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CONSONANT CHORD MODEL OF MUSICAL
COMPOSITIONS FOR HARMONIZING MELODIES
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O.B. Komapos, O.M. I'anuonxos, O.1. Hespes, O.FO. babinynea. KoHCOHAHTHA aKkoOpaHA MoOJe]b MY3WYHHX KOMIO3MUiM aJisi
rapMoHi3anii Mesoaiii reHeTmyHuM anropurMom. Hespaxaroum Ha nocuTh JoOpe PO3BHHEHY TEOpir0 MOOYAOBH MY3HMYHHX TBOpIB
CIIOCTEPIraeThCsi HENOCTATHE BIIPOBAKCHHS KOMI'FOTEPHHX 3acC00iB, L0 MOJETUIYIOTH POOOTY KOMIIO3UTOpiB. MeTow 1iei pobotu €
po3pobKa MOAE My3UYHHX KOMIIO3HIIH, 110 JO3BOJISE BUKOPHCTOBYBATH TEHETHYHI alrOPUTMH JUIsl aBTOMATH3aMil JOJaBaHHS aKOPAIB 1O
BIZIOMOI MeJoAii Mpy MakCHMMaJIbHOMY 3aJI0BOJICHHI IpaBHJIaM My3H4HOi Teopii. Po3pobiieHa HOBa Mozieib JUI NpPECTABICHHS My3HYHHX
KOMITO3HMILi#, 103BOJIsiE 30UIBIINTH MIBUAKICTh TAPMOHI3ALI] 3alaHUX MEJIOJI TeHETUYHUM aJrOpUTMOM. Pe3ynbraT oTpuMaHuil 3aBIsSKH
noOy/oBl Mozeni Ha OLTbII BUCOKOMY PiBHI CTPYKTYpPHOI y3arajbHEHOCTI, B TOPIBHSHHI 3 BiIOMOI TOHAJILHOI Mozewtw. [IpoBeneHuit
aHaJIi3 TOHAJIBHOI MOJIENI TI0Ka3aB HaIMIpHICTh 00J1acTi BU3HAUSHHS (YHKLIT SKOCTI My3HYHOTO TBOPY IPH BHKOpHCTaHHI wiei Moxemi. e i
HPU3BOJUTH O HEIOCTATHHO BHCOKOI IIBHAKOCTI rapMOHi3alii Menoii. 3By)keHHs1 001acTi BU3HAUeHHs (QYHKLIT SIKOCTI 32 paxyHOK OibII
TOBHOTO BPaxyBaHHsI TIPaBUJI TAPMOHIi My3WYHUX TBOPIB JI03BOJIMJIO BiJCIKTH SIBHO HEMPUIHATHI aKOPAM, 110 i MPHU3BENO J0 MPHCKOPEHHS
rapMOHi3allii IpH BUKOPHUCTaHHI po3po0JIeHOT KOHCOHAHTHOI akopAHOI MoJeli. OTpuMaHi CHiBBiJHOIICHHS JO3BOJISIOTE BUPOOJISITH MEpexi
BiJI aKOp/IHOT MOJIeNi 710 TOHANBHOT 1 BiJ Hel 10 3BUYalfHOTO HOTHOTO 3amucy. UncensHe MOJETIOBaHHS 3a/1a4i TapMOHI3awil BiToMoi Menoil
MOKAa3aJ0 JOCSATHEHHs OULIbII BHCOKOTO PIBHA TapMOHi3allii aBTOMATHYHUMHM METOAaMH B INOPIBHSHHI 3 MPAIEl0 KOMIIO3UTOPA, 8 TaKOX
ICTOTHE MPHCKOPEHHS TpoLiecy rapMOHi3alii IpyH BUKOPHCTaHHI KOHCOHAHTHOI aKOPAHOI MOJIeN, B TIOPIBHIHHI 3 TOHAIBHOI Moaemo. Le
JI03BOJISIE PEKOMEH/TyBaTH BHKODHCTaHHs PO3pOOJICHOI MOZENi B MporpaMax aBTOMAaTHYHOI TapMoOHi3alii menoxiil. BHecok mpoeneHoro
JIOCJIIKEHHSI B TEOPil0 FEHETHYHHUX AITOPUTMIB MOJISATa€ B BUKOPUCTAHOMY HOBOMY MHiXo/i 10 GpopMyBaHHS XpOMOCOM 1 GaraTtodakTopHoi
(byHKLIT SKOCTI, MO JO3BONMIN epEKTUBHO 3aCTOCYBATH TCHETHWYHI airOPUTMHM JIO 3ajadi rapMoHi3amii My3WyHHX TBopiB. IIpakThdna
LiHHICT OTPHMAHMX DE3yNbTATiB IONATa€ B aBTOMATH3allii Npami KOMIO3UTOPIB, SKi MOXYTh 30CEPEAUTHCS INOBHICTIO HAa CTBOPEHHI
Menofii. A mpaio 1o JONOBHEHHIO MEJNOAil akopJaMH MOXKHA MepeKyacTH Ha Komm'toTep. KpiM 1boro, oTpriMaHa BHCOKA MIBUAKICTH
TapMOHi3allii J03BOJIs€ MOMIMIIHATH SKiCTh MENOJIH, 110 TEeHEPYFOTHCS, 1 TX BiMOBIAHICTE JUHAMIL MOAIH B KOMIT'TOTEPHHX irpax.
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O. Komarov , O. Galchonkov, A. Nevrev, O. Babilunga. Consonant chord model of musical compositions for harmonizing
melodies by a genetic algorithm. In spite of the well-developed theory for the musical compositions creation, there is a lack of
implementation of computer program methods that facilitate the work of composers. The purpose of this work is to develop a model of
musical compositions that allows using genetic algorithms for automatization the addition of chords to a well-known melody with maximum
satisfaction the rules of musical theory. A new model has been developed for representing musical compositions, which makes it possible to
increase the speed of harmonization of specified melodies by a genetic algorithm. The result is obtained due to the construction of the model
at the higher level of structural generality, compared with the well-known tonal model. The analysis of the tonal model shows the
redundancy of the definition area of the quality function for a musical composition using this model. This leads to insufficiently high speed
of melody harmonization. Limitation the definition area of the quality function by taking into account the rules of harmony for musical
composition allowed to exclude clearly inappropriate chords, which led to acceleration of harmonization with the use of the developed
consonant chord model. The obtained relations allow the transition from the chord model to the tonal model and from it to the usual musical
notation. Computer modeling of harmonization for the known melody showed higher level of harmonization by automatic methods in
comparison with the work of the composer, as well as significant acceleration of the harmonization process using the consonant chord model,
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compared with the tonal model. This allows us to recommend the use of the developed model in the program of automatic harmonization of
melodies. The contribution of the study to the theory of genetic algorithms is in creation of the new approach to the formation of
chromosomes and a multi-factorial quality function, which made it possible to effectively apply genetic algorithms to the task of
harmonizing music. The practical significance of the research results consists in automation of the composer work who can concentrate
entirely on the creation of a melody. The task of harmonizing the melody with chords can be assigned to a computer. In addition, the
obtained high speed of harmonization allows improving the quality of the generated melodies and their compliance with the dynamic
situations in computer games.
Keywords: genetic algorithm, fitness function, chromosome, musical composition, chord, harmony rules

