state point X . The vector field
constitutes a driving force of the phase point along the trajectory and
consequently determines the time evolution from the initial point. The system of
all trajectories is consequently referred as phase portrait. The phase portrait can
be interpreted as a geometry representation of a qualitative behaviour of all
solutions of the system. The phase space reconstruction techniques by time
delay embedding are most commonly based on embedding techniques according
to Takens. Based on Takens’s embedding theory, an attractor may be

reconstructed with the embedding dimension N >2d +1.The embedding
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dimension N is the lowest possible dimension of n-dimensional space R" into
which an attractor can be projected. d marks the dimension of the attractor.

2.2 Method of delay
Let us consider real data points X(‘[1 ), X(tz), X(t3),..., X(‘[NT ), teR

obtained from experimental time measurements. The data points can be
arranged in the sequence of m vectors in an n-dimensional embedding space

{Vj eR"j=1,2,...,m } (delay coordinate vectors)

Vj Z(Xj,Xde gees ’Xj+(n—1)rd )

where n constitutes the dimension of the embedding space and m is defined as
m=N —(n - 1) Ty and is number of points in the phase space. T,
corresponds to a time delay in seconds and can be expressed as a multiple of

sampling time Ty and sampling frequency fs of a time series.
Ty =T5fs

2.2.1 Singular value decomposition
In the singular approach of this problem according to Broomhead and King [7],

the corresponding time delay value T, =1 is considered and such sequence of

vectors in the n-dimensional space is used to generate mx n trajectory matrix X,
whose components in the columns have same relationship to one another as do
the rows [7]. Then introduce transpose matrix X' of trajectory matrix X. If
matrix X has the property X = X', then matrixes are symmetric. The m x m
matrix ® = X X" and n x n matrix Q = X' X are real symmetric matrices, called
structural and covariance matrix consequently. Let trajectory matrix X be a mx
n, wherem=nN.

X] X2 cee X X] X2 v X

X2 X3 cee X

m+l

X X

m m+1

X X

m+n-1 n n+l m+n-1

The matrix X can be factorized using singular value decomposition (SVD)
based on decomposition its eingevalues and eingevectors into a product of three
matrices as fallows

X=Ux V'
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where U and V are orthogonal matrices, i.e., U'U=1and V'V =1, whereas I is
a unit matrix. The matrix U is m X m matrix containing eingevectors of structural
matrix ® and V is N X N matrix consists of eingevectors of covariance matrix Q.

The column vectors of the matrix U denoted by U= (U1 SUysenn, Um) represent
left singular vectors of originally trajectory matrix X, while the column vectors
of the matrix V denoted by V= (V1 sVoseins Vm) are the right singular vectors

of X. The m x n diagonal matrix X carries corresponding singular values o; in
the order of monotonically decreasing magnitude along its diagonal and all of
them are nonnegative numbers

>=diag(o,,0,,...,0,) where 6, 26, >+ >0, >0

Because of close relation to eigenvalue decomposition, singular values o; are
simply the square roots of eingevalues of the structural matrix ® and the
covariance matrix € according to

_ 2 o 25
Ou=0,"U QV=0,"V

Note, that trajectory matrix X can be written as a sum goes from 1 to n, where n

is the rank of X

n
X =Y ouv
i=1

3. Experimental setup and conditions

3.1 Reactor. An experimental estimation was performed in cylindrical-shaped
plexiglass cell under the conditions of the continuous stirred tank reactor
experiments. The reactor was closed to air with plexiglass cap. This upside cap
was equipped with holes for the inlets and outlet for tubing and the input for pH-
electrode probe. RTD probe (RTD-860) for measuring temperature was inbuilt
in the reactor side. A liquid in the flow cell was change through four inlet teflon
tubes connected to the flexible silicon tubes (ID 1.30 mm) for peristaltic feeding
(Ismatec IPC N). The cell was thermostated on required temperature of 26 =+
0.2°C from the bottom by circulating water from RM6 Lauda E103 thermostat.
The liquid volume of the reactor was 17.6 mL. A teflon-covered magnetic
stirred (1 cm long) was used to ensure a uniform mixing. The waste liquid was
removed using canted position of the reactor. Two quantities were measured
inside the reactor during the CSTR experiments. The pH-time data during the
reaction were measured by a semi-micro combined pH-electrode (Theta "90,
type HC 139) connected to an Orion 525A pH-meter and an A\D converter and
collected on a hard-disk of computer (Octek, Intel Pentium 200Mhz). The
temperature inside the reactor was measured by RTD-860 probe connected to
A\D converter and storaged on a hard-disk of computer. The computer also
controlled pump speed change and recorded its actual value on a hard-disk.
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3.2 Solutions. H,0O, (30% aqueous solution, Penta, Chrudim), Na,SO; (Penta,
Chrudim), NaS,0; (Sigma-Aldrich) and H,SO,4 (Lachema a.s., Neratovice) are
chemicals used in this study. Two reactant solutions were prepared daily from
fresh demineralized water and commercial available chemicals. One solution
contained diluted hydrogen peroxide and the other contained the mixture of
thiosulphate with sulfite and sulfuric acid. Input concentrations of the reactants
were: [Hy0,]p=0.0135 mol/L, [Na,S,0;]¢=0.005 mol/L, [Na,SO;],=0.0025
mol/L, [H,S0,]¢=5.10"* mol/L. The initial concentration ([ ]o) is defined for each
species to be the concentration of the species on the entrance to the reaction cell.
Both reactant solutions were bubbled with nitrogen for at least 12 hours before
the experiment for elimination of carbon dioxide impurities.

