Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/14894
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorTymchenko, Borys-
dc.contributor.authorТимченко, Борис Ігорович-
dc.contributor.authorMarchenko, Philip-
dc.contributor.authorМарченко, Фiлiп Олександрович-
dc.contributor.authorSpodarets, Dmitrо-
dc.contributor.authorСподарець, Дмитро Володимирович-
dc.date.accessioned2025-02-06T09:20:47Z-
dc.date.available2025-02-06T09:20:47Z-
dc.date.issued2020-
dc.identifier.citationTymchenko, B., Marchenko, Ph., Spodarets, D. (2020). Deep learning approach to diabetic retinopathy detection. International Conference on Pattern Recognition Applications and Methods, Volume 1, P. 501-509.en
dc.identifier.issn21844313-
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/14894-
dc.description.abstractDiabetic retinopathy is one of the most threatening complications of diabetes that leads to permanent blindness if left untreated. One of the essential challenges is early detection, which is very important for treatment success. Unfortunately, the exact identification of the diabetic retinopathy stage is notoriously tricky and requires expert human interpretation of fundus images. Simplification of the detection step is crucial and can help millions of people. Convolutional neural networks (CNN) have been successfully applied in many adjacent subjects, and for diagnosis of diabetic retinopathy itself. However, the high cost of big labeled datasets, as well as inconsistency between different doctors, impede the performance of these methods. In this paper, we propose an automatic deep-learning-based method for stage detection of diabetic retinopathy by single photography of the human fundus. Additionally, we propose the multistage approach to transfer learning, which makes use of similar datasets with different labeling. The presented method can be used as a screening method for early detection of diabetic retinopathy with sensitivity and specificity of 0.99 and is ranked 54 of 2943 competing methods (quadratic weighted kappa score of 0.925466) on APTOS 2019 Blindness Detection Dataset (13000 images).en
dc.language.isoenen
dc.publisherScience and Technology Publicationsen
dc.subjectdeep learningen
dc.subjectdiabetic retinopathyen
dc.subjectdeep convolutional neural networken
dc.subjectmulti-target learningen
dc.subjectordinal regressionen
dc.subjectclassificationen
dc.subjectSHAPen
dc.subjectKaggleen
dc.subjectAPTOSen
dc.titleDeep learning approach to diabetic retinopathy detectionen
dc.typeArticle in Scopusen
opu.citation.journalInternational Conference on Pattern Recognition Applications and Methodsen
opu.citation.volume1en
opu.citation.firstpage501en
opu.citation.lastpage509en
Располагается в коллекциях:2020

Файлы этого ресурса:
Файл Описание РазмерФормат 
2003.02261v1.pdf1.54 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.