Introduction. The use of computer technology in all spheres of human activity significantly in-
creases the capabilities of a person. Writing music as a type of creative activity is no exception. If, dur-
ing Mozart's time, along with the usual approach, dice were used to write the new melody, which de-
termine the sequence of the finished note fragments, the release in 1992 of the fundamental work of
Yannis Xenakis [1] was a powerful impetus for the wide use of set theory, probability theory and other
branches of mathematics to create music.

Since music is intended for human perception and now the classical theory of music is well de-
veloped, there is a set of rules that music must satisfy for a harmonious sound [2, 3, 4]. The mathemat-
ical community made great efforts to formalize these rules and translate them into the language of
mathematics in order to use the possibilities of computer technology.

The most advanced results were obtained using algebraic, geometric, and combinatorial ap-
proaches, as well as graph theory [5]. However, these approaches still impose significant restrictions
on the ability to create music compared with the composer's emotional inspiration and require further
development. Therefore, the most relevant currently are the methods that do not impose additional re-
strictions and allow the use of the classical theory of musical harmony [6].

These methods can be divided into two significantly different basic approaches. The first approach
involves the analysis and use of harmony chords as well as the statistical properties of their combinations
in the musical works already created by various composers to create new musical compositions. This
includes, for example, work on identifying patterns and their permissible combinations [7, 8], using the
theory of automata [9], Petri nets [10], neural networks [11, 12], and also combining and mixing differ-
ent harmonic subspaces to use when creating new music works [13].

The second approach to harmonize musical compositions uses the direct use of the rules of the mu-
sical harmony theory [14]. For this purpose, a quality function should be defined, usually representing a
weighted sum of the coefficients of musical harmony theory individual rules fulfillment. Harmonization
of musical composition will be achieved in providing a global extremum of this function. Due to the
large number of rules in musical theory and their empirical nature, the quality function is multiextremal
with a complex surface shape. The task of taking into account all the rules of harmony without the use of
computing technology falls entirely on the composer, which significantly limits his capabilities. The al-
gorithms and software created within the proposed approach should release the composer from routine
work and thus free up his resources and expand possibilities for musical creativity.

Among the many algorithms that are used to find the global extremum of multidimensional mul-
tiextremal functions, one of the most promising for harmonizing musical compositions is the genetic
approach [15 — 17]. The main problem when using the genetic approach is a large amount of computa-
tion. Therefore, the development of algorithms that make it possible to reduce the required amount of
calculations to find the global extremum of a very complex quality function is actual.

Related works and problem formulation. Considering the extremely wide possibilities of com-
binations in the creation of musical works, the use of genetic algorithms in music presupposes a pri-
mary three components [18].

The first one is the search area, which can be limited by style, tempo, rhythm, melody, etc. [19].
These natural limitations are determined by the direction of the creative intentions of the composer,
the purpose of the music, and the role that the projected algorithm will perform.