3.3 Procedure. Maximum pumping rate was used to fill the reactor with the
input solutions. Then the pump speed was reduced to the desired lower speed K,
=0.0028 s for the experiments and thermostated on required temperature at 26
+ 0.2°C. The rate of flow (proportional to reciprocal residence time) is

conveniently characterized by ko= V / V (s"), where V (mL s™) is the total
flow rate and V (mL)is the volume of the reaction mixture in the cell.
Residence reciprocal time k; is the average time that a molecule spends in the
reactor and presents that fast flow rate through a large reactor is equivalent to a
slow rate through a small reactor [8]. The flow rate was systematically increased
up in regular time steps by to the higher flow rate. Sufficient time was allowed
at each flow rate for the system to keep the dynamical behaviour. By increasing
the flow rate gradually until the maxium desired flow rate was obtain chaotic
behaviour. Throughout the flow experiments reactant solutions were bubbled
with nitrogen.

4. Results and discussion

The system at the flow rate ky = 0.0035 s™ exhibit chaotic behaviour as is clearly
shown in Fig. 1. Presented time series is characterized by occurrence of
irregular large amplitude peaks with considerably smaller peaks. This figure
represents interesting feature of the system when stock solutions are bubbled by
nitrogen and the influence of carbon dioxide is eliminated. This feature reveals a
complex nature of the reaction system in a short range of flow rate. Undesirable
effect of carbon dioxide was suppressed for reasons of creating reaction
intermediated leading to activation more closely unspecified secondary
oscillators in reaction mechanism. This secondary oscillator may be a source of
period-doubling or complex oscillations as is noted in [4, 9]. Our attention was
focused on finding a region with aperiodic dynamic and obtaining geometric
visualization of trajectories in phase space. For this purpose collection of many
data points was necessary. The experimental data shown in Fig.1 provided 7200
data points which are used at the present analysis. For the reconstruction of the

attractor using singular value decomposition the minimal time delay T,=1

(corresponding to 0.333 s) is applied to the original measured data. The main
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concept of this method is to extract minimum embedding dimension Ngof

embedding space.
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Fig. 1 Seguence of a time series measured at a flow rate ky=0.0035 s,

For the calculations we created am Matlab program. Measured time series in the
form of column data points in Excel program were loaded to the Matlab m-file
project and a decomposition of trajectory matrix was realized using Matlab SVD
toolbox. For the reconstruction we chosen initial embedding dimension

Ng=200. Figure 2 illustrates spectrum of corresponding 200 singular values,

where horizontal axis corresponds to ordinal number of singular values and on
the ordinate axis is a logarithm of the normalized singular value is plotted. The
gradual decline of the dependence is evident and thus no distinct sudden change

for determination of minimum embedding dimension Ng is clearly discernable.
However, a slight jump in plotted singular values at the ordinal number about 13
may be taken as an indicator of the minimum embedding dimensionNg.

Singular values above this break point constitute information about all essential
parts of decomposed signal. These values are significant for the reconstruction
of attractor. Singular values below the break point are associated with minor
modes and may indicate either small-scale deterministic or noise level of
measured signal. Such values are insignificant. When replaced by zero value
and modified diagonal matrix is multiplied with original matrix U and V' a
filtrated version of originally trajectory matrix is created.
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Fig. 2 Spectrum of normalized singular values.
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Fig. 3 Reconstructed attractor from singular value decomposition using first three modes.

The importance of each significant singular value is interpreted in the form of
corresponding modes.
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Modes are determined by columns of left singular vectors U representing
directions and significant singular values representing the lengths of principal
axes of an ellipsoid [7]. When the first three modes of singular value
decomposition are plotted in 3D phase space, the reconstruction of atrractor
obtained as is shown in Fig. 3

5. Conclusions

The autonomous dynamics of our chemical system of hydrogen peroxide-
thiosulphate-sulfite was experimentally investigated in the continuous stirred
tank reactor under the constant temperature. The flow rate K, was used as a
bifurcation parameter in our experiments. Our intention was to find a region
with aperiodic oscillations and successive time series analysis based on singular
value decomposition. From measured experimental data of pH value in time a
preliminary geometric structure of the dynamic was illustrated. Singular
decomposition of measured signal was used to determine a minimum
embedding dimension, but there is problem with clear indication where to cut
off the modes used for the reconstruction of attractor. In future work, other
methods of determination of embedding dimension, appropriate time delay or
determination of Lyapunov exponents are object of interest.
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