Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15190
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorUzun, I.-
dc.contributor.authorLobachev, M.-
dc.contributor.authorKharchenko, V.-
dc.contributor.authorSchöler, T.-
dc.contributor.authorLobachev, I.-
dc.date.accessioned2025-05-16T18:09:52Z-
dc.date.available2025-05-16T18:09:52Z-
dc.date.issued2024-
dc.identifier.citationUzun I. Candlestick Pattern Recognition in Cryptocurrency Price Time-Series Data Using Rule-Based Data Analysis Methods / I. Uzun, M. Lobachev, V. Kharchenko, T. Schöler, I. Lobachev // Computation, 12(7), 132, 2024. - 1-22.en
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/15190-
dc.description.abstractIn the rapidly evolving domain of cryptocurrency trading, accurate market data analysis is crucial for informed decision making. Candlestick patterns, a cornerstone of technical analysis, serve as visual representations of market sentiment and potential price movements. However, the sheer volume and complexity of cryptocurrency price time-series data presents a significant challenge to traders and analysts alike. This paper introduces an innovative rule-based methodology for recognizing candlestick patterns in cryptocurrency markets using Python. By focusing on Ethereum, Bitcoin, and Litecoin, this study demonstrates the effectiveness of the proposed methodology in identifying key candlestick patterns associated with significant market movements. The structured approach simplifies the recognition process while enhancing the precision and reliability of market analysis. Through rigorous testing, this study shows that the automated recognition of these patterns provides actionable insights for traders. This paper concludes with a discussion on the implications, limitations, and potential future research directions that contribute to the field of computational finance by offering a novel tool for automated analysis in the highly volatile cryptocurrency market.en
dc.language.isoen_USen
dc.subjectcryptocurrenciesen
dc.subjectcandlesticksen
dc.subjectrecognitionen
dc.subjecttime seriesen
dc.subjectrule-based methoden
dc.subjectdata analysisen
dc.titleCandlestick Pattern Recognition in Cryptocurrency Price Time-Series Data Using Rule-Based Data Analysis Methodsen
dc.typeArticleen
opu.citation.firstpage1en
opu.citation.lastpage22en
Располагается в коллекциях:2024

Файлы этого ресурса:
Файл Описание РазмерФормат 
Candlestick_Pattern_Recognition_in_Cryptocurrency_ (1).pdf3.14 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.