The next area is the original representation of music or the musical alphabet, with the help of
which the pitch, rhythm, tempo, combinations of sounds and other parameters of musical building
blocks are set. Here it is possible to choose from a classical recording of a musical work with the help
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of notes [14] or the development of a special language [20] to visual presentation in the environment
of the computer music studio [21, 22]. The degree of convergence of the genetic algorithm to the de-
sired solution will depend on how well this initial representation will be chosen.

The third area is the choice of the quality function used, or in the terminology of the genetic ap-
proach, the fitness function. In a number of articles, expert estimations [23] or sets of well-known mu-
sical works [24 — 26] were used to evaluate the quality function at each step of the genetic algorithm.
These approaches have been developed in the concept of an automatic fitness function with multi—
object optimization [27].

Significant acceleration for the searching of the quality function extremum can be achieved by
replacing strict rules of musical harmony onto the using of statistical distribution of notes in chords
and the sequence of chords for certain music styles [28]. However, from the point of view of minimiz-
ing the influence of restrictions on the expressiveness of the resulting music compositions and maxim-
izing the possibilities in using computer technology, these approaches to the choice of quality function
are not effective.

More promising approach is the direct use of the laws of musical harmony for formation of a fit-
ness function, as it was done, for example, in [29, 30]. In [29] harmonization of the musical composi-
tion is performed for a given melody and in [30] the sequence of chords is harmonized. Thus, the most
rational approach to ensure the freedom of the composer creativity seems is to limit the region of the
searching an extremum of the quality function by a genetic algorithm by already human created melo-
dy and rhythm. In other words, the composer comes up with a melody and rhythm in the form of a
sequence of single notes, and the software complements these notes with chords that meet all the re-
quirements of classical musical theory.

In this version, very important is the model of music representation, which makes it possible to
effectively automate the harmonization of a melody by a genetic algorithm. In [14], a fairly generic
universal model is presented that imposes almost no restrictions. Its disadvantages include the admis-
sibility to get some chords and their sequences, which obviously do not satisfy the laws of musical
harmony. This leads to a complication of the quality function surface and to a corresponding slow-
down in the convergence of the genetic algorithm to the global extremum.

In general, models of musical compositions used for harmonizing melodies by genetic algorithms
must satisfy a variety of requirements. On the one hand, models of musical compositions should be for-
mal, declarative and explicit [31], and they should also have the greatest possible expressive completness
and structural generality [32]. On the other hand, the use of musical compositions models in genetic
methods imposes additional requirements in terms of their effective using as chromosomes [33, 34].
In addition, evaluation of the effectiveness of the model for the formation of chromosomes also im-
plies the evaluation of the following properties [35, 36]: nonredunancy, legality, completness, la-
marckian property, causality.

Therefore, the development of new models that take into account the special features of the sub-
ject area is actual. This will make it possible to exclude obviously unacceptable solutions from the
search area, which should accelerate the convergence of the genetic algorithm to the global extremum
of the quality function.

Purpose of the work. The aim of this work is to develop a model of presenting music composi-
tions used for the harmonization of these compositions in genetic algorithm and allows to speed up the
process of harmonization of the composition.

To achieve the goal, the following tasks were set:

—analyze the characteristics of the well-known tonal model of musical compositions in terms of
the level of its structural generalization and redundancy of the search for solutions in the task of har-
monizing melodies;

— consider the features of the rules of musical compositions harmony, allowing to apply re-
strictions on the area of search for solutions in the task of harmonizing melodies and develop a model
with a higher level of generalization;
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— formulate expressions for the conversion of a consonant chord model into a tonal one for sub-
sequent translation into a musical notation;

—to carry out a simulation of the solution of the task of harmonization of a given melody by a ge-
netic algorithm for comparing the effectiveness of using a consonant chord model and a tonal model.

The basic concepts used for building models of musical compositions and their use in meth-
ods of harmonization.

We will call a music composition any combination of musical sounds that are organized together
in time and pitch in a certain way. Musical sounds are specially selected sound waves that are opposed
to noise waves and historically form a musical system [37].

Musical sound is characterized by a certain pitch, duration and time position (Fig. 1). The dispo-
sition of the sound determines when the oscillation starts and the duration determines how long it lasts.
In classical music notation the duration of sounds and their disposition is determined not in absolute,
but in relative, as a rule, multiples of 2, values. The pitch characterizes the oscillation frequency. In the
classical European musical system there is a finite, discrete, ordered set of musical sound pitches, in

which the frequency ratio between neighboring elements is equal to *¥2 in hertz. This difference in
pitch between serial sounds of the music system is called a semitone. The frequency-ordered set of all
pitches is called a sound order.

A model of a musical composition will be called any mathematical object, with the help of which
it is possible to reproduce a set of musical sounds represented by at least the three parameters men-
tioned: pitch, duration, and disposition.

The simplest models of musical compositions encode these three parameters explicitly. We will
call such models high-pitch. A typical example of such model is a classical music notation. Another
vivid example of a high-pitch model is MIDI format [38] — where sounds are represented as events
having a pitch and duration, which playback is assigned to a specific disposition.

We will say that two sounds intersect if they sound simultaneously, that is, if the disposition of
one of them lies in the interval between the disposition and the sum of the disposition and duration of
the other. The set of sounds, each pair of which intersects, will be called an intersection, or consonance
(Fig. 2). An intersection consisting of two sounds will be called an interval. The length of the interval
is the pitch difference between the highest and lowest pitch of interval sounds.

A 1
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f - N A e I
— 2 : H i : 3 |0 |
e T ﬁ%zm%i i
2 I I I I e | I 1 |
s I A | I
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a b a b
Fig. 1. Musical sounds and their recording: notes (a); Fig. 2. Sounds interaction: notes(a);
spectrogram (b) spectrogram (b)

The main object of study of musical harmony is the sounds intersection and their sequence. Fea-
tures of human perception of sounds intersection cause need for regulation of their structure. So, some
consonances are considered pleasant, consonant, and some — unpleasant, dissonant. The goal of har-
mony is to achieve a harmonious, consonant sound of all intersections of the composition [2, 3].

Composition in harmony is considered as a combination of two components: melody and accom-
paniment. A melody is a sequence of sounds expressing the main musical content of a composition.
The sounds of the melody do not intersect with each other. Accompaniment is a set of all sounds inter-
secting with sounds of a melody. The purpose of the accompaniment is to accompany and emphasise
the melody.
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According to this consideration, Octave
the generation of a musical composi- T T T T T T T T T
tion is divided in two stages: Clc#D'DHE! F! F2 GIGH AL A B! C2C#2D?
1. Formation of melody. T+ 1 1 1 1+ 1 1111+ T 1 11
2. Accompaniment selection. e e L
Melody harmonization is the pro- S~ =" Frequency, Hz
cess of selecting the accompaniment ) ““---f-”
that forms consonant harmonies with Pitches of pitch class D
the melody. Harmony defines a number Fig. 3. Division of the scale into octaves and pitch classes
of requirements that apply to the com-
position in the form of rules that determine which combinations of
sounds can be used and which are not [14, 36, 39, 40]. The main atten- |
tion is paid to the structure of the intersections used in the composi- v

tion, as well as their sequences. A composition that follows the rules
of harmony is considered to be harmonious.

The main way to build intersections of musical sounds is tonali-
ty. The tonality sets a special metric on the sound space range used
to measure the lengths of the intervals. Harmony rules usually use a
metric that is defined by tonality and represents such interval lengths
as the third, fifth, seventh, etc.

The set of musical sounds pitch or scale is divided into subsets
called octaves and pitch classes (Fig. 3). Pitch classes include pitch
values, the ratio of any pair of which is a multiple of 2. These pitches
are considered to be similar for human perception. Some pitch classes have their own names — for ex-
ample, G (or “sol”). There are 12 altitude classes in total, and they are denoted by capital Latin letters:
C,C#,D,D#,E, F, F#, G, G#, A, A#, B.

Octaves combine the pitches of the scale that are limited to values whose ratio is 2 (with the up-
per limit excluded from the octave). The set of octaves is ordered, so they are called simply by num-
ber. Any octave intersects with any pitch class, and the intersection always contains only one element.
Thus, any pitch can be characterized using the pitch class and the octave to which it belongs. For ex-
ample, the pitch of 440 is called A4 (or “la” of the “first octave™).

Tonality is a principle that determines the sounds of which pitch classes will be used in the com-
position, as well as the role of the sounds within the composition. The pitch class, which is included in
the tonality, has a certain function in it and is called the tonality degree (Fig. 4). As a standard way,
from the 12 pitch classes of the scale, the tonality uses only 7. As degrees, the pitch classes are ordered
among themselves by number (Table 1).

Fig. 4. A third chord with the
designation of pitch classes
(characters) and numbers of
degrees (Roman numerals) in
tonality in C dur

Table 1
The degrees of the seven major keys

Degrees | 1 ] v \Y% \4 VilI
A B C# D E F# G

B C#t D# E F# G# A#

C E F G B

Pitch classes D E F# G A B C#
E F# G# A B C#t D#

F G A A# C E

G A B C D E F#
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A O O In the most common keys, natural major and natu-
')\;\ (@) — — ral minor, the key interval for building harmony is the
W g 1§ 1O 1o third. The third is the length of the interval containing
J S © O © (e sounds with the difference of the degrees equal to 2.

Fig. 5. Several different intersections The intersection of all sounds that sound in a com-
of the same degree composition position at any given time is called a chord. To achieve
harmony, we strive to ensure that any chord of the com-

position can be represented as a set of third.

The chords of the tertian structure differ in the number of tonality degrees of sounds included in
it (Fig. 5). Despite the fact that every chord in four—part singing consists of four sounds, in the general
case, the pitch of each sound can correspond to only one degree. For example, A3, A4, A5, A6 are dif-
ferent pitches of one pitches class A, which in any tonality forms only one degree.

Tertian chord should consist of the sounds of at least three different degrees. A chord made up of
three degrees sounds is called a triad. At the same time, in order to form four sounds, one of the de-
grees is doubled, that is, it is used to form two different chord sounds. Harmonization of melody with
triads is one of the most common practices in harmony. Triads allow to harmonize most melodies in a
standard curriculum on harmony [2, 41]. When developing a model, we will limit ourselves only to
chords of this type.

A voice is any sequence of sounds without intersections between them. Thus, in the task of har-
monizing a melody is always a voice. The accompaniment consists of three other voices. A chord in a
consonant composition is an intersection that includes sounds from all voices.

Different styles and genres may have their own characteristics of harmony assessment require-
ments, so that their sets of harmony rules may vary. However, there are a number of criteria that must
be met for any harmonious composition:

— composition consists of four voices;

— voices are ordered by pitch and have no collisions — a musical sound from a low voice cannot
have a pitch higher than the sound from a higher voice with which it intersects;

— the distance between every two voices, that is, the length of the intervals formed by them,
should not exceed 12 semitones;

— the distance between the highest and lowest voices should not exceed 36 semitones;

—all chords must have a tertiary structure.

Compositions that meet these requirements will be called consonant.

Not every consonant composition is harmonious, but the class of harmonious compositions is
contained within the class of consonant compositions. Thus, to describe harmonic compositions, a
model capable of describing representatives of the class of consonant compositions is sufficient. It is
important that this model should be closed relative to the class of consonant compositions. Outside this
class, no solutions can be found.

Tonal model of musical composition.

Model that represent the pitch using a combination of two values — the degree of tonality and oc-
tave we will call tone model. Such models are widely used in genetic methods of harmonization [14,
36, 39]. As a tonal model, we

consider in detail the tonal Chords, N
model of a musical composi- — —
tion presented in [14]. o | 110.03] [003] [402 [003] I[1,03]

The model is a two- &) 2|[202 [202] [2072 [2072 [4072] =1
dimensional matrix, the ele- S | 3|[4.0.1] [401] [201] [002] [701] |ALT=0
ments of which encode the 411201 [001] 001 [401] [401] ] ©O=3
pitch of the sounds, and the Durati
vector of chord sounds dura- uration | L | 2 | 1 | 1 | 2 |
EIFolg g;tached to this matrix Fig. 6. Tonal model of musical composition
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The rows of the matrix specify the individual voices. Matrix columns correspond to chords. The
elements of the duration vector indicate the duration during which all sounds of the corresponding
chord are played. The time in the model is presented from left to right. That is, the first left chord
starts to sound, then the next right chord, etc. Thus, the position of the sounds is calculated as the sum
of the durations of all previous chords.

Each pitch P in the model is represented by a vector consisting of three elements: the tonality de-
gree D, the octave OC and the altration sign ALT, a special designation that allows you to increase or
decrease the pitch by a semitone. Alteration signs were taken from classical musical notation and are
used to enhance the expressiveness of the model.

The model is supplemented with a special function d, which selects and numbers the pitch classes
as grades of tonality. Accordingly, there is also an inverse function d™, which associates a certain
pitch class with the grade number.

The pitches of the sounds of the model are calculated according to the formula:

p(D,0C,ALT)=d (D) +12x0OC + ALT (1)

The tonal model is redundant. The use of alteration signs means that the same sound can have at
least two different ways of recording, and this recording may also depend on the tone used. For exam-
ple, in the key of C dur, the records P,=(7, +1, 1) and P,=(1, 0, 2) denote the same pitch C,. Consider-
ing that each sound of a composition can have multiple recordings, there are a significant number of
ways to record the same composition. The redundancy of the model significantly slows down the con-
vergence of the algorithm to the optimum.

The tonal model is unacceptable for the class of consonant compositions. The tonal model pro-
vides the presence of only one property of the consonant composition — the presence of four voices.
The model itself, without the use of additional efforts, for example, specialized genetic operators, does
not even allow to maintain the requirement of voices right ordering or limiting pitch distances between
voices [14]. Also in this model you can record chords not only in the tertian order.

One of the reasons for the redundancy of the tonal model, which leads to the inadmissibility of
this model for consonant compositions, is its weak structural generality. Increasing the structural gen-
erality will allow to narrow the class of the described compositions.

At different structural levels of the model there are different rules of harmony. Explicit selection
of parameters in the model that are important for harmonization is an essential criterion for the choice
of the model in optimization methods [33, 34]. Let us consider three levels of structural generality of
models of musical compositions, depending on the amount of concepts and knowledge that one must
have in order to select certain parameters (Table. 2).

Table 2
Different levels of structural generality of models
Structural level Parameters Level of concept generalization
. Chord function, chord reversal and disposition of other
Functional . - . - Interval chord structure
grades in the tertian and voice orders, doubling degree
Tonal Pitch length of mt_erval (in the_tona! metrlc), interval Chord degree structure, tonal metric
duration, chord disposition
. Absolute value of pitches and pitch length
Pitch . ; -
(in semitones)

It is inefficient to combine all the above properties defined for different structural levels of a
chord in one model, as it leads to excessive information content and requires constant coordination of
different levels with each other. Therefore, when developing a model, it is necessary to use a compro-
mise solution, distributing the priorities of different levels of structural description.
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The basis of musical harmony is a system of functional relations between sounds, and the main
structural element of a harmonious composition is a chord [2, 3]. Therefore, it can be said that parame-
ters at higher structural levels have higher priority for the determining of harmony.

The tonal model provides a description of the composition on the tonality structural level. By ab-
stracting information about a specific tonality, it can significantly reduce the calculation of the inter-
vals tonal length, which also allows us to easily change the tonality of the composition. The harmony
of the relations between sounds of different degrees expressed in such model is preserved when the
tonality changes. However, more significant parameters of higher structural levels are available in this
model only through additional computation, which significantly limits it.

Chord consonant model.

The disadvantages of the tonal model encourage the development of a more effective model. The
developed model should:

— be valid for consonant compositions in genetic methods;

— be closed on the class of consonant compositions for genetic operators of general purpose;

— be explicit at a higher functional level of structural generality.

It is possible to achieve an increase in structural generality by constructing a model based on a
greater amount of knowledge about the music subject domain [33, 34]. Understanding the consonant
musical composition as a sequence of chords, allows us to explore the patterns of chord formation in
the tertian structure. This analysis will help to identify the most important features of such chords in
order to exclude the possibility of the chords formation with non tertian structure and exclude redun-
dant descriptions of the same chords. Therefore, it will be effective to describe the composition at the
highest structural level and further to synthesize musical sounds in the order of “top down”.

Chord sounds are always ordered by their pitch. Since this order determines which sound belongs
to which voice, we will call this order as voice order. However, to introduce functional structural level
parameters at a set of chord pitches, it will be necessary to define a different order. This order is based
on the tertian structure of the chord, so we will call it tertian.

If we arrange the chord sound degrees by the third, we can point the increase of the tonality de-
grees by the third. This increase sets tertian order (Fig. 7). Its first element is the “edge” from which
the increase begins. This degree is called root. The subsequent degrees are called respectively the third
and fifth, in accordance with the lengths of the tone intervals that they would form with root, if this
order coincided with the voice order.

In this case, the number is set for the degree, so several sounds in the chord can be called a root
or a fifth. Also note that the tertian and voice order do not coincide, and that the sounds in a traditional
musical notation are visually ordered according to the voice order, which, however, does not negate
the tertian order inherent in the chord (Fig. 8).

1 v 2 3
— T “T- fifth - - - -1 voice | fifth (doubled)
o 1| (2 degrees | m . --- foot - - -2 voice | root
-V == third - -fifth - - - -3 voice | fifth
=111 2 degrees | | .-- root =~ third! == --4 voice | third

Fig. 7. Setting of tertian order on intersection sounds (tonality in C dur): Fig. 8. The difference between the
1 — determinve chord degrees; 2 — arrange degrees in thirds (tertias); voice and tertian order
3 — establish tertian on a chord (tonality C dur)

Since the entire set of harmony parameters is redundant, let us consider, starting from the highest
level of generality, which of them are sufficient for the complete formation of a chord and the subse-
guent calculation of the remaining parameters.

Under the function of the chord we understand its harmonic value within a single tonality [42].
The function of the tertian chord is determined by the degree of root.
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The inversion and position of the chord describe the relationship between the tertian and voice
orders. The inversion indicates the number in the tertian order of the sound of the lowest voice. Posi-
tion indicates the location of middle voices. In close position the sounds of middle voices have the
same position in the tertian order as in the voice order, and in the broad position — the opposite.

For triads, it is also important to specify which of the steps is doubled. Since, as a rule, doubling
of the third is prohibited, the doubling parameter indicates either to root or to third.

These four parameters, together with the pitch of the melody for which the chord is built, are
enough to completely form a triad. Therefore, it is proposed to describe the chords of the composition
with the following parameters:

— function f, Chords, N
—inversion i, — — N —
— position p, Function f[1[2[1[2[3[1]2]2[1]1
—repeatr. Inversion i |1 [1[3 ]3] 1]1]2]1]37]3
Let us set a list of valid values Positon p|1 |2 |11 |1 ]2 [1]1]2]2
for these parameters. The basis for a Repeat r| 1|13 |31 |3 |]1]|3]|3]3
chord building is the sound of a _
melody, which we harmonize with Duration 21621610/ 2]6)6]2]|2
this chord. This sound belongs to a Melody pich 2|4j2]2]4]1]2]4]2]1

certain degree of tonality and has a
definite position in the triad struc-
ture. The sound of a melody can be
in one of three possible positions: root, third or fifth, and accordingly can belong to triads of only three
functions. We denote these functions by the values 1, 2, and 3, respectively, in accordance with the
number of the melody sound degree in the tertian chord order.

Inversion points to the voice position of one of the chord degree, namely, the degree of the lowest
voice. Similar to the function notation, an inversion can be marked as 1, 2, or 3, where degree is en-
coded by its number in the tertian chord order.

The repeat points either to root or fifth, so it has only two valid values 1 and 3. The repeat value
is ignored if the function and the inversion are equal.

Position can be open or close. The close position corresponds to the coincidence of the voice and tertian
orders, and vice versa. We can denote a close position with a value 1, and an open position with value 2.

Thus, all parameters can be denoted by a small set of integer values. Understanding the composi-
tion as a sequence of N chords, we can represent its model as a matrix of 4xN integers, an additional
melody vector 1xN and a vector of durations 1xN (Fig. 9).

A melody is attached to the matrix as a sequence of musical sounds represented by vectors con-
taining the values of the pitch and the duration of the sound. The pitch of the melody sounds allows us
to build chords by parameters from the matrix, and the duration allows us to determine the duration
and position of the formed chords by complete analogy with the tonal model.

Applying a higher level of structural generality, we obtain the completeness of genetic operators
in the class of consonant compositions defined by this model. This is achieved due to the fact that all
compositions that can be recorded as a consonant chord model are also consonant, as well as the fact
that any combination of the values of model parameters (within their range of definition) is a certain
consonant composition. Thus, whatever genetic operator of crossing or mutation would be applied to
the composition in the model, as a result, consonant compositions will be formed.

Let us consider the relevance of using the developed model in genetic methods.

The consonant chord model is characterized by conditionality — the effects of changes in model
parameters are localized in chords, which are described by these parameters. The model also has the
Lamarckian property, since the interpretation of each chord is completely independent of the neighbor-
ing chords.

The model has admissibility. Any composition described by this model is consonant, which
means it can be a solution of the harmonization problem.

Fig. 9. Consonant chord model
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The model is incomplete. The model allows describing only those consonant compositions that
are formed using triads. This model feature makes it difficult to use it in problems of composition
analysis, however, it still makes it possible to effectively use model in problems of melody generation,
such as harmonization.

The model has redundancy. The using of the repeat parameter is useless when the chord has the
same value of function and inversion. However, it should be noted that the redundancy of the conso-
nant chord model is significantly lower than the redundancy of the tonal model. Each sound of the to-
nal model could be represented by at least three different vectors. So any chord could be represented in
3 different ways. In the chord model, redundancy occurs not for any chords, and if it does, it results in
only to two different forms of recording.

Transformation of consonant chord model to tonal model.

Let us show a transformation that will allow proceeding from a chord description of the composi-
tion in the chord model to a greed description in the tonal model.

The general process of sound formation from the tonal model involves the following steps. First
of all, we determine degree of the harmonized melody note. As we know position of the third of this
degree in the chord one can determine its function and use it to determine the set of all chord degrees.
Next we find which degree will belong to the lower sound, and which degree will be doubled. After
that it is necessary to arrange the degrees of the middle voices relative to each other. Further, from the
degrees it is possible to form the pitch of the sounds, placing the neighboring sounds at intervals of no
more than an octave.

In the tone model, the chord is the vector A=(P,, P,, Ps, P,), where P, is the pitches represented by vec-
tors of the form P,=(d,, a., 0,), and P, is the melody pitch. In the consonant chord model, the chord is repre-
sented by the vector A=(m, f, i, p, ). Let us show how it is converted to into A=(Py, P,, Ps, P,).

Let d be the function that determines the tonality: for each pitch it defines the degree of tonality
and also let O be the function that assigns to each pitch the octave in which it is located. Accordingly,
the functions d™ and O™" are inverse functions to them.

Considering that we know the pitch value of the melody m, we can easily form P;=(dy, a;, 01)
as follows:

d,=d(m),
0, =0(m).

The value of the alteration sign a;=0, as well as for any other pitch formed with the help of the
chord model.

Using the parameter f, we form the set of chord degrees according to the formula (1). In total,
there are two such steps to form, given that one of them already exists and is equal to d'=d,

di=(d" +2(f —i)+3)mod3. @)

Here and further, the degree order is denoted by the superscript, and the voice order is denoted by
the subscript. That is, record d; means “degree of the first (upper) voice)”, and record d* means “root
degree”.

The inversion parameter i allows us to determine the degree of sound in the lower voice,
so d,=d".

After determining the degrees d; and d, it is necessary to arrange in order the remaining degrees
and assign values to the degree d, and d;. We call these degrees free and denote their place in tertian
order by an asterisk d” and a double asterisk d”, where d">d™". The procedure for assigning free de-
grees to voices has the following logic. If the position parameter is p=0, then d,=d” and ds=d"".
If p=1, then d;=d” and d,=d"" _

If d'=d', two free degrees remain unordered. If d'#d', then after the determination d; and d,, there
is only one free degree. Since we need to have two degrees, we form an additional degree d', which
will be equal to d* or d®. Using repeat parameter r, we set d'=d".

Having obtained all the d, degree values, we define the octaves of sounds recursively using
the formula (3):
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©)

0;

] o di<diy,
|1+0.,,d >d_,.

After that, we can define specific chord pitch according to the rule of formation of tonal model
pitch, using the functions d and O in the formula (1).

Experimental results.

Let's compare the computation time of the genetic method of harmonization using two different
models: tonal and consonant chord.

Harmony estimation.

The standard way to evaluate harmony is a list of harmony rules that describes the relationships
of adjacent chords [14, 19, 40]. The set of rules has the general form F={f | f : AxA— {1, 0}} in which
rule f gives the value 1 in case a pair of chords 4 violates it, and 0 otherwise.

Harmony H is a value that can be calculated using the following formula for composition c using

the |F| rules:

1 FIna
H(C)Zl—m;;ml) fi(aj,a;.1), 4)

where c is the composition;
N is the number of all chords;
Q is the sum of the weights of all rules;
f; is the i-th harmonic rule;

|F| = number of rules;

q is the function of the weights of the rules;

a; — J-th chord in composition.

For the simulation experiment, the following list of rules was used (Table 3). Since both the tonal
and the chord model describes only four-part harmony compositions the condition of the four-part
harmony composition cannot be violated and therefore was excluded from the rules.

Table 3

Harmony rules

Weight g Rule f Violation condition
. . at least one voice contains a horizontal interval longer than
1 Slip in voice .
6 semitones
1 Melodic chord connection two in-line chords do not have common sounds
2 Doubling of the third at least one chord of the pair contains a doubled third
2 Parallel voice movement the length of all horizontal interval has one sign
2 Slip in the melody is not compensated | the melody contains a slip, but the lowest voice does not
by a bass slip contain it
4 parallel fifths horizontal mterva_l with a Ieggth of a fifth or more in
voices (fifth = 4 steps)

horizontal interval with a length of an octave or more in

4 Parallel octaves .
voices

4 Non harmonic chord progression violation of the rules of chord progression (see table. 4)
8 Non tertian chord structure at least one chord has a non-third structure
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Horizontal interval is a sequence of two series sounds of one voice. Its length is the difference of
these sounds pitches. Chord progression is a sequence of chords whose functions are matched with
each other. Chord progression is formed using the rules that show for each chord the functions of the
chords, which can be used after the given one. These rules are listed in Table 4. The table shows
whether it is possible to use the chord of F2 function after the chord of F1 function.

Table 4
Rules for the chord progression formation

f F2
I I " v \% VI VII
I + + + + + + +
] + + + — + — —
i + — — + + + +
Fl v + + — + + — —
\V + — + — + + +
VI + + + + — + —
VIl + - - - - - +

Features of the models used.

The genetic algorithm for optimizing the quality function was implemented in a typical way [15].
Candidates for breeding are selected by binary tournament method. Crossing is a single point crosso-
ver. Chord sequence are crossbreed. Each pair of selected genotypes is crossed. A lot of parents with
their descendants, go into the next generation. Mutations are point-like: each numeric element of the
chromosome matrices can get a random value within its range of possible values. Melody values can-
not mutate.

The tonal model is a matrix of 4x3xN integers. The consonant chord model is a two—dimensional
matrix of 4xN integers. The initial populations are sets of m such matrices and each element is filled
with random values.

Results of experiment.

For the simulation experiment, the melody of the first seven bars in composition “The Savior is
Waiting”, written by Ralph Carmichael (Fig. 10), was chosen (Free Choir Sheet Music). This compo-
sition is written in the classical harmonic style, in four voices, in the tonal model F dur. Melody was
harmonized by the genetic method twice using the tone model and consonant chord model. The results
are presented in Fig. 11 — 13.

I
I

J
F

TN

Fig. 10. First seven bars in composition “The Savior is Waiting”

We can see that for the both model the final value of harmony gets a constant, approximately the
same value. However, the use of a consonant chord model allows to achieve stable level much earlier.
In this example, we can see that the time difference is almost doubled.
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Fig. 12. Increasing the harmony of each pair of chords in the composition using the consonant chord model

Summary. The new model for representa-
tion of musical compositions for the harmoniza-
tion of known melodies by genetic algorithm is
developed. Due to the higher levels of structural
generality in comparison with the known tonal
model  the  higher  harmonization  rate
was achieved.

Analysis of the tonal model shows a redun-
dant wide range of admissible chords, on which
the global extremum of the quality function is
sought. This range includes obviously dissonant
chords. In addition, the same chord can be encod-
ed in many ways. This leads to a slowdown in the
process of finding the global extremum of the
quality function.

Consideration of the harmony rules features
in musical compositions allowed us to limit the
search area for solutions the set of consonant
chords and on this basis build the consonant chord
model for the representation of musical composi-
tion. Relations were obtained for the transition
from a chord description of the composition in the

0.957
0.9 Ve S~
0.85-

08l I/

Harmoniousness

0.751 ’F

0.74

100 150 200 250 300 350 400 450
Generations

0 50

Fig. 13. Comparison of harmonic composition value
with harmonization using tonal (dotted line) and
consonant chord models ( continuous line). The dot-
dash line denotes the value of harmony for composer
version of the composition

chord model to a degree description in the tonal model with the subsequent transition to the traditional

musical notation.
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The performed modeling of the harmonization problem solution for the given melody by a genet-
ic algorithm shows a double acceleration of the harmonization process when using a consonant chord
model compared to the use of a tonal model. In addition, the obtained results shows significantly better
compliance with the rules of musical harmony when using automatic methods, compared with the
work of the composer.

The developed model is limited in the use of triads as chords. Thereby the development of this
model improvement, which would allow the inclusion of another wide class of consonant chords — the
seventh chord, seems to be promising.
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